 Advanced Java(Internet Applications

Third Edition
(2003 Art Gittleman

Chapter 4

Servlets and JavaServer Pages(
This chapter has been typed in a draft mode and not formatted for publication.

Introduction

 Servlets add functionality to web servers. In contrast to applets, which we download and execute on the client, servlets execute on the server where they may connect to database servers and process information returning results in a web page to the client. Some web servers are able to include servlets, while others use a third-party tool to run them. We use Tomcat, free from Jakarta.apache.org, which includes a web server that we will use to test our servlets.

 HTML forms can pass information to servlets which process it and send results back to the client. In this approach the servlet sends a web page back to the client which includes presentation and content. By using JavaServer Pages the web page designer can focus on the presentation while the programmer handles the content.

 With a three-tiered architecture, the client communicates with a servlet on the middle-tier which in turn connects with a database server on the third-tier. In this way clients do not have to connect directly to a database.

 HTML connections are stateless, meaning that when a client connects again there is no record of previous connections. Session-tracking allows servers to maintain client information from one connection to the next, an essential feature needed for many web applications including web commerce.

 Objectives:

· Use Tomcat to test servlets and JavaServer Pages.
· Interact with servlets from HTML forms.
· Use a server filter to process a request.
· Add database connectivity in a three-tiered architecture

· Use session-tracking to maintain user information

· Use JavaServer Pages to separate content from presentation

4.1. A First Servlet

 Servlets enhance a web server. We can use servlets to enable our web pages to respond dynamically to user input. We start with a simple servlet that just prints a welcome message, testing our servlet engine installation.

Servlets with Tomcat
 The servlet API (Application Programming Interface) is not part of the core Java packages, but rather one of the standard extensions using the package prefix, javax. We find it in the packages javax.servlet, javax.servlet.http, and javax.servlet.jsp. We obtain the servlet API with the latest release build of the Tomcat servlet container available from

 http://jakarta.apache.org/site/binindex.html.
 We need to set the environment variable catalina_home to the directory in which we installed Tomcat. For example using version 4.1.12 that directory on the author’s machine is

 c:\jakarta-tomcat-4.1.12-LE-jdk14
 The simplest way to get started is to add our servlet class files in the default directory containing the tool's sample servlets. For Tomcat the default directory is
%catalina_home%\webapps\examples\WEB-INF\classes
On Windows systems, executing
%catalina_home%\bin\startup
will start the Tomcat server and its servlet engine, and

%catalina_home%\bin\shutdown
will stop it. The Tomcat server runs on port 8080, so no other server should be using that port.
 Web server configurations specify the URL for servlet access. For example, in Example 4.1 we create a servlet, Welcome.java, compile it, and put Welcome.class in the default servlet directory for Tomcat. The URL to access the Welcome servlet is

 http://localhost:8080/examples/servlet/Welcome

Generic Servlets

 The GenericServlet class, in javax.servlet, defines a protocol-independent servlet. It handles the starting, stopping, and configuration of a servlet. The only method we need to override is

public abstract void service

 (ServletRequest req, ServletResponse res)

 throws ServletException, java.io.IOException
which handles a request from a client. The ServletRequest interface encapsulates the parameters sent from the client, while ServletResponse includes methods to access the properties of the server's response. The service method throws exceptions of types ServletException and IOException to its caller, so that we do not need to handle them inside the service body.

 Our first servlet example, Welcome, just displays a welcome message, not processing any data from the client. We add a relative link to it in the web page of Figure 4.1.

<html>

<head>

 <title>Try a Servlet</title>

</head>

<body> <h3>The Welcome servlet displays a message</h3>

 <p><h5>

 Try a servlet </h5>

</body>

</html>

Figure 4.1 Welcome.html

 We are using Tomcat as our web server. To deploy web pages on this server, we put them in the directory

%catalina_home%\webapps\ROOT

and browse with the URL

http://localhost:8080/webpagename.html

where webpagename.html is the web page we are browsing.

 The link in Welcome.html is relative to this URL, so it refers to

http://localhost:8080/examples/servlet/Welcome
which is the URL of the Welcome servlet of Example 4.1. Figure 4.2 shows the web page of Figure 4.1, and Figure 4.2 shows the servlet response when we click on the web page link.

 [image: image1.jpg]2 Try a Servlet - Microsoft Internet Explorer

Ele Edt Vew Favortes Toos Help

Q- © - ¥ B G O

adress | €] htps/flocaihost:s080jwelcome html v | (£ Go

The Welcome servlet displays a message

Tryasendet

& Giocariae:

 Figure 4.2 Browsing Welcome.html
[image: image2.jpg]A Welcome Serviet - Microsoft Internet Explorer =13
T [

Q- O X B] D Forenss

iddress |] hitp:fflocaihost:8080/examplesfservietjwelcome | B3 Go Liks

‘Welcome to Servlets

@ ares

 Figure 4.3 Trying the Welcome servlet
The servlet is a Java program, Welcome.java, which we compile in the usual way, but we need to add the classpath containing the servlet API to tell the compiler where to find these classes. We compile Example 4.1 using the command

javac –classpath %catalina_home%\common\lib\servlet.jar Welcome.java

Example 4.1 Welcome.java

/* A simple servlet which uses no data from the client */

import java.io.*;

import javax.servlet.*;

public class Welcome extends GenericServlet {

 public void service
 (ServletRequest req, ServletResponse resp)

 throws ServletException, IOException {

 resp.setContentType("text/html"); // Note 1

 PrintWriter out = resp.getWriter(); // Note 2

 String message = "Welcome to Servlets";

 out.println("<html>"); // Note 3

 out.println
 ("<head><title>Welcome Servlet</title></head>");

 out.println("<body><h1>" + message

 + "</h1></body>");

 out.println("</html>");

 out.close();

 }

}

Note 1: We use the setContentType method to indicate the MIME type for the
 response. We could have also used the setContentLength method to
 specify the length of the response.

Note 2: The getWriter method conveniently encapsulates the details of creating a
 PrintWriter.

Note 3: We send several lines encoded with HTML, containing the response, to the
 client.

Test Your Understanding

1. (Try It Yourself) Put Welcome.class in the default servlet directory and

 enter the appropriate URL in a browser to execute the Welcome servlet.

2. (Try It Yourself) Deploy Welcome.html on Tomcat, point any browser to it and
 click on the link to execute the Welcome servlet.

3. (Try It Yourself) Put a file in the default directory for the Tomcat web server. Enter
 the appropriate URL for that file in a browser to see that the web server does serve
 files.

4.2. HTML Forms

 The easy to use HTML has helped the World Wide Web to become a primary computing platform. HTML forms let the user submit information to a remote site. The HTTP protocol defines how web servers and clients communicate. A client sends GET and POST requests which may include data entered in forms. In fulfilling requests the server may have the servlet engine execute servlets. With GET we send any data as part of the GET command, while with POST we send the data separately. GET is useful for small amounts of data, while POST is more suitable when we need to send more data.

GET requests

 Extending the HttpServlet class, in the javax.servlet.http package, allows a servlet to use properties specific to HTTP requests and responses. To handle a GET request the HttpServlet class provides a doGet method

public void doGet

 (HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException;

to handle GET requests from a client. The first argument, an HttpServletRequest object, encapsulates the data sent by the client, while the second argument, of type HttpServletResponse, encapsulates the response information from the server. The doGet method throws exceptions of types ServletException and IOException to its caller, so that we do not need to handle them inside the doGet body.

 When sending data in a GET request we can either append it to the URL or include it in the HTML file, letting the browser append it to the URL. In Example 4.2, we will send an order to the server, which will invoke our GetOrder servlet to respond. The first way to send our order when, for example, requesting food and drink, is:

http://localhost:8080/examples/servlet/GetOrder?Order=Food and Drink
which gives the response shown in Figure 4.4. We use a question mark, ?, to begin the data. Since HTTP does not allow spaces in a GET request, the browser replaces the space by its ASCII value, hexadecimal 20, prefixed by the escape character, %, so that the GET request becomes

http://localhost:8080/examples/servlet/GetOrder?Order=Food%20and%20Drink
We send GET data in the form of parameter values. In this example, we use an Order parameter, giving its value as Food and Drink. A variant of this approach includes the servlet URL in an anchor tag

[image: image3.jpg]2 Get Order Servlet - Microsoft Internet Explorer

Ele Edt View Favortes Toos belp

Qs - © - 1 B] O Forwonss @rwa

#dchess |] httpifflocalhost: 8030/ examples(servlet/GetOrder?Order=Fond:20ande200rink v | [E] Go

I'd like to order

Food and Drink
& ooce B Loca mronet

 Figure 4.4 Entering the servlet URL in a browser
 To explicitly use the GET command in our HTML file we use the form tag. Figure 4.5 shows an HTML file we can use for our GetOrder example.

<html>

 <head> <title>Get Order</title> </head>

 <body>

 <h3>Enter an order</h3>

 <form action="/examples/servlet/GetOrder" method=GET>

 Order: <input type=text name=Order size=20>

 </form>
 </body>
</html>

Figure 4.5 GetOrder.html
 In the form tag we indicate the action we wish the server to apply to our data. In this example, the action is the URL for the GetOrder servlet. We fill in GET as the request method to use in the method attribute of the form tag. To make the form we can use input tags of various types. Here we use one input tag of type text, meaning a text field input, for the user to enter the order. We name it Order, by which the servlet will find it, and give it a size of 20 characters. Pointing our browser to GetOrder.html gives the web page of Figure 4.6. Filling in Food and Drink in the text field and hitting Enter will result in the same response as in Figure 4.2, except that the browser replaces the spaces with + characters, using the URL

 http://localhost:8080/examples/servlet/GetOrder?Order=Food+and+Drink
 [image: image4.jpg]2 Get Order - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- © X B & Osenr

ctivess [) htpffocaostsa080fGetorder bl v | [EJ Go

Enter an order

Links

o

 Figure 4.6 An HTML form

Example 4.2 GetOrder.java

/* Echoes the user's order made in a GET request */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class GetOrder extends HttpServlet {

 public void doGet
 (HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

 String message = req.getParameter("Order"); // Note 1

 out.println("<html>");

 out.println
 ("<head><title>Get Order Servlet</title></head>");

 out.println("<body><h1>I'd like to order
");

 out.println(message+"</h1></body>"); // Note 2

 out.println("</html>");

 out.close();

 }

}

Note 1: The getParameter method returns the parameter entered in an HTML

 form or appended directly to a URL.

Note 2: Here we just echo the order back to the user.

POST requests

 To include more data in our request we use the POST request, making a more extensive form for user input. Before going on we revise Example 4.2 to allow the user to submit an order either with a GET or a POST request. To use a POST request, we create PostOrGetOrder.html by changing the method in the GetOrder.html file of Figure 4.5 to POST. The HttpServlet class has a doPost method to handle POST requests. Since we are simply recreating Example 4.2, we delegate any POST requests to the doGet method, as shown in Example 4.3.

Example 4.3 PostOrGetOrder.java

/* Revises Example 4.2 to allow the user to order with

 * a POST request as well as a GET request

 */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PostOrGetOrder extends HttpServlet {

 // the doGet method is the same as in Example 4.2

 public void doPost
 (HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 doGet(req,resp);

 }

}

 In Figure 4.7 we see that the browser does not include the data with the POST request. Thus using POST rather than GET is essential to keep the data sent private. Data sent with a GET request is appended to the URL and displayed in the browser's address field.

[image: image5.jpg]2 Get Order Servlet - Microsoft Internet Explorer

Ele Edt View Favortes Toos belp

Qs - © 1 B] D Formonss @ rwn

sddress |] hitp:fflacaihost:8080/examplesfservietjPostorGetorder v | [Go Links >

I'd like to order
Ice Cream

G Loca mronet

 Figure 4.7 The PostOrGetOrder servlet
 To send a more detailed order for an ice cream sundae, we add additional elements to an HTML form. Figure 4.8 shows the HTML file, while Figure 4.9 shows the form in a browser.

<html>

<head><title>Post Order</title></head>

<body>

<form action="http://localhost:8000/servlet/PostOrder"
 method=POST>

 Name:

 <input type=text name=name size=20>

 Password:

 <input type=password name=password size=12><p>

 Flavor:

 <select name=flavor size=3>

 <option>Vanilla

 <option>Chocolate

 <option>Strawberry

 </select><p>

 Toppings:

 <input type=checkbox name=toppings value="Hot Fudge">
 Hot Fudge

 <input type=checkbox name=toppings value="Butterscotch">
 Butterscotch

 <input type=checkbox name=toppings value="Nuts">
 Nuts

 <input type=checkbox name=toppings value="Whipped Cream">

 Whipped Cream <p>

 <input type=radio name=place value="Eat here"> Eat here

 <input type=radio name=place value="Take out"> Take out<p>

 <input type=submit value="Order">

 <input type=reset>

</form>
</body>
</html>

Figure 4.8 The PostOrder.html file

[image: image6.jpg]2 Post Order - Microsoft Internet Explorer.

Ele Edt View Favortes Toos Help

Qo - © - [x] [B] @ O seach g rovortes
icidress | €] https/focalhost:3080/PostOrder html VB ks >

Vanilla
Chocolate
Flavor: | Strawberry

Toppings: [Hot Fudge [Butterscotet (] Nuts [Whipped Cream

O Eathere O Take out

) Loca mrronet

 Figure 4.9 PostOrder.html
 This form uses a text field to enter the customer's name. An input tag of type password is like a text field, but it hides the input. We use the select tag to get the list box for the ice cream flavors. Each option tag within the select tag specifies an item in the list. We can only select one flavor from the list. To enable multiple selections we could add the attribute multiple to the select tag.

 We use the input tag of type checkbox to allow multiple selections for toppings. We use the radio type to allow only one choice of where to eat. The submit type creates a button to allow the user to submit the data to the server. The value attribute allows us to choose a name for the button. The reset type provides a button to allow the user to reset the form.

 Filling in the form and pressing the Order button produces the result shown in Figure 4.10.

[image: image7.jpg]3 Ice Cream Servet - Microsoft Internet Explorer

Ble Edt Vew Favortes ook Hep
Qo - © - [x] [B] @ O seach g rovortes
Address |] hitp:fflacaihost:8080/examplesfservietjPostorder v | [Go Links >
Hi Art
Got your order for Chocolate ice cream
with
+ Hot Fudge
« Nuts
to eat here. v
[&oome 3 Local riranet

 Figure 4.10 The PostOrder servlet
 In the PostOrder servlet we get the values of the parameters submitted by the customer and send that information back to the client.

Example 4.4 PostOrder.java

/* Echoes the user's order made in a POST request. */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PostOrder extends HttpServlet {

 public void doPost
 (HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

 String message = req.getParameter("name");

 String result = req.getParameter("password"); // Note 1

 out.println("<html>");
 out.println
 ("<head><title>Ice Cream Servlet</title></head>");

 out.println("<body><h1>Hi " + message);

 out.println("</h1><h3>");

 result = req.getParameter("flavor");

 out.println("Got your order for "+result+" ice cream
");

 String[] kinds
 = req.getParameterValues("toppings"); // Note 2

 if (kinds==null)
 out.println("with no toppings");

 else {

 out.println("with ");

 for(int i=0; i<kinds.length; i++)

 out.println("" + kinds[i]);

 out.println("");

 }

 result = req.getParameter("place");

 if (result.equals("Eat here"))

 out.println("to eat here.");

 else

 out.println("to go");

 out.println("</h3></body></html>");

 out.close();

 }

}

Note 1: We get the password but make no use of it in this example.

Note 2: Whenever a parameter can have more than one value we use the
 getParameterValues method which returns an array of String. We
 could use it instead of the getParameter method even when a parameter has
 only one value.

Test Your Understanding

4. What change to Example 4.2 would we have to make if we change the name attribute
 in the HTML file of Figure 4.5 from Order to Choices?

5. In addition to modifying the HTML file of Figure 4.5 to use a POST request instead of
 GET, what other change do we need to make to it in order to use the servlet of
 Example 4.3?

6. (Try It Yourself) Omit the value attribute of the submit type in the input tag of
 the HTML file of Figure 4.8. How will Figure 4.9 change as a consequence of this
 change?

4.3. Three-tiered Architectures

 In a two-tiered client-server application, the client connects directly to a database server. The client handles the business logic, the code needed to implement the business model, as well as the presentation of the data. The inevitably frequent changes in business logic require changes to the programs running on each client. Adding a middle tier to handle business logic simplifies maintenance and does not require as much computational power on client machines.

Using a Database in a Three-tiered Architecture

 We can use a servlet to access a database. In a three-tiered architecture, the client tier contains a user interface. The client connects to a middle-tier server that processes the client's request, accessing a database server in the third tier to store and receive information. In this way the business logic resides in middleware and can be changed without reconfiguring the various clients.

 Our SalesServlet simply executes the client's SQL query. We leave it to the exercises to design a servlet to create a query from form information supplied by the client. In this example we provide a form with a text area for the user to enter a SQL query which the servlet executes.

<html>

<head><title>Sales</title></head>

<body>

 <form action="/examples/servlet/SalesServlet" method=POST>

 Select:

 <textarea cols=50 rows=8 name=select></textarea><p>

 <input type=submit value="Query">

 <input type=reset>

 </form>
</body>
</html>

Figure 4.11 Sales.html

[image: image8.jpg]2 Sales - Microsoft Internet Explorer

e £k Mow Favomes lnds thb [

e €] e focahost ol

Select:
SELECT * FROH Customer

Query

&3 Locairanet

 Figure 4.12 The Sales query form

 In SalesServlet, we use the init method to connect to the database. Once we initialize the servlet, the connection to the database will remain while the servlet is active. Connecting to the database in the doGet method would require a new connection for each client request.

[image: image9.jpg]3 http://localhost: B0BU/examples/serviet/SalesServet - Wi

Ele Edt View Favortes Toos belp

Q- © ¥ B] D Foroenss

iddress |] htp:fflocaihost: 8080/ examples/servietjsalesserviet v | £ o

1234 Fred Fiynn 22 First St. 1667.0000
5678 Darnell Davis 33 Second St. 109500
4321 Marla Matinez 44 Third St. 0000
8765 Carla Kahn 55 Fourth 3t. 0000

T

 Figure 4.13 Result from the Sales query

Example 4.5 SalesServlet.java

/* Queries the Sales database.

 */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import sun.jdbc.odbc.JdbcOdbcDriver;

public class SalesServlet extends HttpServlet {

 Connection con;

 Statement stmt;

 public void init(ServletConfig sc) throws ServletException {

 super.init(sc); // Note 1

 try{

 new JdbcOdbcDriver();

 String url = "jdbc:odbc:Sales";

 String user = "";

 String password = "";

 con = DriverManager.getConnection(url, user, password);

 stmt = con.createStatement();

 }catch (Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 public void doGet
 (HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

 try{

 String query = req.getParameter("select");

 ResultSet rs = stmt.executeQuery(query);

 ResultSet rs = stmt.executeQuery(query);

 ResultSetMetaData rsMetaData = rs.getMetaData();

 int cols = rsMetaData.getColumnCount();

 while(rs.next()) {

 String s = "";

 for(int i=1; i<=cols; i++)

 s += rs.getString(i) + ' ';

 s += "
";

 out.println(s);

 }

 }catch(Exception e) {

 e.printStackTrace();

 }

 out.close();

 }

 public void doPost
 (HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 doGet(req,resp);

 }

}

Note 1: Always call the super.init method when overriding init.

Test Your Understanding

7. (Try It Yourself) Change the method in Sales.html in Figure 4.11 from POST to
 GET. Does the servlet still function properly? Why or why not?

8. (Try It Yourself) Point a browser to Sales.html and enter a query to find the

 names of all the salespersons. Describe the result.

4.4 Session Tracking

 Internet commerce will continue growing in importance. The HTTP protocol does not automatically maintain a connection, so that if a customer selects an item and moves to another page, perhaps for an additional item, the connection is lost. The vendor would like to keep the customer's information, including the items ordered, so that the customer can add items to the order and complete the purchase. The session tracking API lets a servlet keep track of clients from one connection to the next. Session tracking may be implemented using cookies which are bits of information sent by the web server to the client, which the client sends back to the browser when it accesses that page again. A cookie uniquely identifies a client.

 We will use an HttpSession object to allow a servlet to maintain a session with each client. With an HttpSession object, we can store values using the putValue method and retrieve them using the getValue method. The HTML form of Figure 4.14 defines a form for the client to place an order.

<html>

<head><title>Session Order</title></head>

<body>

<form action="/examples/servlet/SessionOrder" method=GET>

 <h3>Choose the items you would like to order.</h3><p>

 <input type=checkbox name=Order value="Java Book"> Java Book

 <input type=checkbox name=Order value="Baseball"> Baseball

 <input type=checkbox name=Order value="Bicycle"> Bicycle

 <input type=checkbox name=Order value="Dress"> Dress

 <input type=checkbox name=Order value="Shirt"> Shirt

 <input type=checkbox name=Order value="Shoes"> Shoes

 <input type=checkbox name=Order value="Theater tickets">

 Theater tickets

 <input type=checkbox name=Order value="Compact disk">

 Compact disk

 <input type=checkbox name=Order value="Cellular phone">

 Cellular phone

 <input type=checkbox name=Order value="Computer"> Computer <p>

 <input type=submit value="Order">

 <input type=reset>

</form></body></html>

Figure 4.14 SessionOrder.html
 Figure 4.15 shows the order form. Submitting an order sends the user's choices to the SessionOrder servlet. The servlet sends back a list of all items ordered so far and the user's session id as Figure 4.16 shows.
[image: image10.jpg]2 Session Order Servlet - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qs - © 1 B G O Foronss @ rwa

s 6] o flocabost 080/ xamplsseriSesslonOndr O =3ovarBockbrder st .

Your current order is
[Java Book, Shirt]

Your session D is DI 74E637FDIAEE1820D0701 035486 D6E.

@ Goares

 Figure 4.16 The response to an order

[image: image11.jpg]2 Session Order - Microsoft Internet Explorer

Ele Edt View Favortes Toos belp

Q- © ¥ B G| O

sddress |] htp:fflocaihost:a080/Sessionorder himl v | B3 Go Lk >

Choose the items you would like to order.

JovaBook
O Bassbat
O Biegete
0 Dress

[Stoes
] Theatertickets
] Compact diskc
[Gl phone
1 Congputer

G Loca mronet

 Figure 4.15 An order form

 The SessionOrder servlet returns a list of the items ordered, and also displays the client's session ID. Since we use a GET request, the browser appends the items requested to the URL, in making the request.

 Figure 4.17 shows the request from another customer and Figure 4.18 shows the servlet's response.

[image: image12.jpg]2 Session Order - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- O ¥ B G| O

ctdress [) htpffocalhost:a080fSessionorder bl | [EY Go

Choose the items you would like to order.

[sava Book
[Bassbl
[Bieyete

Dress
[stin
[shoes
Theatertickets
1 Compact disk
] Celtte phone
1 Computer

Goares

 Figure 4.17 An order from another customer

[image: image13.jpg]2 Session Order Servlet - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qs - © - 1 B G O Forwons @ @3- B

kress |] httpfocahost: 3080 examples/servietSessonOrderOrder=DresstOrder=Theater tickets v | [EJ 6

Your current order is
[Dress, Theater tickets]

Your session ID is:3C528ESEFTEEN0DACIDOBI6AT6BR675

@ oares

 Figure 4.18 The servlet’s response to a second customer
 The servlet still remembers the order from the first customer. Figure 4.22 shows the response when that customer connects again, ordering shoes and a compact disk.

[image: image14.jpg]2 Session Order Servlet - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qs - O 1 B G Dswr Frroons @rose @

T e ——————

Your current order is
[Java Book, Shirt, Shoes, Compact d

Your session D is DI 74E637FDIAEE1820D0701 035486 D6E.

@ Goares

 Figure 4.19 The response to an additional order

 The SessionOrder servlet adds the new items maintaining all the items ordered by the first customer.

Example 4.6 SessionOrder.java

/* Uses session tracking to maintain a customer's

 * information over multiple connections.

 */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class SessionOrder extends HttpServlet {

 public void doGet
 (HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

 HttpSession session = req.getSession(true); // Note 1

 String[] newItems = req.getParameterValues("Order");

 Vector items = (Vector)session.getValue("items"); // Note 2

 if(items==null) // Note 3

 items = new Vector();

 for(int i=0; i<newItems.length; i++)

 items.addElement(newItems[i]); // Note 4

 session.putValue("items",items); // Note 5

 out.println("<html>");

 out.println
 ("<head><title>Session Order Servlet</title></head>");

 out.println("<body><h1>Your current order is
");

 out.println(items + "</h1><p>");

 out.println("Your session ID is:"
 + session.getId() + "
");

 out.println("</body></html>");

 out.close();

 }

}

--

Note 1: The getSession method returns the current session. If the argument is true,

 it creates a new session if there is no current session.

Note 2: The getValue method returns the Object associated with the argument

 "items". We cast it to a Vector which is what we are using in this example.

Note 3: If items is null we have just begun a session and need to create a new

 Vector to hold the orders.

Note 4: We add the newly chosen items to the Vector containing the previous choices.

Note 5: Having updated items, we use the putValue method to save it, associated with

 the name "items".

Test Your Understanding

9. (Try It Yourself) Browse SessionOrder.html repeatedly, returning this page
 several times and making various choices of items. Describe the results.

10. (Try It Yourself) Browse SessionOrder.html placing an order, and then open a
 new copy of the browser and browse SessionOrder.html again. Compare the
 results to those of Exercise 4.9.

4.5. JavaServer Pages (JSP)

 JavaServer Pages make using servlets even simpler. JSP provides script tags to include Java code in a web page to create dynamic content. It automatically creates a servlet from the JSP page. We can call JavaBeans component methods to more cleanly separate application logic from web page presentation.

Getting Started with JSP

 We use the JSP in place of the servlet of Example 4.2, in order to compare the two approaches to adding dynamic content to a web page. Using JSP, rather than writing a separate servlet class we add Java code directly in the web page returned to the client.

 In writing a servlet we use an HttpServletRequest object to get parameters from the client and a PrintWriter to send a response. Both these objects are implicitly available in a JSP page, as request and out respectively.

 JSP tags are case sensitive. In Example 4.7 we include a Java code fragment using

<% code fragment %>

In place of the servlet of Example 4.2, we write a JSP page, giving it a .jsp extension. We replace the action in the HTML file of Figure 4.3, which refers to the servlet of Example 4.2, by a reference to our JSP page. Figure 4.20 shows the revised HTML. We use a relative URL for the action, indicating that getOrder.jsp can be found in the same directory as the HTML file. Browsing GetJspOrder.html will bring up the screen of Figure 4.6.

<html>

 <head><title>Get Jsp Order</title></head>

 <body>

 <h3>Enter an order</h3>

 <form action = GetOrder.jsp method=GET>

 Order: <input type=text name="Order" size=20>

 <input type=submit>

 </form>

 </body>
</html>

Figure 4.20 GetJspOrder.html
 In Example 4.7 we write the web page we want to return in response to the client’s request. We insert only one Java line in the response

<% out.println(" " + request.getParameter("Order")); %>

which says to echo the order the customer requested. When the user browses GetJspOrder.html and submits an order, the output will be the same as that of Figure 4.4 that resulted from using the servlet of Example 4.2.

Example 4.7 GetOrder.jsp

<%-- JSP version of the servlet of Example 2 --%> // Note 1

<html>

<head><title>Get Jsp Order Results</title></head>

<body>

<h1>

I'd like to order

<%

 out.println(" " + request.getParameter("Order"));

%>

</h1>

</body></html>

Note 1: We use the <%-- comment --%> tag to insert a hidden comment that
 documents the file but is not sent to the client.

 Comparing Example 4.7 to Example 4.2, we see how much simpler a JSP page can be to write. We do not have to send HTML formatting from a servlet, but rather augment the HTML page with Java code and let the servlet engine create the servlet.

 To execute JavaServer Pages, we put the files GetJspOrder.html of Figure 4.20 and GetOrder.jsp of Example 4.7 in the
%catalina_home%\webapps\ROOT

directory. We browse the URL

http://localhost:8080/GetJspOrder.html

when using a local machine, but replace localhost with the IP address of a remote site if we are connecting to it.

 Two stages occur in the processing. At HTML translation the JSP source file is compiled to a servlet, using a Java compiler associated with the servlet engine. When the client submits a request the servlet is executed.

A JSP Response to a Form

 The simple form produced by the page of Figure 4.20 was easy to handle. For a more complex example, we respond to the POST command of Figure 4.8, whose form is shown in Figure 4.9, using JSP rather than the servlet of Example 4.4. The result of processing the form by the JSP will be the same, shown in Figure 4.10. The PostJspOrder.html file of Figure 4.21 is the same as the PostOrder.html file of Figure 4.8 except that the action is now a JSP rather than a servlet.

<html>

<head><title>Post Order</title></head>

 <body>

 <form action="PostOrder.jsp" method=POST>

 Name:
 <input type=text name=name size=20>

 Password:
 <input type=password name=password size=12><p>

 Flavor:

 <select name=flavor size=3>

 <option>Vanilla

 <option>Chocolate

 <option>Strawberry

 </select><p>

 Toppings:

 <input type=checkbox name=toppings value="Hot Fudge">
 Hot Fudge

 <input type=checkbox name=toppings value="Butterscotch">
 Butterscotch

 <input type=checkbox name=toppings value="Nuts">
 Nuts

 <input type=checkbox name=toppings value="Whipped Cream">
 Whipped Cream<p>

 <input type=radio name=place value="Eat here"> Eat here

 <input type=radio name=place value="Take out"> Take out<p>

 <input type=submit value="Order">

 <input type=reset>

 </form>
 </body>
</html>

Figure 4.21 PostJspOrder.html

 In the JSP of Example 4.8, we use an expression tag

<%= expression %>

where the expression can be any valid Java expression. We interleave Java code inside scriptlet tags with HTML code. For example, the fragment

 <% if (kinds==null) %>

with no toppings.

 <% else { %>

with

 <% for(i=0; i<kinds.length; i++) { %>

 <%= kinds[i] %>

 <% } %>

uses Java code to generate a web page. If the user did not choose any toppings, we display “with no toppings.” Otherwise, we create an unordered list and display each kind of topping as a list item. The Java code, including braces, goes in scriptlet tags, <% %>. We put the Java variable, kinds[i], in an expresion tag which we can insert directly into the HTML.

Example 4.8 PostOrder.jsp

<!-- Echoes the user's order made in a POST request. -->
 // Note 1
<% String message = request.getParameter("name"); // Note 2

 String result = request.getParameter("flavor");

 String[] kinds
 = request.getParameterValues("toppings");

 int i;

%>

<html>

 <head><title>Ice Cream Servlet</title></head>

 <body><h1>Hi <%= message %> // Note 3

</h1><h3>

Got your order for <%= result %> ice cream

 <% if (kinds==null) %>

with no toppings.

 <% else { %>

with

 <% for(i=0; i<kinds.length; i++) { %>

 <%= kinds[i] %>

 <% } %> // Note 4

 <% }

 result = request.getParameter("place");

 if (result.equals("Eat here"))

 %>

to eat here.

 <% else %>

to go.

</h3></body></html>

--

Note 1: This comment is sent to the client in the page source, and not hidden.

Note 2: The request object is implicitly available. It represents the POST request that
 the user made.

Note 3: We use the expression tag to embed the value of the expression in the
 HTML file. In this case the message string represents the user’s name entered
 in the form. The form includes a password field, but we do not use it to restrict
 access, leaving that improvement for the exercises.

Note 4: The closing brace, }, is part of the Java code and not the HTML file, so we must
 enclose it in a scriptlet tag.

JSP and JavaBeans Components

 To further separate the content of a response from its presentation in HTML we can use the JavaBeans components that we will cover in a later chapter. For this section, all we need to know about JavaBeans is that they are Java programs which allow us to store and retrieve values using get and set methods. For example, to store a name we use setName(“George”), while to retrieve it we use getName().

 Example 4.9 shows the bean we will use. It contains methods to set and get the values associated with the sundae ordering of Example 4.8 which we will redo using this bean. We could add additional methods if desired.

Example 4.9 OrderBean.java

/* A JavaBean to hold values from a form request

 */

package order;

public class OrderBean {

 private String name = "Name"; // Note 1

 private String password = "Password";

 private String flavor = "Flavor" ;

 private String[] toppings = {"Toppings"};

 private String place = "Place";

 public void setName(String n) { // Note 2

 name = n;

 }

 public String getName() { // Note 3

 return name;

 }

 public void setPassword(String p) {

 password = p;

 }

 public String getPassword() {

 return password;

 }

 public void setToppings(String[] t) {

 toppings = t;

 }

 public String[] getToppings() {

 return toppings;

 }

 public void setFlavor(String f) {

 flavor = f;

 }

 public String getFlavor() {

 return flavor;

 }

 public void setPlace(String p) {

 place = p;

 }

 public String getPlace() {

 return place;

 }

 public String getResult() { // Note 4
 String s = "with ";

 if (toppings == null)

 s = "no toppings";

 else

 for(int i=0; i < toppings.length; i++)

 if (i == toppings.length -1)

 s += " and " + toppings[i];

 else

 s += toppings[i] + ", ";

 if (place.equals("Eat here"))

 s += " to eat here.";

 else

 s += " to go.";

 return s;

 }
}

Note 1: We declare one variable for each form value.

Note 2: We declare one set method for each value we wish to set.

Note 3: We declare one get method for each value we wish to retrieve. To retrieve a
 value there must be a corresponding set method to set the value.

Note 4: The getResult method processes the data obtained from the HTML form, and

 returns a String that the JSP displays.

 The PostJspOrderBean.html file that we use to define our form is the same as Figure 4.21 except that the action is PostOrderBean.jsp. In that JSP file we introduce tags to use bean values.

 To use a bean we use a <jsp:usebean> tag which may include various attributes. In our example we use the id attribute to refer to our bean, and the class attribute to specify its class file.

<jsp:useBean id="sundae" class="order.OrderBean" />

 With the <jsp:setProperty> tag we can set some or all of the bean values sent by the client in the POST request. In our example, we set all the values using

<jsp:setProperty name="sundae" property="*" />

The name attribute gives the name of the bean, while the property attribute states which property to set. In this tag, the * value represents a wildcard that matches all properties, so all values sent by the client will be set in the bean.

 We can retrieve bean values using the <jsp:getProperty> tag. For example, the tag

<jsp:getProperty name="sundae" property="name" />

retrieves the name property. We embed the returned value in the HTML code.

 Inside the scriptlet tag we can call bean methods directly. In Example 4.10, we call

sundae.getResult()

to obtain the response to the data submitted in the form.

Example 4.10 PostOrderBean.jsp

<!-- Echoes the user's order made in a POST request.

-->

<jsp:useBean id="sundae" class="order.OrderBean" />

<jsp:setProperty name="sundae" property="*" />

<html>

<head><title>Ice Cream Servlet</title></head>

<body><h1>Hi <jsp:getProperty name="sundae"

 property="name" />

</h1>

<h3>Got your order for <jsp:getProperty name="sundae"

 property="flavor" /> ice cream

 <%= sundae.getResult() %>

</h3></body></html>

--

 To execute this example using Tomcat
· Place PostJspOrderBean.html and PostOrderBean.jsp in

 %catalina_home%\webapps\examples\jsp
· Create an order subdirectory of

 %catalina_home%\webapps\examples\WEB-INF\classes
· Compile OrderBean.java and place OrderBean.class in this

 directory.

· Browse
 http://localhost:8080/examples/jsp/PostJspOrderBean.html.

Test Your Understanding

11. (Try It Yourself) Modify GetJspOrder of Figure 4.20 to use a POST request
 instead of GET. What differences if any do you observe when sending an order?

12. (Try It Yourself) What difference do you observe in effect of the comments between
 Example 4.7 and Example 4.8?

13. In Example 4.10, what is the difference in usage between a bean method call and the
 <jsp:getProperty> tag?

4.6 Servlet Filters

 A servlet filter can intercept a request, processing it before it reaches the servlet. It can also process the servlet's response. We show an example of each.
The Filter Interface

 The Filter interface has three methods.
void init(FilterConfig config)

 Called when the filter is placed in service.

void destroy()

 Called when the filter is removed from service.

void doFilter(ServletRequest req,
 ServletResponse resp, FilterChain chain)

 Performs the filtering.

Filters use a FilterChain to invoke the next filter in the chain. The FilterChain interface provides the method

void doFilter(ServletRequest req, ServletResponse resp)

The FilterConfig interface represents an object that can be used to pass information to a filter during initialization.

Filtering a Request

 In Example 4.11, we check if the request provides an Accept header. If it does not, we refuse the request, otherwise we pass it on to the servlet.

Example 4.11 RequestFilter.java

package request;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class RequestFilter implements Filter {

 private FilterConfig fc = null;

 public void init(FilterConfig f) {

 fc = f;

 }

 public void destroy() {

 fc = null;

 }

 public void doFilter(ServletRequest req,

 ServletResponse resp, FilterChain chain)

 throws ServletException, IOException {

 if (((HttpServletRequest)req).getHeader("Accept") == null) {

 PrintWriter pw = resp.getWriter();

 pw.println("Can't help you today");

 return;

 }

 chain.doFilter(req, resp);

 }

}

Deploying a Filter

 Create a directory named request in

%catalina-home%\webapps\examples\WEB-INF\classes

which will hold the class file for RequestFilter. Compile Example 4.11 using

javac -classpath %catalina_home%\common\lib\servlet.jar

request\RequestFilter.java

 Edit the configuration file web.xml in the examples\WEB-INF directory to

include

<filter>

 <filter-name>RequestFilter</filter-name>

 <filter-class>request.RequestFilter</filter-class>

</filter>

in the section with the other <filter> tags. Include

<filter-mapping>

 <filter-name>RequestFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

in the section with the other <filter-mapping> tags. The URL pattern "/*"

means that the filter will apply to all requested URLs.

Restart Tomcat after changing web.xml.

Using RequestFilter

 To test RequestFilter we first deploy the Welcome servlet of Example 4.1

by copying Welcome.class to

%catalina-home%\webapps\examples\WEB-INF\classes

Entering

 http://localhost:8080/examples/servlet/Welcome

in a browser will produce the message of Figure 4.3.

However using the VerySimpleBrowser of Example 2.8

java VerySimpleBrowser localhost 8080 /examples/servlet/Welcome

produces

Connected to host localhost/127.0.0.1

Can't help you today

because VerySimpleBrowser does not send an Accept header.

Filtering a Response
 The LuckyWelcome servlet of Example 4.12 includes a non-standard <lucky> tag in the response. We intend this tag to return lucky numbers to the client. We use the servlet filter of Example 4.13 to process the response and translate the <lucky> tag. The filter simply wraps the servlet response and passes it to the next filter, if any, in the chain. We place Example 4.12 in a package named lucky, creating a directory by that name in
examples\WEB-INF\classes.

Example 4.12 LuckyWelcome.java
/* Includes the <lucky> tag which LuckyFilter

 * interprets.

 */

package lucky;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class LuckyWelcome extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse resp)

 throws ServletException, IOException {

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

 String message = "Welcome to Servlets";

 out.println("<html>");

 out.println("<head><title>Welcome Servlet</title></head>");

 out.println("<body><h1>" + message + "
");

 out.println("<lucky></h1></body>"); // Note 1
 out.println("</html>");

 out.close();

 }

}

Note 1: The <lucky> tag is non-standard HTML. The servlet filter of Example 4.13

 processes it.

Example 4.13 LuckyFilter.java

package lucky;

import java.io.*;

import javax.servlet.*;

public class LuckyFilter implements Filter {

 private FilterConfig fc = null;

 public void init(FilterConfig f) {

 fc = f;

 }

 public void destroy() {

 fc = null;

 }

 public void doFilter(ServletRequest req,

 ServletResponse resp, FilterChain chain)

 throws ServletException, IOException {

 LuckyWrapper luckyWrap = new LuckyWrapper(resp);

 chain.doFilter(req, luckyWrap);

 }

}

 The LuckyWrapper class extends HttpServletResponseWrapper to be able to transform the response. It overrides the getWriter method to return a LuckyWriter rather than the default Writer associated with the response.

Example 4.14 LuckyWrapper.java

package lucky;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class LuckyWrapper extends HttpServletResponseWrapper {

 private PrintWriter luckyWriter;

 public LuckyWrapper(ServletResponse resp) {

 super((HttpServletResponse)resp);

 try {

 luckyWriter = new LuckyWriter(resp.getWriter());

 }catch(IOException e) {

 e.printStackTrace();

 }

 }

 public PrintWriter getWriter() throws IOException {

 return luckyWriter;

 }

}

 The LuckyWriter class overrides the println method to intercept the <lucky> tag and replace it by six lucky numbers, which will be sent to the client.

Example 4.15 LuckyWriter.java

package lucky;

import java.io.*;

public class LuckyWriter extends PrintWriter {

 public LuckyWriter(OutputStream o) {

 super(o);

 }

 public LuckyWriter(PrintWriter p) {

 super(p);

 }

 public void println(String line) {

 int index = line.toUpperCase().indexOf("<LUCKY>");

 if(index == -1)

 super.println(line);

 else {

 super.println("Your lucky numbers are:
");

 for(int i=0; i<6; i++)

 super.println((int)(51*Math.random()+1)+ " ");

 super.println("
");

 }

 }

}

Deploying LuckyFilter

 Create a directory named lucky in

%catalina-home%\webapps\examples\WEB-INF\classes

Compile LuckyFilter.java, LuckyWrapper.java, LuckyWriter.java, and

LuckyWelcome.java using

javac -classpath %catalina_home%\common\lib\servlet.jar lucky\Lucky*.java

 Edit the configuration file web.xml in the examples\WEB-INF directory to include

<filter>

 <filter-name>LuckyFilter</filter-name>

 <filter-class>lucky.LuckyFilter</filter-class>

</filter>
in the section with the other <filter> tags. Include

<filter-mapping>

 <filter-name>LuckyFilter</filter-name>

 <url-pattern>/lucky/*</url-pattern>

</filter-mapping>

in the section with the other <filter-mapping> tags. The URL pattern /lucky/* means that the filter will apply to all requested URLs which include lucky before the servlet requested. In this way we can isolate the servlets that use the <lucky> tag and not waste time using the filter on other servlets.
 We want to use the LuckyWelcome servlet with the /lucky prefix so the request will trigger the filter. To do that we modify web.xml to include

<servlet>

 <servlet-name>LuckyWelcome</servlet-name>

 <servlet-class>lucky.LuckyWelcome</servlet-class>

</servlet>

in the <servlet> section and

<servlet-mapping>

 <servlet-name>LuckyWelcome</servlet-name>

 <url-pattern>/lucky/welcome</url-pattern>

</servlet-mapping>

in the <servlet-mapping> section. Restart Tomcat after changing web.xml.

 Entering
http://localhost:8080/examples/lucky/welcome

in the browser will produce output of Figure 4.22.
[image: image15.jpg]2 Welcome Serviet - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- © X B O] D Forenss

actdress |] htpiffocaostis0s0jexsmplsuckyfwelcone v | [6o Links >

‘Welcome to Servlets
Your lucky numbers are:
22493812734

& oore) Loca mronet

 Figure 4.22 Filtering a response

Test Your Understanding

14. What is the function of a FilterChain object?
15. For what would a FilterConfig object be used?

Summary

· Servlets extend the functionality of a web server. They can respond to GET and POST requests from web clients. A servlet can extend GenericServlet, using the service method to handle requests, or extend HttpServlet and use the doGet or doPost methods to handle requests. A servlet has access to request and response objects to communicate with the client. Servlets may output HTML code to the client. HTML forms include various types of input including text fields, lists, checkboxes, radio buttons, and buttons.

· Servlet chaining lets us direct the output of one servlet to another servlet to filter the output before sending it back to the client. We can chain two servlets in a URL, or configure the server to use a MIME filter, sending every file of a certain type to the servlet filter.

· Three-tiered architecture allows the client to concentrate on presentation, connecting to a middle-tier executing a servlet to implement the business logic and connect to a database on the third tier.

· Session tracking lets the server keep track of a client who makes multiple requests. Since HTTP is a stateless protocol, not saving information about the client, session-tracking is essential to enable electronic commerce applications.

· JavaServer Pages (JSP) add dynamic content to web pages. They use scripting to enhance HTML code. The resulting JSP page gets compiled to a servlet which executes when the client submits a request.

· A servlet filter can intercept a request, processing it before it reaches the servlet. It can also process the servlet's response.
Program Modification Exercises

1. Modify the servlet of Example 4.1 to extend HttpServlet and to handle a

 GET request.

2. Modify Examples 4.12 and 4.15, so that the <lucky> tag does not have to be

 on a separate line.

3. Modify Example 4.15 so that it always returns distinct random numbers.

4. Modify Figure 4.15 and Example 4.5 to pass the JDBC driver name and the

 database URL from the HTML form to the servlet.

5. Modify Example 4.6 to allow the customer to delete items from an order.

6. (Putting It All Together) Use the SearchSales program, Example 3.6, to

 create the query to send to the SalesServlet of Example 4.5.

7. Modify Example 4.5 to create an SQL query from a form the user fills in,

 rather than having the user enter the query directly.

8. Modify Example 4.12 to add a doPost method to handle POST requests.

9. Modify Example 4.6 to add a doPost method to handle POST requests.

 Modify SessionOrder.html and browse it to test the revised servlet.

10. Modify Example 4.7 to use a JavaBean.

Program Design Exercises

11. Write an HTML page with a form for the user to order a pizza with either thick or

 thin crust and a choice of toppings. Write a JSP page which uses a JavaBean to echo

 this request back to the client.

12. Write a servlet filter that outputs the date in place of a <date> tag. Create an

 HTML page which includes a <date> tag and let the filter process it to output
 the date in the web page.

13. (Putting It All Together) Write an HTML page with a form for the user to select a
 favorite food. Write a servlet to save the client's response in a database, and output
 the number of clients who prefer each food.

14. Write an HTML page with a form for the user to select a favorite sport. Write a
 servlet to save the client's response in a hashtable, and output the number of clients
 who prefer each sport.

15. Write an HTML page with a form for the user to order a pizza with either thick or
 thin crust and a choice of toppings. Write a JSP page to echo this request back to the
 client.

THE BIG PICTURE

 HTML forms let users communicate with a web server. A GET request appends data to the URL, while a POST request sends data separately. The form tag has an action attribute that specifies the program on the server that will handle the form data, and a method attribute to specify the type of request. A form may include various input tags including text, password, checkbox, radio, submit, and reset types. We use the select tag to add a list. Servlets use the getParameter method to obtain the form data, and respond by sending an HTML page to the client.

 Tip

THE BIG PICTURE

 A three-tiered architecture configures business logic on a middle tier. The client handles the graphic presentation and communicates with the middle tier which handles the content. The middle tier stores and retrieves data from a database server on the third tier. This architecture keeps business logic in a central location making it easier and cheaper to perform updates. Powerful middle tier application servers can scale to meet the demands of serving many clients.

THE BIG PICTURE

 Session tracking allows the server to keep track of a client during multiple connections. Information the client sent will be saved so that the server can read it the next time the client connects. Using HTTP each client request requires a separate connection, so session tracking is essential for e-commerce applications. Session tracking may use cookies, bits of stored information, to save the data for later recall.

To import a package, use the page directive, as for example

 <%@ page import="java.io.*" %>

THE BIG PICTURE

A servlet filter can intercept a request, processing it before it reaches the servlet. It can also process the servlet's response.

The name servlet represent a tag that the Tomcat server uses to identify a servlet. It is not a directory name.

 Tip

We are hosting our web server and browser on the same machine. When deploying web pages and servlets on a remote machine we would replace localhost in the URL with the address of the host machine.

 Tip

THE BIG PICTURE

 Servlets add the power of Java programming to a web server. The servlet API is a standard Java extension, but not part of the core. Tools such as Tomcat enable web servers to use servlets and have their own servers for testing servlets. The generic servlet defines a protocol-independent servlet which we can use if we do not use details specific to HTTP requests and responses.

THE BIG PICTURE

 JSP allows the easy creation of server side HTML pages. JSP uses Java as a scripting language. JSP commands augment HTML to add dynamic content. A JSP page is compiled to a servlet which is executed when the client submits a request. JavaServer Pages can use JavaBeans components to respond to client requests.

� The free Apache web server is available from www.apache.org. Setting up a web server is beyond the scope of this text.

PAGE
39

