Internet Applications

with the Java(2 Platform

(2001 Art Gittleman

Chapter 3

Java Database Connectivity (JDBC)
This chapter has been typed in a draft mode and not formatted for publication.
Introduction

 For small applications, we can use files to store data, but as the amount of data that we need to save gets larger the services of a database system become invaluable. A database system allows us to model the information we need while it handles the details of inserting, removing, and retrieving data from individual files in response to our requests.

 Of course each database vendor provides its own procedures for performing database operations. The Java Database Connectivity (JDBC) programming interface hides the details of different databases; our programs can work with many different databases on many different platforms. JDBC can be used as part of large scale enterprise applications. In this chapter we cover the JDBC concepts using a small example which allows many extensions, some of which we pursue in the exercises.

 The example programs illustrate JDBC concepts using console applications so as not to obscure them with the details involved in building a GUI. In the last section our extended case study develops a graphical user interface to a database.

 Objectives:

· Introduce relational database tables.

· Introduce SQL (Structured Query Language).

· Register a database as an ODBC data source.

· Connect to a database from Java, using JDBC.

· Build a database using JDBC and SQL.

· Use Java to query a database.

· Use metadata to obtain the properties of a database or a result set.

· Introduce selected aggregate functions.

· Use prepared statements for efficiency.

· Process database transactions.

· Provide a GUI for the user to query a database.

 3.1 Database Tables and SQL Queries

 Database design is best left to other texts and courses. We introduce a few database concepts here to provide an example with which to illustrate the Java Database Connectivity techniques for working with databases using Java. Relational databases provide an implementation-independent way for users to view data. The Structured Query Language (SQL) lets us create, update, and query a database using standard commands that hide the details of any particular vendor's database system.

Relational Database Tables

 When designing a database we need to identify the entities in our system. For example, a company might use a database to keep track of its sales and associated information. In our example company, an order has one customer who can order several items. A salesperson may take several orders from the same customer, but each order is taken by exactly one salesperson.

 Using a relational database, we keep our data in tables. In our example, we might have a Customer table with fields for the customer id, name, address, and balance due as shown in Figure 3.1.

 CustomerID CustomerName Address BalanceDue

1234
Fred Flynn
22 First St.
 1667.00

5678
Darnell Davis
33 Second St.
 130.95

4321
Marla Martinez
44 Third St.
 0

8765
Carla Kahn
55 Fourth St.
 0

 Figure 1 The Customer table

 Each row of the table represents the information needed for one customer. We assign each customer a unique customer ID number. Customer names are not unique; moreover they may change. CustomerID is a key that identifies the data in the row. Knowing the CustomerID we can retrieve the other information about that customer.

Tip

 Do not embed spaces in field names. Use CustomerID rather than

 Customer ID.

 Figures 3.2 and 3.3 show the Salesperson and Item tables which we define in a similar manner. A more realistic example would have additional fields, but our purpose here is only to illustrate JDBC.

 SalespersonID SalespersonName Address

12
Peter Patterson
66 Fifth St.

98
Donna Dubarian
77 Sixth St.

 Figure 3.2 The Salesperson table

 ItemNumber Description Quantity

222222
radio
32

333333
television
14

444444
computer
9

 Figure 3.3 The Item table

 The SalepersonID serves as the key for the Salesperson table, while we use the ItemNumber to identify an item in the Item table. We have to be more careful in designing the Orders table, as an order can have multiple items. We use a second table, the OrderItem table, to list the items in each order. Figure 3.4 shows the Orders table with the fields OrderNumber, CustomerID, SalespersonID, and OrderDate. The OrderNumber is the key. CustomerID and SalespersonID are foreign keys that allow us to avoid redundancy by referring to data in other tables. For example, including the CustomerID lets us find the customer's name and address from the Customer table rather than repeating it in the Orders table.

 OrderNumber CustomerID SalespersonID OrderDate

1
1234
12
4/3/99

2
5678
12
3/22/99

3
8765
98
2/19/99

4
1234
12
4/5/99

5
8765
98
2/28/99

 Figure 4 The Orders table

Tip

 When choosing field names, avoid names like Number, Value, Order,

 Name, or Date that might conflict with reserved names in the database

 system.

 The OrderItem table uses a compound key consisting of both the OrderNumber and the ItemNumber to identify a specific item that is part of an order. Figure 3.5 shows that each pair (OrderNumber, ItemNumber) occurs only once, identifying a row containing the data for a specific item in a particular order. For example, the first row shows that for order number one, and item 222222, four units were ordered at a price of $27 each.

 OrderNumber ItemNumber Quantity UnitPrice

1
222222
4
 27.00

1
333333
2
 210.50

1
444444
1
 569.00

2
333333
2
 230.95

3
222222
3
 27.00

3
333333
1
 230.95

4
444444
1
 569.00

5
222222
2
 27.00

5
444444
1
 725.00

 Figure 3.5 The OrderItem table

 Now that we have defined our Sales database, we want to see how to get information from it, and how to make changes as needed.

Structured Query Language (SQL)

 The Structured Query Language (SQL) is a standard language with which to get information from or make changes to a database. We can execute SQL statements from within Java. The SQL statements we shall use are CREATE, SELECT, INSERT, DELETE, and UPDATE. We illustrate these statements using the Sales database defined above. The names for the data types may depend on the actual database system used. Our examples work with Microsoft Access.

 We could use the CREATE statement

 CREATE TABLE Customer (CustomerID CHAR(4), CustomerName

 VARCHAR(25), Address VARCHAR(25), BalanceDue CURRENCY)

to create the Customer table, the statement

 CREATE TABLE Orders (OrderNumber VARCHAR(4), CustomerID

 CHAR(4), SalepersonID CHAR(2), OrderDate DATE)

to create the Orders table, and the statement

 CREATE TABLE OrderItem (OrderNumber VARCHAR(4), ItemNumber

 CHAR(6), Quantity INTEGER, UnitPrice CURRENCY)

to create the OrderItem table. We use character fields for CustomerID, OrderNumber, SalepersonID, and ItemNumber, even though they use numerical characters, because we have no need to do arithmetic using these values. By contrast, we use the type INTEGER for the Quantity field because we may wish to compute with it.

 Standard SQL uses various types which are not all supported in every database system. Figure 3.6 shows the SQL types we use in this text.

 Type Standard SQL Description

 CHAR(N) Yes Fixed size string of length N

 VARCHAR(N) Yes Variable size string up to length N

 INTEGER Yes 32-bit integer

 DATE Yes year, month, and day

 CURRENCY No dollars and cents

 Figure 3.6 SQL data types

The type DECIMAL(M,N), where M is the maximum number of digits and N is the maximum number of digits after the decimal point, is standard SQL, but is not supported in Access.

 To insert the first row in the Customer table, we could use the INSERT statement

 INSERT INTO Customer VALUES (1234,'Fred Flynn','22 First St.',1667.00)

Tip

 Use the single quote, ', to enclose strings within an SQL statement.

 The statement

 INSERT INTO Orders VALUES (1,1234,12,'Apr 3, 1999')
inserts the first row into the Order table. We write dates in the form

 Month Day, Year

to avoid confusion among date formats used in various locales and to indicate the century explicitly. The database system translates this form to its internal representation, and can present dates in various formats in its tables.

 The DELETE statement

 DELETE FROM OrderItem WHERE OrderNumber = '1'

will delete the first three rows of the OrderItem table in Figure 3.5. These rows contain the data for the three items comprising the order with an OrderNumber of 1.

Tip

 Use the single equality sign, =, in the equality test, OrderNumber = 1,

 instead of the Java equality symbol, ==.

 To delete just the televisions from that order and leave the order for radios and a computer, we could use the statement

 DELETE FROM OrderItem

 WHERE OrderNumber = '1' AND ItemNumber = '333333'

 To update an existing row we use the UPDATE statement. For example, to reduce the number of radios in order number 1 to 3, we can use the statement

 UPDATE OrderItem SET Quantity = 3

 WHERE OrderNumber = '1' AND ItemNumber = '222222'

When we change an order we will also want to change the balance due in the Customer table, which we can do using

 UPDATE Customer SET BalanceDue = 1640.00

 WHERE CustomerID = '1234'

Tip

 Because the OrderItem table uses a compound key

 (OrderNumber, ItemNumber)
 to identify a row, we needed to specify values for both in the WHERE

 clause. In updating the Customer table we only needed to specify the

 value of the single CustomerID key to identify a row.

 The CREATE statement creates a table, and the INSERT, DELETE, and UPDATE statements make changes in a table. In many applications, we retrieve information from the database more frequently than we create a table or make changes to a table. To retrieve information we use the SELECT statement.

 The simplest query we can make is to retrieve the entire table. For example, the statement

 SELECT * FROM Customer
retrieves the entire Customer table. We use the star symbol, *, which matches every row. To retrieve the names and addresses of the customers we use the statement

 SELECT CustomerName, Address FROM Customer
 If we do not want data from the entire table, we can use a WHERE clause to specify a condition that the data of interest satisfy. For example, to retrieve all orders for radios we could use the statement

 SELECT * FROM OrderItems

 WHERE ItemNumber = '222222'

 The power of database systems becomes evident when we use SQL to get information combined from several tables. For example, suppose we would like to know the names of all customers who placed orders on March 22, 1999. We can find that information using the statement

 SELECT CustomerName FROM Customer, Orders

 WHERE Customer.CustomerID = Orders.CustomerID

 AND OrderDate = {d '1999-03-22'}

where {d '1999-03-22'} is an escape sequence.

 Date formats vary among database systems. To make programs general Java uses a generic string format yyyy-mm-dd with a four-digit year, a two-digit month, and a two digit day. The curly braces, {}, enclose the escape sequence which tells the driver to translate it to the specific form used by the database system. The keyword, d, signifies that a date follows. The date format for the Access database we are using is #3/22/99#, which we could have used, but the escape sequence makes the code more general.

Tip

 When a field such as Address occurs in more than one table, prefix the

 field name with the table name, as in Customer.Address, to state

 precisely which Address field you desire. Similarly, use the prefixes

 Customer and Orders to refer to the CustomerID fields in each of these

 tables.

 In finding the names of customers who placed orders on March 22, 1999, the database joins two tables. Customer names occur in the Customer table, while we find order dates in the Orders table, so we list both the Customer and the Orders tables in the FROM part of the query. We want to find which orders each customer placed. CustomerID, the primary key of the Customer table, is also a foreign key of the Orders table. For each CustomerID in the Customer table we only want to inspect the rows of the Orders table which have the same CustomerID, so we include the condition

 Customer.CustomerID = Orders.CustomerID
in our query.

 The first row of the Customer table has a CustomerID of 1234. The first and fourth rows of the Orders table have the same CustomerID of 1234 but neither of the OrderDate fields equals 3/22/99. The second row of the Customer table has CustomerID 5678 as does the second row of the Orders table and the OrderDate is 3/22/99 so the system adds 'Darnell Davis' to the result set of customers placing orders on March 22, 1999. Continuing the search turns up no further matches. A three-line SQL statement can cause many steps to occur in the process of retrieving the requested information. The database handles all the details. We will use other interesting examples of SELECT statements when we develop our Java programs later in this chapter.

 Figure 3.7 shows the general pattern for the SQL statements we have introduced so far.

 CREATE TABLE tablename

 (fieldname1 TYPE1, fieldname2 TYPE2, ... , fieldnameN TYPEn)

 INSERT INTO tablename

 VALUES (field1value,field2value, ..., fieldNvalue)

 DELETE FROM tablename

 WHERE fieldname1 = value1 ... AND fieldnameN = valueN

 UPDATE tablename SET fieldnameToSet = newValue

 WHERE fieldname1ToCheck = value1ToCheck

 SELECT fieldname1, ..., fieldnameN FROM table1, ..., tableM

 WHERE condition1 ... AND conditionN

 Figure 3.7 Some patterns for SQL statements

Test Your Understanding

1. Why is it a good idea to use SalespersonID as the key in the

 Salesperson table, rather than the salesperson's name?

2. Write an SQL statement to create the Salesperson table with the fields

 shown in Figure 3.2.

3. Write SQL statements to insert the data shown in Figure 3.2 into the

 Salesperson table.

4. Write an SQL statement to add a new salesman, Paul Sanchez, who lives

 at 88 Seventh St., and has an ID of 54, to the Salesperson table of Figure

 3.2.

5. Write an SQL statement to delete Carla Kahn's order of a computer from the

 Sales database.

6. Write an SQL statement to find the names of all salespersons in the Sales

 database.

7. Write an SQL statement to find the order numbers of all orders taken by

 Peter Patterson.

3.2 Connecting to a Database

 After an overview contrasting two-tiered with three-tiered architectures for software systems, we show how to connect to a database using the Java Database Connectivity programming interface.

Database and Application Servers

 In building large systems, a database server may reside on one machine to which various clients connect when they need to access the stored data.

 Figure 3.8 Client-server database access

 In a three-tiered design, business logic resides in a middle machine, sometimes called an application server, which acts as a server to various application clients. These clients provide user interfaces to the business applications on the middle machine which is itself a client of the database server.

 Figure 3.9 A three-tiered system architecture

 For example, a business may have an accounting department that runs a payroll client providing a user interface to the payroll application on the middle machine which itself is a client of the database server. The marketing department might have several client programs running in their sales offices enabling salespersons to get necessary information. Rather than configuring each salesperson's machine to process all the details of the application, the company just allows the sales staff to interact with the sales application on the middle machine. This sales program gets data from the database server as needed.

 Java Database Connectivity (JDBC) allows us to write Java programs that will work no matter which database system we use. We can work entirely on one machine or use a two-tier, three-tier, or even more complex architecture for our system. What we need for any database system we wish to use is a JDBC driver. The driver provides a uniform interface to our Java programs. Many database vendors provide JDBC drivers for use with their products.

A JDBC Driver

 A driver translates JDBC statements to the specific commands of a particular database system. Several different categories of drivers exist, but in this text we use the JDBC to ODBC bridge to allow JDBC to work with Microsoft Access which has an existing ODBC driver (for an earlier technology, Open Database Connectivity, that is still used). To connect to our database using Java, we need only specify our JDBC driver and the URL for the database

Creating an ODBC Data Source

 Before using Java we need to register our database as an ODBC data source. The Microsoft Open Database Connectivity (ODBC) interface, introduced prior to the development of Java, provides an interface to many databases. Sun makes a JDBC to ODBC bridge available, so if a database has an ODBC driver, we can access it using the JDBC to ODBC bridge as our JDBC driver.

 In this chapter, our examples will use Microsoft Access databases on Windows. Only the driver name and the data source URL need to be changed to use another database system.

 The first step is to register the database we will be creating as an ODBC data source. The steps we use are:

1. Click on the My Computer icon and the Control Panel icon to open the

 Control Panel.

2. Click on the ODBC icon in the Control Panel, which pops up the ODBC

 Data Source Administrator window shown in Figure 3.10.

 Figure 3.10 ODBC Data Source Administrator

3. Select MS Access Database.

4. Click Add, which pops up the Create New Data Source window shown in

 Figure 3.11.

 Figure 3.11 Create New Data Source

5. Select Microsoft Access Driver and click Finish, which pops up the ODBC

 Microsoft Access Setup window shown in Figure 12.

 Figure 3.12 ODBC Microsoft Access Setup

6. Fill in the Data Source Name. We use this name to refer to this database

 in our Java programs. We use the name Sales for our example.

7. Fill in a short description, such as "Holds order information" in the

 Description field.

8. Click Create, as we are creating a new database.

 Figure 3.13 New Database

9. In the New Database window, shown in Figure 3.13, navigate to the

 directory in which to place the new database, give it a name, such as

 Sales.mdb, and click OK.

10. If all went well, a message that the database was successfully created will

 appear.

Tip

 On a Windows system without Microsoft Access, much of what we do in

 this chapter can be done with ordinary text files. The steps for using text

 files are:

 1. Click on the My Computer icon and the Control Panel icon to open the

 Control Panel.

 2. Click on the ODBC icon in the Control Panel, which pops up the

 ODBC Data Source Administrator window.

 3. Click on Text Files.

 4. Click Add, which pops up the Create New Data Source window.

 5. Select Microsoft Text Driver and click Finish, which pops up the ODBC

 Text Setup window.

 6. Fill in the Data Source Name. We use this name to refer to this

 database in our Java programs. We use the name Sales for our

 example.

 7. Fill in a short description, such as "Record sales orders" in the

 Description field.

 8. Deselect the UseCurrentDirectory box, click Select Directory, navigate

 to the desired directory for the files, and click OK in all the open

 windows.

Connecting from Java

 We want our Sales database to contain the five tables with the data shown in Figures 3.1-3.5. We could create these tables and populate them within Access, but prefer to show how to do this using Java.

 Every Java program that uses JDBC to access a database must load the driver that it will use and connect to the desired database. To load the driver we create a new driver object. Sun provides the JDBC classes in the java.sql package and the JdbcOdbcDriver in the sun.jdbc.odbc package. The core Java packages all start with the java prefix. Sun includes the JdbcOdbcDriver with the JDK but it is not one of the core Java classes. Sun also includes the helper file, JdbcOdbc.dll, with the JDK.

 The statement

 new JdbcOdbcDriver();
will load a new driver object, calling its constructor. The drawback of using the new operator to load JdbcOdbcDriver is that if we want to use a different driver, we have to modify the program. Java has the ability to load classes while the program is running so that we could pass a class name in as a program argument and let Java load whichever driver we decide to use. We use the forName method of the class Class in the java.lang package

 Class.forName("JdbcOdbcDriver");
to load JdbcOdbcDriver. To make the loading dynamic we could use

 Class.forName(args[0]);
which would load the class whose name we pass as the first program argument.

Tip

 Each class loaded into the JVM has a Class object associated with it. This

 object has various methods that give information about the structure of the

 class. We do not use any of these methods, but use only the static

 forName method which loads the class whose full name is passed as the

 argument.

 Once we load the driver, it registers with the DriverManager that keeps a vector of drivers to use when making a connection to a database. We connect to a database using the static getConnection method of the DriverManager class that returns a connection representing our session with the database.

 We use a URL to locate the database to which we wish to connect. We could use a database server which would require a remote connection in which case the URL would include the Internet address of the server. The URL has the form

 jdbc:<subprotocol>:<subname>
where the subprotocol is the name of the driver or a database connectivity mechanism such as odbc which is what we will use. The subname identifies the database. For the case of ODBC drivers we just need the name of the database that we registered with the ODBC Data Source Administrator, which is Sales for our example. Thus the URL we will use is

 jdbc:odbc:Sales
The developer of the JDBC driver defines the URL needed.

 Example 3.1 will just connect to the Sales database. The code we use will occur at the beginning of all of our examples in this chapter.

Example 3.1 Connect.java

/* Connects to a Microsoft Access database

 * using the JDBC-ODBC bridge

 */

import java.sql.*; // Note 1

import java.io.*;

import sun.jdbc.odbc.*; // Note 2

class Connect {

 public static void main (String args[]) {

 try{

 new JdbcOdbcDriver(); // Note 3

 String url = "jdbc:odbc:Sales"; // Note 4

 String user = ""; // Note 5

 String password = "";

 Connection con =

 DriverManager.getConnection(url, user, password); // Note 6

 System.out.println("Made the connection to the Sales database");

 }catch (Exception e) {e.printStackTrace();} // Note 7

 }

}

Output

Made the connection to the Sales database

Note 1: The java.sql package contains the JDBC classes.

Note 2: The sun.jdbc.odbc package contains the JdbcOdbcDriver we use to

 access our ODBC data source, a Microsoft Access database.

Note 3: We create a new JdbcOdbcDriver which registers itself with the

 DriverManager which stores a vector of all the registered drivers.

 The driver hides the details of the specific database. We use JDBC

 generic methods which the driver translates to the specific procedures

 provided by the database vendor. By changing the driver, the same

 program can work with data on a different database system. We do not

 need to assign the driver to a variable, because we will not refer to it

 again explicitly.

Note 4: The supplier of the driver defines the URL needed. If we change the

 driver then we also need to change the URL. Making these changes

 will allow our program to work with another database system. Our

 programs would be more flexible, if rather than hard coding the driver

 and URL we pass them as program arguments. We leave this

 modification to the exercises.

Note 5: For the Access database we are using we do not need a user name or

 a password. For other databases we may need to log in to the server.

 For generality we left the user and password fields in the program and

 set them both to empty strings.

Note 6: Connection con =

 DriverManager.getConnection(url, user, password);
 This static method looks through the vector of registered drivers to find

 a driver that can connect to this database, and throws an exception if

 one is not found. If it finds a suitable driver, it attempts to make the

 connection. In this example, we could have used the method

 DriverManager.getConnection(url);
 which omits the user and password arguments.

Note 7: catch (Exception e) {e.printStackTrace();}

 We catch all exceptions here. We could have used the

 SQLException class to catch exceptions relating to SQL.

Building the Database

 Once we have a connection to the database we can execute SQL statements to create and populate our database. The createStatement method returns a Statement object that we use to send SQL statements to the database.

 Some SQL statements, such as those used to create tables and insert values in a table, change the database but do not return any values to the program. To execute SQL CREATE and INSERT statements we use the executeUpdate method. The argument to executeUpdate is a String, which will be sent to the database. The string argument should represent an SQL statement in a form understandable by the database system. If not, Java will throw an exception. As an example,

 stmt.executeUpdate

 ("INSERT INTO Item VALUES ('555555','CD player',10)");
would insert a fourth row into the Item table.

 Example 3.2 uses Java to create and populate the Sales database. We create the five tables shown in Figures 3.1-3.5, using a CREATE statement to create each table, and INSERT statements to add the rows. Figure 3.14 shows the resulting Access Sales database and Figure 3.15 shows the Customer table that results from executing Example 3.2.

 Figure 3.14 The Access Sales database created by Example 3.2

 Figure 3.15 The Customer table created by Example 3.2

Tip

 After running this program, the database contains the five tables. Therefore

 running the program again will cause an error, unless the tables are first

 deleted from the database.

Example 3.2 Create.java

/* Creates and populates the Sales database.

 */

import java.sql.*;

import java.io.*;

import sun.jdbc.odbc.*;

public class Create {

 public static void main (String args[]) {

 try{

 new JdbcOdbcDriver();

 String url = "jdbc:odbc:Sales";

 String user = "";

 String password = "";

 Connection con = DriverManager.getConnection(url, user, password);

 Statement stmt = con.createStatement();

 stmt.executeUpdate ("CREATE TABLE Customer (CustomerID "

 + "VARCHAR(4), CustomerName VARCHAR(25), Address "

 + "VARCHAR(25), BalanceDue CURRENCY)"); // Note 1

 stmt.executeUpdate ("INSERT INTO Customer "

 + " VALUES (1234,'Fred Flynn','22 First St.',1667.00)"); // Note 2

 stmt.executeUpdate ("INSERT INTO Customer "

 + " VALUES (5678,'Darnell Davis','33 Second St.',130.95)");

 stmt.executeUpdate ("INSERT INTO Customer"

 + " VALUES (4321,'Marla Martinez','44 Third St.',0)");

 stmt.executeUpdate ("INSERT INTO Customer "

 + " VALUES (8765,'Carla Kahn','55 Fourth St.', 0)");

 stmt.executeUpdate("CREATE TABLE Salesperson (SalespersonID "

 + " VARCHAR(2), SalespersonName VARCHAR(25), "

 + " Address VARCHAR(25))");

 stmt.executeUpdate ("INSERT INTO Salesperson "

 + " VALUES (12,'Peter Patterson','66 Fifth St.')");

 stmt.executeUpdate ("INSERT INTO Salesperson "

 + " VALUES (98,'Donna Dubarian','77 Sixth St.')");

 stmt.executeUpdate("CREATE TABLE Item (ItemNumber VARCHAR(6),"

 + "Description VARCHAR(20), Quantity INTEGER)");

 stmt.executeUpdate("INSERT INTO Item VALUES (222222,'radio',32)");

 stmt.executeUpdate("INSERT INTO Item VALUES (333333,'television',14)");

 stmt.executeUpdate("INSERT INTO Item VALUES (444444,'computer',9)");

 stmt.executeUpdate("CREATE TABLE Orders (OrderNumber VARCHAR(4),"

 + " CustomerID VARCHAR(4), SalespersonID VARCHAR(2),"

 + " OrderDate DATE)");

 stmt.executeUpdate

 ("INSERT INTO Orders VALUES (1,1234,12,'Apr 3, 1999')");

 stmt.executeUpdate

 ("INSERT INTO Orders VALUES (2,5678,12,'Mar 22, 1999')");

 stmt.executeUpdate

 ("INSERT INTO Orders VALUES (3,8765,98,'Feb 19, 1999')");

 stmt.executeUpdate

 ("INSERT INTO Orders VALUES (4,1234,12,'Apr 5, 1999')");

 stmt.executeUpdate

 ("INSERT INTO Orders VALUES (5,8765,98,'Feb 28, 1999')");

 stmt.executeUpdate("CREATE TABLE OrderItem (OrderNumber CHAR(4),"

 + " ItemNumber CHAR(6), Quantity INTEGER, UnitPrice CURRENCY)");

 stmt.executeUpdate("INSERT INTO OrderItem " // Note 3

 + " VALUES (1,222222,4,27.00)");

 stmt.executeUpdate("INSERT INTO OrderItem "

 + " VALUES (1,333333,2,210.50)");

 stmt.executeUpdate("INSERT INTO OrderItem "

 + " VALUES (1,444444,1,569.00)");

 stmt.executeUpdate("INSERT INTO OrderItem "

 + " VALUES (2,333333,2,230.95)");

 stmt.executeUpdate("INSERT INTO OrderItem "

 + " VALUES (3,222222,3,27.00)");

 stmt.executeUpdate("INSERT INTO OrderItem "

 + " VALUES (3,333333,1,230.95)");

 stmt.executeUpdate("INSERT INTO OrderItem "

 + " VALUES (4,444444,1,569.00)");

 stmt.executeUpdate("INSERT INTO OrderItem "

 + " VALUES (5,222222,2,27.00)");

 stmt.executeUpdate("INSERT INTO "

 + " OrderItem VALUES (5,444444,1,725.00)");

 stmt.close(); // Note 4

 }catch (Exception e) {e.printStackTrace();}

 }

}

Note 1: Just as with any string, we need to split the SQL statement over

 multiple lines using the concatenation operator so that each string

 constant fits on one line.

Note 2: When splitting the SQL statement over multiple lines we must be sure

 to add spaces to separate identifiers. Without the spaces either after

 Customer or before VALUES, then the juxtaposition of

 CustomerVALUES would cause an error.

Note 3: Using nine statements to insert the nine rows into the OrderItem table

 is cumbersome, and would be more so if the table were larger. A better

 method is to read the data to enter from a file. We leave this

 improvement to the exercises.

Note 4: The Statement object, stmt, is closed automatically by the

 garbage collector and its resources freed, but it is good programming

 practice to close it explicitly.

Test Your Understanding

8. (Try It Yourself) Register a new Sales database as an ODBC data source.

9. (Try It Yourself) Modify Example 3.1 to input the JDBC driver and the

 database URL as program arguments.

10. (Try It Yourself) Modify Example 3.2, as described in Note 2, to omit the

 spaces after Customer and before VALUES. What is the effect of this

 change?

3.3 Retrieving Information

 Now that we have created the Sales database, we can use JDBC to extract information from it. When executing an SQL statement that returns results, we use the executeQuery method which returns a ResultSet containing the rows of data that satisfy the query. Executing

 ResultSet rs = stmt.executeQuery

 ("SELECT CustomerName, Address FROM Customer");

returns the rows containing the names and address of all entries in the Customer table.

Viewing Query Results

 To view the results, the ResultSet has getXXX methods where XXX is the Java type corresponding to the SQL type of the data field we are retrieving. Because CustomerName and Address both have the VARCHAR SQL type, we use the getString method to retrieve these fields. We can retrieve fields by name or by field number. The loop

 while(rs.next())

 System.out.println(rs.getString(1) + '\t' + rs.getString("Address"))

will list the rows of names and addresses from the Customer table. We retrieve the CustomerName field using its column number 1 and the Address field using its name. The next() method returns true when another row is available and false otherwise. Figure 3.16 shows the Java methods corresponding to the SQL types we use.

 Java method SQL type

 getInt INTEGER

 getString VARCHAR

 getBigDecimal CURRENCY

 getDate DATE

 Figure 3.16 Java methods for SQL types

SELECT Statement Options

 The SELECT statement has additional options. The ORDER clause allows us to display the results sorted with respect to one or more columns. The query

 SELECT CustomerName, Address FROM Customer

 ORDER BY CustomerName

returns the result set by name in alphabetical order. We could use

 SELECT CustomerName, Address FROM Customer

 ORDER BY 1

to achieve the same result using the column number in the ORDER clause.

 Sometimes a query may return duplicate rows. For example, in selecting customers who ordered computers we would get the result

 Fred Flynn

 Fred Flynn

 Carla Kahn

because Fred Flynn bought computers in orders 1 and 4. We can remove duplicates by using the SELECT DISTINCT variant of the SELECT statement.

This query

 SELECT DISTINCT CustomerName

 FROM Customer, Item, Orders, OrderItem

 WHERE Customer.CustomerID = Orders.CustomerID

 AND Orders.OrderNumber = OrderItem.OrderNumber

 AND OrderItem.ItemNumber = Item.ItemNumber

 AND Description = 'computer'

 joins rows from four tables to produce the result.

 The UPDATE and DELETE statements change the database, but do not return results, so we use the executeUpdate method to execute them.

 Example 3.3 ExtractInfo.java

 /* Demonstrates the use of SQL queries from

 * a Java program.

 */

import java.sql.*;

import java.io.*;

import sun.jdbc.odbc.*;

public class ExtractInfo {

 public static void main (String args[]) {

 try{

 new JdbcOdbcDriver();

 String url = "jdbc:odbc:Sales";

 String user = "";

 String password = "";

 Connection con = DriverManager.getConnection(url, user, password);

 Statement stmt = con.createStatement();

 String query = "SELECT CustomerName, Address FROM Customer "

 + "ORDER BY CustomerName";

 ResultSet rs = stmt.executeQuery(query); // Note1

 System.out.println(" Names and Addresses of Customers");

 System.out.println("Name\t\tAddress"); // Note 2

 while (rs.next())

 System.out.println(rs.getString("CustomerName") + '\t' + rs.getString(2));

 query = "SELECT * FROM OrderItem "

 + "WHERE ItemNumber = '222222'";

 rs = stmt.executeQuery(query);

 System.out.println();

 System.out.println(" Order items for radios");

 System.out.println("OrderNumber\tQuantity\tUnitPrice");

 while (rs.next())

 System.out.println(rs.getString(1) + "\t\t"

 + rs.getInt(3) + "\t\t" + rs.getBigDecimal(4,2)); // Note 3

 query = "SELECT CustomerName FROM Customer, Orders "

 + "WHERE Customer.CustomerID = Orders.CustomerID "

 + "AND OrderDate = {d '1999-03-22'}";

 rs = stmt.executeQuery(query);

 System.out.println();

 System.out.println(" Customer placing orders on Mar 22, 1999");

 while(rs.next())

 System.out.println(rs.getString("CustomerName"));

 query = "SELECT DISTINCT CustomerName "

 + "FROM Customer, Item, Orders, OrderItem "

 + "WHERE Customer.CustomerID = Orders.CustomerID "

 + "AND Orders.OrderNumber = OrderItem.OrderNumber "

 + "AND OrderItem.ItemNumber = Item.ItemNumber "

 + "AND Description = 'computer'";

 rs = stmt.executeQuery(query);

 System.out.println();

 System.out.println(" Customers ordering computers");

 while(rs.next())

 System.out.println(rs.getString(1)); // Note 4

 query = "SELECT OrderNumber FROM Orders "

 + "WHERE OrderDate "

 + "BETWEEN {d '1999-04-01'} AND {d '1999-04-30'}";

 rs = stmt.executeQuery(query);

 System.out.println();

 System.out.println(" Order numbers of orders from 4/1/99 to 4/30/99");

 while(rs.next())

 System.out.println(rs.getString("OrderNumber"));

 String sql;

 sql = "INSERT INTO Item VALUES (555555,'CD player',10)"; // Note 5

 stmt.executeUpdate(sql);

 sql = "UPDATE Item SET Quantity = 12 "

 + "WHERE Description = 'CD player'";

 stmt.executeUpdate(sql); // Note 6

 System.out.println();

 System.out.println(" Added and updated a new item");

 System.out.println("Description");

 query = "SELECT Description FROM Item";

 rs = stmt.executeQuery(query);

 while(rs.next())

 System.out.println(rs.getString(1));

 sql = "DELETE FROM Item WHERE Description = 'CD player'";

 stmt.executeUpdate(sql);

 query = "SELECT Description FROM Item";

 rs = stmt.executeQuery(query);

 System.out.println();

 System.out.println(" Deleted the new item");

 System.out.println("Description");

 while(rs.next())

 System.out.println(rs.getString(1));

 stmt.close();

 }catch (Exception e) {e.printStackTrace();}

 }

}

Output

Names and Addresses of Customers

Name Address

Carla Kahn 55 Fourth St.

Darnell Davis 33 Second St.

Fred Flynn 22 First St.

Marla Martinez 44 Third St.

 Order items for radios

OrderNumber Quantity UnitPrice

1 4 $27.00

3 3 $27.00

5 2 $27.00

 Customer placing orders on Mar 22, 1999

Darnell Davis
 Customers ordering computers

Carla Kahn

Fred Flynn
 Order numbers of orders from 4/1/99 to 4/30/99

1

4

 Added and updated a new item

Description

radio

television

computer
CD player

 Deleted the new item

Description

radio

television

computer

Note 1: The SQL SELECT statement returns the selected rows in a

 ResultSet. We use the executeQuery method to execute SELECT

 statements.

Note 2: We embed tab characters, \t, in the string to space the data

 horizontally.

Note 3: We omitted field 2, ItemNumber, from the display because we selected

 all results to have ItemNumber = 222222. We could insert a single tab

 character using single quotes, '\t', but inserting two characters

 requires the double-quoted string, "\t\t". We use the getInt

 method because field 3, Quantity, has SQL type INTEGER. The first

 argument, 4, to getBigDecimal, is the field number, while the second,

 2, is the number of places after the decimal point. This UnitPrice field

 has type Currency in the database.

Note 4: We used the field number, 1, but could have used the field name,

 CustomerName, as the argument to getString. We will see in the

 next section how to get the number of fields and their names from the

 database if we do not know them.

Note 5: We add a new row to illustrate the UPDATE and DELETE statements

 which change the database. We update the new row, and then delete

 it, leaving the database unchanged when we exit the program. This is

 nice while learning JDBC because we can try various SELECT

 statements running the same program repeatedly without changing the

 data.

Note 6: stmt.executeUpdate(sql);

 Because the UPDATE and DELETE statements do not return values, we

 use the executeUpdate method to execute them.

Test Your Understanding

11. Write an SQL statement to find names of salespersons and the customers

 that have placed orders with them. Be sure to eliminate duplicates.

12. (Try It Yourself) Modify Example 3.3 to use only field names in the

 getString, getInt, and getBigDecimal methods.

13. (Try It Yourself) Modify Example 3.3 to use only field numbers in the

 getString, getInt, and getBigDecimal methods.

14. (Try It Yourself) Modify Example 3.3 to list CustomerID in addition to

 CustomerName and Address. Arrange the output rows so that the

 CustomerID numbers appear in numerical order.

15. Write a SELECT statement to find the names and addresses of customers

 who placed orders with Peter Patterson. Be sure to eliminate

 duplicates.

3.4 Metadata and Aggregate Functions

 Java, with JDBC, allows us to get information about the database (metadata) with which we are working, and about any result sets we obtain. We can use SQL functions to compute with the data.

Database Metadata

 The DatabaseMetaData methods return information about the database to which we are connected. To use these methods we first execute

 DatabaseMetaData dbMetaData = con.getMetaData();

where con is the connection to the database. We can ask what level of SQL the database system supports by using the three methods

 dbMetaData.supportsANSI92EntryLevelSQL();

 dbMetaData.supportsANSI92IntermediateSQL();

 dbMetaData.supportsANSI92FullSQL();

where ANSI (pronounced an'-see) stands for the American National Standards Institute. Java requires that JDBC drivers support ANSI92 entry level SQL so the first method must always return true. The Microsoft Access version 7.0 that we use supports ANSI89 but does not support ANSI92 intermediate or full SQL.

 The method

 dbMetaData.getIdentifierQuoteString();
returns the character used to delimit strings; in our database that is the single quote, '. Executing

 ResultSet rs = dbMetaData.getTypeInfo();
gives us the type names used in the database itself, which may be different from the standard SQL types, or Java types. For example Microsoft Access uses the CURRENCY type and internally uses TEXT for the SQL VARCHAR type. We can list the type names from the result set using the loop

 while(rs.next())

 System.out.println(rs.getString("TYPE_NAME"));

 The very handy getTables method lets us obtain the names of the tables in our database. For example,

 dbMetaData.getTables(null,null,"%",tables);
will return the names of the five tables in the Sales database. The first two arguments represent the catalog and schema facilities. Our application is not so elaborate, and here we pass null for these arguments.

 The third argument to getTables is a string representing a search pattern for the tables we are seeking. In a large database with many tables, we might search for all tables starting with "Payroll" by using the string "Payroll%" where the % character matches zero or more characters. Because we want all tables, we use the string "%" which matches any string. To match a single character we could use the string "_", so "Payroll_" would match strings such as Payroll1, Payroll2, and so on.

 The fourth argument to getTables uses an array of strings to specify the types of table for which to search. In addition to the tables that we created, there are various system tables in the database in which we are not interested. To limit our search we declare the fourth argument as

 String[] tables = {"TABLE"};
which restricts the search to user-defined data tables.

 We can also use database metadata to find the column names and types for each table. The method call

 ResultSet rs =

 dbMetaData.getColumns(null,null,"Customer","%");

returns information about each column of the Customer table. As with the getTables methods we pass null arguments for the catalog and schema which we do not use. The third argument is a pattern for the tables to search; we pass the name Customer to get its columns. The fourth argument allows a string pattern to select the columns. We pass "%" to retrieve all columns. The details of interest about each column are its name and type which we access using

 rs.getString("COLUMN_NAME");
and

 rs.getString("TYPE_NAME");

As we shall see, the result set contains other information about each column.

Result Set Metadata

 JDBC allows us to get information about each result set. We use

 ResultSetMetaData rsMetaData = rs.getMetaData();
to get the rsMetaData object, and then use the methods

 rsMetaData.getColumnCount();

to return the number of columns in the result set,

 rsMetaData.getColumnLabel(i);
to return the name of column i, and

 rsMetaData.getColumnTypeName(i);
to return its type.

 Using the getColumns method, we suggested just listing the COLUMN_NAME and TYPE_NAME fields of the result set returned. In Example 3.4 we use result set metadata to list all the fields of the result set describing each column of the database. Perhaps not surprisingly, we found these result set fields differ from those described in the documentation included with the JDK, using versions 1.1.6 and 1.3.0.

 The colNamesTypes method in Example 3.4 uses the getColumnLabel and getColumnTypeName methods to return the names and types of each of the columns of its result set argument. We can use it with any result set. For example, using it with the result set returned by

 stmt.executeQuery("SELECT * FROM Item");
would list the all columns, with their types, from the Item table, because using the star, *, in the SELECT clause returns all the columns of the table.

Aggregate Functions

 Aggregate functions compute values from the table data, using all the rows to produce the result. For example, the query

 SELECT SUM(BalanceDue),

 AVG(BalanceDue),

 MAX(BalanceDue)

 FROM Customer

returns the sum, average, and maximum of all the balances due in the customer table. These functions operate on the BalanceDue column for all rows in the Customer table. Using a WHERE clause, as in

 SELECT COUNT(*), MIN(Quantity) FROM OrderItem

 WHERE ItemNumber = '222222'

will limit the computation to the rows of the OrderItem table which correspond to orders for radios. The function COUNT(*) will return the total number of rows satisfying this condition. MIN(Quantity) returns the minimum quantity of radios ordered in one of the three rows of the OrderItem table which represent orders for radios (item number 222222).

Example 3.4 DatabaseInfo.java

/* Illustrate DatabaseMetaData, ResultSetMetaData

 * and SQL aggregate functions.

 */

import java.sql.*;

import java.io.*;

class DatabaseInfo {

 public static void main (String args[]) {

 try{

 ResultSet rs;

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // Note 1

 String url = "jdbc:odbc:Sales";

 Connection con = DriverManager.getConnection(url); // Note 2

 DatabaseMetaData dbMetaData = con.getMetaData();

 System.out.println("Supports entry level SQL: " +

 dbMetaData.supportsANSI92EntryLevelSQL());

 System.out.println("Supports intermediate SQL: " +

 dbMetaData.supportsANSI92IntermediateSQL());

 System.out.println("Supports full SQL: " +

 dbMetaData.supportsANSI92FullSQL());

 System.out.println("Supports stored procedures: "+

 dbMetaData.supportsStoredProcedures());

 System.out.println("Quote string: " + dbMetaData.getIdentifierQuoteString());

 System.out.println("Types used in the database:");

 System.out.print('\t');

 rs = dbMetaData.getTypeInfo();

 while (rs.next())

 System.out.print(rs.getString("TYPE_NAME") + " "); // Note 3

 System.out.println();

 String[] tables ={"TABLE"};

 rs = dbMetaData.getTables(null,null,"%",tables);

 System.out.println("Tables in the Sales database:");

 System.out.print('\t');

 while(rs.next())

 System.out.print(rs.getString("TABLE_NAME") + " "); // Note 4

 System.out.println();

 rs = dbMetaData.getColumns(null,null,"Customer","%");

 System.out.println("Columns in the Customer table");

 while(rs.next())

 System.out.println('\t'+rs.getString("COLUMN_NAME")+" // Note 5

 "+rs.getString("TYPE_NAME"));

 displayStrings("Fields describing each column",colNamesTypes(rs));

 // Note 6

 String query;

 query = "SELECT * FROM Item";

 Statement stmt = con.createStatement();

 rs = stmt.executeQuery(query);

 displayStrings("Item Columns",colNamesTypes(rs)); // Note 7

 query = "SELECT SUM(BalanceDue),AVG(BalanceDue), "

 + "MAX(BalanceDue) FROM Customer";

 rs = stmt.executeQuery(query);

 displayStrings("Function columns",colNamesTypes(rs)); // Note 8

 System.out.println("Sum, average, and maximum balance due");

 while(rs.next())

 System.out.println("$" + rs.getBigDecimal(1,2) + " $"

 + rs.getBigDecimal(2,2) + " $" + rs.getBigDecimal(3,2));

 query = "SELECT COUNT(*), MIN(Quantity) FROM OrderItem "

 + "WHERE ItemNumber = '222222' ";

 rs = stmt.executeQuery(query);

 while(rs.next()){

 System.out.println("Number of radio order items: " + rs.getInt(1));

 System.out.println("Minimum quantity of radios ordered in any order item: "

 + rs.getInt(2));

 }

 stmt.close();

 }catch (Exception e) {e.printStackTrace();}

 }

 public static String[] colNamesTypes(ResultSet rs) throws SQLException {

 ResultSetMetaData rsMetaData = rs.getMetaData();

 int cols = rsMetaData.getColumnCount();

 String[] s = new String[cols]; // Note 9

 String label, tab;

 for (int i =1; i <= cols; i++) {

 label = rsMetaData.getColumnLabel(i);

 if (label.length() < 8) tab = "\t\t"; else tab = "\t"; // Note 10

 s[i - 1] = '\t' + label + tab + rsMetaData.getColumnTypeName(i); // Note 11

 }

 return s;

 }

 public static void displayStrings(String description, String[]s) { // Note 12

 System.out.println(description);

 for(int i = 0; i < s.length; i++)

 System.out.println(s[i]);

 }

}

Output

Supports entry level SQL: true

Supports intermediate SQL: false

Supports full SQL: false

Supports stored procedures: true

Quote string: `

Types used in the database:

BIT BYTE LONGBINARY VARBINARY BINARY LONGTEXT CHAR CURRENCY LONG COUNTER SHORT SINGLE DOUBLE DATETIME TEXT

Tables in the Sales database:

Customer Item OrderItem Orders Salesperson

Columns in the Customer table

CustomerID TEXT

CustomerName TEXT

Address TEXT

BalanceDue CURRENCY

Fields describing each column

TABLE_QUALIFIER TEXT

TABLE_OWNER
 TEXT

TABLE_NAME
 TEXT

COLUMN_NAME
 TEXT

DATA_TYPE
 SHORT

TYPE_NAME
 TEXT

PRECISION
 LONG

LENGTH

 LONG

SCALE

 SHORT

RADIX

 SHORT

NULLABLE
 SHORT

REMARKS

 TEXT

ORDINAL

 LONG

Item Columns

ItemNumber
TEXT

Description
TEXT

Quantity
LONG

Function columns

Expr1000
CURRENCY

Expr1001
CURRENCY

Expr1002
CURRENCY

Sum, average, and maximum balance due

$1797.95 $449.49 $1667.00

Number of radio order items: 3

Minimum quantity of radios ordered in any order item: 2

Note 1: To show how it works, we use the forName method to load the JDBC

 driver. The advantage of this approach is we could easily modify

 this program to pass the driver name as a program argument. We

 have no need to do that here but it might be useful in writing a general

 application designed to work with different databases.

Note 2: We use the form of the getConnection method that does not require

 a user name or a password because these are not needed for the

 Microsoft Access database system we are using.

Note 3: According to the JDK documentation, the getTypeInfo method

 returns 18 columns of information for each type provided by the

 database system. We only list one, TYPE_NAME, leaving as an

 exercise the use of the colNamesTypes to list the names and types of

 all columns of this result set to see if they correspond to the 18 listed in

 the documentation.

Note 4: According to the JDK documentation, the getTables method returns

 five columns of information for each table in the database. We list only

 TABLE_NAME. It is column 3 so we could have used getString(3) to

 retrieve it, but using the column name is much more helpful.

Note 5: According to the JDK documentation, the getColumns method returns

 18 fields to describe each column. (However, see Note 6.) We list

 COLUMN_NAME and COLUMN_TYPE.

Note 6: displayStrings
 ("Fields describing each column",colNamesTypes(rs));
 Using the colNamesTypes method to list the names and types of the

 columns in the result set returned by the getColumns method we see

 that the result set actually contains 13 columns, some of which are

 named differently than the columns listed in the JDK documentation.

Note 7: displayStrings("Item Columns",colNamesTypes(rs));

 This shows that we can use the colNamesTypes method to display the

 names and types of the columns of any result set, in this case the one

 which selects all columns from the Item table.

Note 8: displayStrings("Function columns",colNamesTypes(rs));
 The result set gives the values of the SUM, AVG, and MAX functions.

 These are not columns of the Customer tables, but rather they are

 values computed from the BalanceDue column. We use the

 colNamesTypes method to list the names and types of the columns in

 the result set. Because these columns have no names Java creates the

 names Expr1000, Expr1001, and Expr1003 for them. They have

 internal database types of CURRENCY which does not correspond to a

 SQL type. The Java getBigDecimal method will return the value of

 each function.

Note 9: String[] s = new String[cols];

 We use a string array to hold the name and type of each column in the

 result set argument to this method.

Note 10: To keep the type column aligned we use two tab characters as a

 separator when the column name is less than eight characters in

 length, but one tab character otherwise.

Note 11: s[i-1] = '\t' + label + tab +

 rsMetaData.getColumnTypeName(i);

 Column numbers start at 1, while array indices start at 0, so we store

 column i in array component i-1.

Note 12: The displayStrings method displays a description and a list of the

 elements of its String array argument.

Test Your Understanding

16. (Try It Yourself) Modify Example 3.4 to pass null as the fourth argument to

 the getTables method, instead of the tables array. This will list all

 tables in the database, including the system tables.

17. (Try It Yourself) Modify Example 3.4 to change the third argument to

 the getTables method to find the tables in the Sales database which start

 with Order.

18. (Try It Yourself) Modify Example 3.4 to use the colNamesTypes method

 to list all the fields of the result set returned by the getTypeInfo method.

 Compare these fields to those listed in the JDK documentation, if available.

19. (Try It Yourself) Modify Example 3.4 to use the colNamesTypes method

 to list all the fields of the result set returned by the getTables method.

 Compare these fields to those listed in the JDK documentation, if available.

3.5 Prepared Statements and Transactions

 A prepared statement lets us translate a statement to low-level database commands once, and execute it many times, thus avoiding the inefficient repetition of the translation process.

 When making changes to a database we must be very careful that we complete all steps of the transaction. It would not do to withdraw funds from one account, but not have it deposited in another. Transaction processing allows us to explicitly control when changes become final, so that we only commit changes when all those desired have completed correctly.

Using Prepared Statements

 Often we may wish to execute a query repeatedly using different conditions each time. The query

 SELECT * FROM OrderItem

 WHERE ItemNumber = '222222'

selects all order items with number 222222. To execute this query for each item, we could use a loop such as

 String[] numbers = {"222222","333333","444444"}

 ResultSet rs;

 for (int i = 0; i < numbers.length; i++) {

 rs = stmt.executeQuery("SELECT * FROM OrderItem "

 + "WHERE ItemNumber = '" + numbers[i] + '\'');

 // process results

 }

 We have only three products in our database, but we might have had many more. For each product, the database system must process the SQL query analyzing how to find the requested data from the database in the most efficient way possible. Our query is quite simple, but it could have been much more complex. Each time we call executeQuery, we have to process the query, spending the time over and over again to find the best way to find the results that satisfy it.

 The prepared statement allows the database system to process an SQL query once, determining the best way to get the results. We can then use this prepared statement over and over again with different data but without the overhead of translating it again.

 We use the question mark, ?, to denote the arguments to query that we wish to change from one execution to the next. To make a prepared statement from our previous query, we write it as

 String query = "SELECT * FROM OrderItem "

 + "WHERE ItemNumber = ?";

where the question mark stands for the item number that we will pass in. Next we create a prepared statement using

 PreparedStatement pStmt = con.prepareStatement(query);

where con is the connection to the database.

 To pass arguments to a query we use setXXX methods where XXX stands for the type of the argument. In our example, ItemNumber has type VARCHAR which corresponds to the string type in Java, so we use the setString method, as in

 pStmt.setString(1,"222222");
where we enclose the item number in double quotes because we are inside Java and not writing an SQL statement for this database system. The first argument to setString is the number of the argument to which we want to pass the value specified. We number the arguments in the order they appear in the query, with the first argument having number 1. The statement

 rs = pStmt.executeQuery();

executes the prepared query with the argument 222222.

Tip

 The executeQuery method takes no arguments when used with a

 prepared statement because we have already passed the query to the

 prepareStatement method.

 We process the result set as we did with simple statements. The code

 System.out.println("OrderNumber\tQuantity\tUnitPrice");

 while (rs.next())

 System.out.println(rs.getString(1) + "\t\t" + rs.getInt(3)

 + "\t\t$" + rs.getBigDecimal(4,2));

extracted from Example 3.3 will return the other columns of all rows in the OrderItem table having the specified item number.

 After closing the result set with

 rs.close();

we could pass another argument to the query and execute the query again

as in

 pStmt.setString(1,"333333");

 rs = pStmt.executeQuery();

which would find the rows of the OrderItem table whose item number is 333333, representing a television order.

 To pass multiple arguments we use additional question marks in the query. In the query

 query = "SELECT OrderNumber FROM Orders "

 + "WHERE OrderDate BETWEEN ? AND ?";

the arguments represent the starting and ending dates of orders. After creating the prepared statement, we pass the arguments using the setDate method as in

 pStmt.setDate(1, Date.valueOf("1999-04-01"));
which replaces the first question mark with April 1, 1999, and

 pStmt.setDate(2, Date.valueOf("1999-04-30"));
which replaces the second question mark with April 30, 1999. The Date class, in the java.sql package, extends java.util.Date. The valueOf method translates a string representing the date to a Date that can be used in the database system.

 In preparing a statement to which we pass an argument that is a currency amount, we use the setDouble method to pass the currency value. For example, the query

 SELECT CustomerName FROM Customer

 WHERE BalanceDue > ?

has an argument for the BalanceDue value. To pass such a value to the prepared statement created from this query, we use

 pStmt.setDouble(1, 0.0);
The double 0.0, will represent the amount $0.00, so our query will return the names of all customers with a non-zero balance.

Example 3.5 Prepare.java

/* Illustrates prepared statements.

 */

import java.sql.*;

import java.io.*;

class Prepare {

 public static void main (String args[]) {

 try {

 ResultSet rs;

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 String url = "jdbc:odbc:Sales";

 Connection con = DriverManager.getConnection(url);

 String query;

 query = "SELECT Quantity FROM Item "

 + "WHERE Description = ?"; // Note 1

 PreparedStatement pStmt = con.prepareStatement(query);

 pStmt.setString(1, "radio");

 rs = pStmt.executeQuery();

 System.out.println(" Using a prepared statement to find quantity of radios");

 while(rs.next())

 System.out.println(rs.getInt("Quantity"));

 rs.close(); // Note 2

 pStmt.setString(1, "computer");

 rs = pStmt.executeQuery();

 System.out.println

 (" Using a prepared statement to find quantity of computers");

 while(rs.next())

 System.out.println(rs.getInt("Quantity"));

 rs.close();

 query = "SELECT OrderNumber FROM Orders "

 + "WHERE OrderDate BETWEEN ? AND ?";

 pStmt =con.prepareStatement(query);

 pStmt.setDate(1, Date.valueOf("1999-04-01")); // Note 3

 pStmt.setDate(2, Date.valueOf("1999-04-30"));

 rs = pStmt.executeQuery();

 System.out.println(" Using a prepared statement to find orders in April");

 while(rs.next())

 System.out.println(rs.getInt("OrderNumber"));

 rs.close();

 query = "SELECT CustomerName FROM Customer "

 + "WHERE BalanceDue > ?";

 pStmt = con.prepareStatement(query);

 pStmt.setDouble(1, 0.0);

 rs = pStmt.executeQuery();

 System.out.println(" Using a prepared statement to find customers "

 + "with non-zero balance");

 while(rs.next())

 System.out.println(rs.getString("CustomerName"));

 pStmt.close(); // Note 4

 }catch (Exception e) {e.printStackTrace();}

 }

}

Output

Using a prepared statement to find quantity of radios

32

 Using a prepared statement to find quantity of computers

9

 Using a prepared statement to find orders in April

1

4

 Using a prepared statement to find customers with non-zero balance

Fred Flynn

Darnell Davis

Note 1: The question mark indicates where we can substitute one of the

 descriptions, radio, television, or computer.

Note 2: With simple statements we do not need to close the result set after each

 query. The stmt.close method also closes the result set when we are

 done with the statement, stmt. For prepared statements we need to

 close the result set after each query.

Note 3: The Date class, in the java.sql package, extends java.util.Date.

Note 4: Closing the prepared statement, pStmt, automatically closes the last

 result set too.

Transaction Processing

 Often when using a database we need to execute several statements to perform the desired transaction. For example, if a customer places a new order we will update the Order table with another order, the OrderItem table with the items ordered, and the Customer table with a new BalanceDue. We would be unhappy if an error occurred after some, but not all of these changes were made. Java allows us to manage transactions so we only commit the changes to the database when they complete without error.

 The JDBC default is to commit the change as soon as we execute the update. The statement

 con.setAutoCommit(false);
changes from the default behavior to require that we explicitly commit changes using

 con.commit();
If we have already executed some updates and decide we do not want to commit them, we can roll back to the point when we executed the last commit, undoing these changes using

 con.rollback();
 For example, if we have removed the auto commit default, after executing the queries

 INSERT INTO Item VALUES (555555,'CD player',10)

and

 UPDATE Item SET Quantity = 12

 WHERE Description = 'CD player'

we can either commit them, making the changes permanent, using the commit method, or undo them using the rollback method.

Example 3.6 Transact.java

/* Illustrates transaction processing.

 */

import java.sql.*;

import java.io.*;

class Transact {

 public static void main (String args[]) {

 try {

 ResultSet rs;

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 String url = "jdbc:odbc:Sales";

 Connection con = DriverManager.getConnection(url);

 String query;

 Statement stmt = con.createStatement();

 con.setAutoCommit(false); // Note 1

 String sql;

 sql = "INSERT INTO Item VALUES (555555,'CD player',10)";

 stmt.executeUpdate(sql);

 sql = "UPDATE Item SET Quantity = 12 "

 + "WHERE Description = 'CD player'";

 stmt.executeUpdate(sql);

 System.out.println();

 System.out.println

 (" Before commit or rollback -- table changed, but can rollback");

 System.out.println("Description");

 query = "SELECT Description FROM Item";

 rs = stmt.executeQuery(query);

 while(rs.next())

 System.out.println(rs.getString(1)); // Note 2

 con.rollback(); // Note 3

 System.out.println();

 System.out.println(" Rolled back insert and update -- table unchanged");

 System.out.println("Description");

 query = "SELECT Description FROM Item";

 rs = stmt.executeQuery(query);

 while(rs.next())

 System.out.println(rs.getString(1));

 sql = "INSERT INTO Item VALUES (555555,'CD player',10)"; // Note 4

 stmt.executeUpdate(sql);

 sql = "UPDATE Item SET Quantity = 12 "

 + "WHERE Description = 'CD player'";

 stmt.executeUpdate(sql);

 con.commit(); // Note 5

 System.out.println();

 System.out.println(" Committed insert and update -- table changed");

 System.out.println("Description");

 query = "SELECT Description FROM Item";

 rs = stmt.executeQuery(query);

 while(rs.next())

 System.out.println(rs.getString(1));

 sql = "DELETE FROM Item WHERE Description = 'CD player'"; // Note 6

 stmt.executeUpdate(sql);

 con.commit(); // Note 7

 query = "SELECT Description FROM Item";

 rs = stmt.executeQuery(query);

 System.out.println();

 System.out.println(" Deleted the new item");

 System.out.println("Description");

 while(rs.next())

 System.out.println(rs.getString(1));

 stmt.close();

 }catch (Exception e) {e.printStackTrace();}

 }

}

Output

 Before commit or rollback -- table changed, but can rollback

Description

radio

television

computer

CD player

 Rolled back insert and update -- table unchanged

Description

radio

television

computer

 Committed insert and update -- table changed

Description

radio

television

computer

CD player

 Deleted the new item

Description

radio

television

computer

Note 1: With auto commit off, we must execute the commit statement in order

 to make our updates permanent.

Note 2: Outputting the descriptions of the items in the database shows that the

 database system has entered the item CD player (with the updated

 quantity of 12 not shown). We have not yet executed the commit

 statement so we still have a chance to rollback this change.

Note 3: After we rollback the updates we find only the original three items in the

 Item table.

Note 4: Now we make the same updates, this time actually committing them to

 the database.

Note 5: This will commit the previous updates to the database and prevent

 further rollbacks of them. Only updates executed after this can be

 rolled back.

Note 6: sql =

 "DELETE FROM Item WHERE Description = 'CD player'";

 We delete the new row from the database, to leave it as we found it in

 this pedagogical example.

Note 7: con.commit();

 We must commit the DELETE transaction for it to take effect.

Test Your Understanding

20. Write a SELECT statement to return the names of customers who ordered

 an item given by its description in the Item table, which we pass in as an

 argument, so we can create a prepared statement from the query.

21. (Try It Yourself) Modify Example 3.5 to omit the first rs.close()

 statement. Does any error result? If so, which?

22. (Try It Yourself) Modify Example 3.5 to find the order numbers of orders

 placed in March. Use the same prepared statement.

23. (Try It Yourself) Modify Example 3.6 to omit the last commit statement.

 Run the modified program and check the database afterward to see that the

 new row has not been deleted; it must be deleted manually.

3.6 A GUI for Database Queries

 Our case study builds a graphical user interface for querying our Sales database. This example illustrates the JDBC techniques covered in this chapter, adding the user interface concepts studied earlier. Even as presented here it is large for an introductory example. It would need many extensions and much polishing to make it a really useful application. Some of these extensions are left to the exercises.

 The SearchSales program allows the user to create a SELECT query, and executes it, displaying the resulting rows. We use the gridbag layout to arrange the components. Figure 3.17 shows the initial screen.

 Figure 3.17 The SearchSales initial screen

 The List (we cover the List component below) at the upper-right shows the five tables of the Sales database. The user selects the tables to search. The names of these tables will appear after FROM in the query. The text area at the bottom gives instructions to the user, and displays the final results of the search. We disable all buttons, except Display, until we are ready to use them.

 Figures 3.18-3.22 show the steps in the creation and execution of the query

 SELECT CustomerName FROM Customer, Orders

 WHERE Customer.CustomerID = Orders.CustomerID

 AND OrderDate = {d '1999-03-22'}

Figure 3.18 shows the screen after the user has selected the Customer and Orders tables, and pressed the Display button. We have disabled the Display button because the user has already chosen the tables. The column names for the Customer table appear in the leftmost List, while those for the Orders table appear in the fourth List. The labels underneath now show the table names. Thus far our query is

 SELECT ... FROM Customer, Order.

 Figure 3.18 Screen to choose columns for the result

 The user now selects the columns to be part of the result set, in this example choosing CustomerName and pressing the Select button. The partially constructed query is now

 SELECT CustomerName FROM Customer, Order
 Figure 3.19 shows the next screen in which we disabled the Select button, because we only select the fields of the result once. We deselect all fields so that the user will not have to deselect the fields before going on to the next step. At this point we enable the Join, Enter Value, and Submit buttons. The user would be ready to execute queries without conditions, such as

 SELECT CustomerName FROM Customer,

so we enable the Submit button. The Join and Enter Value buttons allow us to add conditions that restrict the scope of the query.

 Figure 3.19 After pressing the Select button

 In our example query we join the Customer and the Orders tables, requiring the condition

 Customer.CustomerID = Orders.CustomerID.

We impose this condition to join the information from the two tables properly, and also impose the condition

 OrderDate = {d '1999-03-22'}
to select orders placed on March 22, 1999.

 Figure 3.20 indicates the user has selected the CustomerID field in the Customer table and the CustomerID field in the Orders table.

 Figure 3.20 Adding a Join condition

 After pressing the Join button the partially completed query will be

 SELECT CustomerName FROM Customer, Order

 WHERE Customer.CustomerID = Orders.CustomerID

The next screen, Figure 3.21 has the same options as in Figure 3.20, because we can add conditions or submit the completed query. We choose the OrderDate column from the Orders table and enter the value {d '1999-03-22} in the text field. Pressing the Enter Value button will add to our query the condition that the order date be March 22, 1999. We only use the equality relation in our conditions leaving the extension to less than and greater than to the exercises.
 Figure 3.21 Entering the OrderDate condition

 We could add more conditions, but this completes our query, so we press the Submit button. Figure 3.22, shows the resulting list (of only one customer, Darnell Davis) displayed in the text area. We disable all buttons,

leaving for the exercises the option to continue executing additional queries.

 Figure 3.22 The query result

The List Component

 The List component we use in Example 3.7 differs from a choice box in that we can specify how many entries to display and select multiple entries.

The constructor

 List(5,true)
specifies a box that will show five entries, providing a scroll bar if the list contains more than five items. A second argument of true permits multiple selections.

 We add items to a List using the add method, as in

 tables.add("Customer");
Single-clicking the mouse on a list item generates an ItemEvent, while double-clicking on an item generates an ActionEvent. We do not handle these events in this example, because we prefer to wait until the user selects all the desired items and presses the appropriate button to ask us to process the selections.

Example 3.7 SearchSales.java

/* Provides a GUI to execute an SQL query

 * on the Sales database.

 * /

import java.awt.*;

import java.awt.event.*;

import java.sql.*;

import java.net.*;

public class SearchSales extends Frame implements ActionListener{

 public static final int SIZE = 5;

 List tables = new List(SIZE,true); // tables in Sales database

 List[] columns = new List[SIZE]; // columns in each table

 Label[] colLabel = new Label[SIZE]; // label for each table's col list

 Label value = new Label("Value");

 TextField fieldValue = new TextField(12); // enter a value in a condition

 Button submit = new Button("Submit"); // submit the query

 Button join = new Button("Join"); // choose common columns in a condition

 Button enter = new Button("Enter Value");// enter the value for the condition

 Button select = new Button("Select"); // choose the columns for result set

 Button display = new Button("Display"); // display the selected tables' columns

 TextArea result = new TextArea(); // display prompts and final result

 Connection con;

 Statement stmt;

 DatabaseMetaData dbMetaData;

 String[] tableName = new String[SIZE]; // names of the selected Sales tables

 int[] indices = null; // indices of Sales tables selected

 String resultCols = ""; // result set columns, after SELECT

 boolean firstJoin = true; // first time for join

 String joinClauses = ""; // clauses to be joined, after WHERE or AND

 String condition = ""; // condition clauses, after WHERE or AND

 String fromTables = ""; // tables used, for FROM part of query

 String query = "SELECT "; // the query to be executed

 int count = 0; // number of cols in result set

 public SearchSales(String title) {

 setTitle(title);

 for(int i = 0; i < SIZE; i++) // Note 1

 columns[i] = new List(4,true);

 for(int i = 0; i < SIZE; i++) // Note 2

 colLabel[i] = new Label("Table" + (i+1));

 GridBagLayout gbl = new GridBagLayout();

 setLayout(gbl);

 GridBagConstraints c = new GridBagConstraints();

 c.insets = new Insets(5,5,5,5); // Note 3

 gbl.setConstraints(select,c); add(select);

 gbl.setConstraints(join,c); add(join);

 gbl.setConstraints(enter,c); add(enter);

 c.gridwidth = GridBagConstraints.REMAINDER; // Note 4

 c.gridheight = 2;

 gbl.setConstraints(tables,c); add(tables);

 c.gridx = 0;

 c.gridy = 1;

 c.gridwidth = 2;

 c.gridheight = 1;

 c.fill = GridBagConstraints.HORIZONTAL; // Note 5

 gbl.setConstraints(fieldValue,c); add(fieldValue);

 c.fill = GridBagConstraints.NONE;

 c.gridwidth = 1;

 c.gridx = 2;

 gbl.setConstraints(value,c); add(value);

 c.gridx = 3;

 c.gridy = 2;

 c.gridwidth = GridBagConstraints.REMAINDER;

 gbl.setConstraints(display,c); add(display);

 c.gridy = 3;

 c.gridwidth = 1;

 c.gridheight = 2;

 for(int i = 0; i < SIZE; i++) { // Note 6

 c.gridx = i;

 gbl.setConstraints(columns[i],c);

 add(columns[i]);

 }

 c.gridheight = 1;

 c.gridy = 5;

 for(int i=0; i<SIZE; i++) {

 c.gridx = i;

 gbl.setConstraints(colLabel[i],c);

 add(colLabel[i]);

 }

 c.gridx = 0;

 c.gridy = 6;

 gbl.setConstraints(submit,c); add(submit);

 c.gridx = 1;

 c.gridheight = 2;

 c.gridwidth = GridBagConstraints.REMAINDER;

 gbl.setConstraints(result,c); add(result);

 addWindowListener(new WindowClose());

 display.addActionListener(this);

 select.addActionListener(this);

 select.setEnabled(false);

 join.addActionListener(this);

 join.setEnabled(false);

 submit.addActionListener(this);

 submit.setEnabled(false);

 enter.addActionListener(this);

 enter.setEnabled(false);

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 String url = "jdbc:odbc:Sales";

 con = DriverManager.getConnection(url);

 stmt = con.createStatement();

 result.setText("Select tables you wish to use\nThen press Display");

 dbMetaData = con.getMetaData();

 String[] tableTypes ={"TABLE"};

 ResultSet rs = dbMetaData.getTables(null,null,"%",tableTypes);

 int i = 0;

 while(rs.next())

 tables.add(tableName[i++] = rs.getString("TABLE_NAME")); // Note 7

 }catch (Exception e) {e.printStackTrace();}

 }

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 if (source == display) {

 indices = tables.getSelectedIndexes(); // Note 8

 for(int i = 0; i < indices.length; i++){

 colLabel[indices[i]].setText(tableName[indices[i]]); // Note 9

 colLabel[indices[i]].invalidate(); // Note 10

 fromTables += tableName[indices[i]] +','; // Note 11

 }

 fromTables = fromTables.substring(0,fromTables.length() - 1); // Note 12

 display.setEnabled(false);

 result.setText("Highlight the fields to be part of the result set\n"

 + "and press the Select button.");

 for(int i = 0; i < indices.length; i++) {

 try {

 ResultSet rs =

 dbMetaData.getColumns(null,null,tableName[indices[i]],"%"); // Note 13

 while(rs.next())

 columns[indices[i]].add(rs.getString("COLUMN_NAME")); // Note 14

 }catch(SQLException e) {e.printStackTrace();}

 }

 select.setEnabled(true);

 validate(); // Note 15

 }

 else if (source == select) {

 for(int i = 0; i < indices.length; i++)

 count += columns[indices[i]].getSelectedIndexes().length; // Note 16

 resultCols = build("",','); // Note 17

 resultCols = resultCols.substring(0,resultCols.length() - 1);

 result.setText("Choose pairs of columns to join\n"

 + "each time pressing Join\n"

 + "and/or select a field, enter a value for it\n"

 + "in the text field, and press Enter Value\n"

 + "If done, press Submit");

 join.setEnabled(true);

 enter.setEnabled(true);

 select.setEnabled(false);

 deselectAll(columns,indices); // Note 18

 query += resultCols + " FROM " + fromTables; // Note 19

 submit.setEnabled(true);

 }

 else if (source == join) {

 String keyword = "";

 if (firstJoin) { // Note 20

 keyword = " WHERE ";

 firstJoin = false;

 }

 else

 keyword = " AND ";

 joinClauses = build(keyword,'=');

 joinClauses = joinClauses.substring(0,joinClauses.length()-1);

 deselectAll(columns,indices);

 query += joinClauses;

 }

 else if (source == enter){

 String keyword = "";

 if (firstJoin) {

 keyword = " WHERE ";

 firstJoin = false;

 }

 else

 keyword = " AND ";

 condition = build(keyword,'=');

 condition += fieldValue.getText();

 query += condition;

 }

 else if (source == submit) {

 try {

 ResultSet rs = stmt.executeQuery(query);

 result.setText("");

 while(rs.next()) {

 String s = "";

 for(int i = 1; i <= count; i++)

 s += rs.getString(i) + ' '; // Note 21

 s += '\n';

 result.append(s);

 }

 }catch(Exception e) {

 e.printStackTrace();

 }

 submit.setEnabled(false);

 join.setEnabled(false);

 enter.setEnabled(false);

 }

 }

 public String build(String start, char c) { // Note 22

 String s = start;

 String[] colNames;

 for(int i = 0; i < indices.length; i++) {

 colNames = columns[indices[i]].getSelectedItems();

 for (int j = 0; j < colNames.length; j++) {

 s += tableName[indices[i]]+ '.' + colNames[j] + c;

 }

 }

 return s;

 }

 public void deselectAll(List[] columns, int[] indices) { // Note 23

 for(int i = 0; i < indices.length; i++)

 for(int j = 0; j < columns[indices[i]].getItemCount(); j++)

 columns[indices[i]].deselect(j);

 }

 public static void main(String[] args) {

 SearchSales search = new SearchSales("Search Sales database");

 Toolkit toolkit = Toolkit.getDefaultToolkit(); // Note 24

 Dimension d = toolkit.getScreenSize(); // Note 25

 search.setSize(d.width,d.height - 30);

 search.setLocation(0,30); // Note 26

 search.setVisible(true);

 }

 public class WindowClose extends WindowAdapter {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 }

}

--

Note 1: We create a List box to hold the columns in each of the five tables in

 the Sales database.

Note 2: We create the Label objects to which the Label array, colLabel,

 refers. The constructor for colLabel initialized these references to

 null.

Note 3: Except for setting the insets to provide a border of five pixels around

 each component, we use the default values for the gridbag constraints.

Note 4: Setting the gridwidth to GridBagContraints.REMAINDER lets the

 list of tables use the remainder of the row. Because the List has a

 default width of 1, it is centered in the remaining two columns.

Note 5: We want the text field to fill two columns, so we set the gridwidth

 to 2 and the fill to GridBagConstraints.HORIZONTAL so it will

 expand horizontally to fill the two-column space available.

Note 6: for(int i = 0; i < SIZE; i++) {

 This loop adds the five List boxes, one for each table of the Sales

 database.

Note 7: tables.add(tableName[i++]=rs.getString("TABLE_NAME"));

 This statement concisely achieves several objectives. It gets the next

 table name from the result set, assigns it to the tableName array for

 use later, increments the index i, and finally adds the table name to the

 tables list.

Note 8: indices = tables.getSelectedIndexes();
 We constructed the tables list to allow the user to select multiple

 items. The getSelectedIndexes method returns the array of index

 numbers corresponding to selected items.

Note 9: colLabel[indices[i]].setText(tableName[indices[i]]);

 Initially, we labeled the five tables, Table1,..., Table5. We

 change the labels underneath the selected tables to their actual table

 names. We could have labeled all five tables correctly, but chose this to

 differentiate those tables the user selected from the unselected ones.

Note 10: colLabel[indices[i]].invalidate();
 Because the new label may have a different length, we later invoke the

 validate method to get the layout manager to redo the layout. Each

 changed label calls invalidate here so the layout manager will

 know that it needs to be laid out with its new size.

Note 11: fromTables += tableName[indices[i]] +',';
 We save the names of the selected tables in a string, separated by

 commas, to use after FROM when we construct the SQL SELECT query.

Note 12: fromTables =

 fromTables.substring(0,fromTables.length()-1);
 This removes the last comma.

Note 13: ResultSet rs = dbMetaData.getColumns

 (null,null,tableName[indices[i]],"%");
 For each table the user selected, we get the names of its columns.

Note 14: columns[indices[i]].add(rs.getString("COLUMN_NAME"));
 We add each column name to the List box representing the selected

 table.

Note 15: validate();
 The gridbag layout manager will redo the layout, so components

 whose size has changed will be laid out properly.

Note 16: count +=

 columns[indices[i]].getSelectedIndexes().length;
 We save the total number of columns in the result set for the query,

 obtaining it by adding up the number of columns selected in each List

 box. After executing the query, we use count to list the results.

Note 17: resultCols = build("",',');
 The build method combines the selected item into a string, using the

 second argument as the separator. The first argument is the initial

 value of the string.

Note 18: deselectAll(columns,indices);
 The deselectAll method deselects each of the selected items so

 the user does not have to manually deselect the previous choices

 before making selections at the next step toward building the query.

Note 19: query += resultCols + " FROM " + fromTables;

 We continue to build the query we wish to execute, adding the pieces

 we have constructed so far.

Note 20: if (firstJoin) {
 The first condition, if any, in the query follows WHERE, while the

 remaining conditions follow AND. We use the boolean variable

 firstJoin to specify whether or not this is the first condition.

Note 21: s += rs.getString(i) + ' ';

 For simplicity, we have not dealt with the types of each table column.

 Knowing the column type would allow us to use a more specific method

 than getString. For example, knowing the column has type INTEGER

 would allow us to use the getInt method, but the getString method

 will also work for every type, although sometimes the formatting will not

 be as nice.

Note 22: public String build(String start, char c) {
 The build method combines the selected List items into a string. The

 start argument is the initial value of the string, while the argument c is

 the character used to separate the selected items.

Note 23: public void deselectAll

 (List[] columns, int[] indices) {
 For simplicity, this method deselects every column, even those the

 user had not selected. The arguments are the array of List boxes,

 one for each table, and the array of indices specifying which tables the

 user selected.

Note 24: Toolkit toolkit = Toolkit.getDefaultToolkit();
 The Toolkit class allows us to access some properties of the host

 platform.

Note 25: Dimension d = toolkit.getScreenSize();
 We get the screen size of the user's machine so we can size the

 frame to fill the screen. Setting the size using a fixed number of pixels,

 such as 500 by 300, as we have done in previous examples, will cause

 the frame to appear smaller on a higher resolution screen, and may

 make the frame too large for a low resolution screen.

Note 26: search.setLocation(0,30);
 The setLocation method allows us to position the frame; otherwise

 we get the default of (0,0) for its upper-left corner.

Test Your Understanding

24. (Try It Yourself) Run Example 3.7 to execute the query which returns the

 customer names who placed orders on March 22, 1999, but this time add the

 condition that the OrderDate is March 22, 1999 before the join condition

 that Customer.CustomerID = Orders.CustomerID. This shows we

 can enter conditions in any order.

25. (Try It Yourself) Modify Example 3.7 to remove the call to the validate

 method. Run the modified program and describe any changes from the

 original version.

26. (Try It Yourself) Modify Example 3.7 to omit setting gridwidth to

 REMAINDER for the tables list. Run the modified program and describe any

 changes from the original version.

27. (Try It Yourself) Modify Example 3.7 to omit setting the fill for the

 fieldValue text field to HORIZONTAL. Run the modified program and

 describe any changes from the original version.

Summary

· Java Database Connectivity (JDBC), in the java.sql package, allows us to create database tables, insert, update, and delete data, and query a database from a Java program. Relational databases store data in tables, and each table has a key that uniquely identifies each row. As our example, we use the Sales database with five tables. The Customer table has CustomerID as its key. The Orders table has OrderNumber as its key, but also includes the foreign keys CustomerID and SalespersonID which refer to entries in the Customer and Salesperson tables so the information does not have to be duplicated in the Orders table. The OrderItem table has a compound key (OrderNumber, ItemNumber); we need both values to identify an order item.

· Structured Query Language (SQL) provides an interface to database systems from different vendors. Users can write statements that each database will translate to process the desired request. In this text, we use the CREATE, INSERT, UPDATE, DELETE, and SELECT statements. The CREATE statement defines data in a table. This statement may use data types that are valid in a particular database system. In this text, we use VARCHAR(N), a variable size character string of maximum size N, INTEGER, and DATE, all of which are standard, and CURRENCY which is used in Microsoft Access.

· To use the JDBC we need a driver to translate from the JDBC interface to the commands used by the database system, which may reside on the user's machine or at a remote site. Loading the driver, using the new operator, or the forName method, causes it to register with DriverManager. The getConnection method connects to the database using a URL to specify the location of the database. In this text we use the jdbc:odbc:Sales URL because we use the JdbcOdbcDriver to translate to the older ODBC commands, which then use the ODBC driver for the Microsoft Access database system. Sales is the name of our ODBC database. Other database system will provide the URL's needed to access them. In this text, we do not discuss the other types of JDBC drivers available.

· Once connected to the database, we use the createStatement method to create a statement, whose executeUpdate method we can use to execute SQL statements to create a new table or to insert values into a table. We could also create and populate tables using the database system, outside of Java.

· To retrieve information from the database, we use the executeQuery method, which returns a ResultSet, to execute SQL SELECT statements. The ResultSet contains the rows that satisfy the query. To get the fields in a row, we use the getXXX method, where XXX is the type of the data, so we use getInt for an INTEGER field and getString for a VARCHAR field. We pass either the column number of the field or its name, so we could use getString(1) or getString("CustomerName") if CustomerName is the first column of the result set.

· The SELECT statement has various options, including a WHERE clause to add conditions, SELECT DISTINCT to remove duplicates, and ORDER BY to sort the result. A SELECT statement may refer to one table or may join information from several tables.

· Metadata describes data. The DatabaseMetaData class provides many methods which give information about the database. We can find the data types in uses, the names of its tables, and the names and types of the columns of each table. We use the ResultSetMetaData class to find the number of columns in a result set and the names and types of each column.

· Aggregate functions compute values using all the rows of the table. We use SUM, MAX, MIN, AVG, and COUNT in our examples. Prepared statements allow us to pass arguments to a statement to reuse it without having to repeat its translation to an efficient implementation in the database system. Transactions permit us to rollback SQL commands in the event the whole sequence did not complete successfully. The default is to commit each command as soon as it is executed, but we can change the default and use the commit statement to make the changes permanent only when appropriate.

· Our case study builds a graphical user interface for the Sales database, allowing users to specify various parts of a SELECT statement and execute it.

Program Modification Exercises

1. Modify Example 3.3 to pass the JDBC driver and the database URL as

 program arguments.

2. Modify Example 3.4 to pass the JDBC driver and the database URL as

 program arguments.

3. Modify Example 3.2 to read the data from a file to insert into the tables.

4. Modify Example 3.7 to use the most appropriate getXXX method rather

 than the getString method referred to in Note 21.

5. Modify Example 3.7 to allow >=, <=, >, and < operators in addition to =.

6. Modify Example 3.7 to check that exactly two columns, from different

 tables, have been selected when the user presses the Join button.

7. Modify Example 3.7 to add a checkbox to require that the query remove

 duplicates from the result.

8. Modify Example 3.7 to check that exactly one column has been selected

 when the user presses the Enter Value button.

9. Modify Example 3.7 to add column headings in the output.

10. Modify Example 3.7 to allow the user to keep executing queries.

11. Modify Example 3.2 to create a Sales1 database that is like Sales except

 it has LastName and FirstName fields, instead of CustomerName, in the

 Customer table.

Program Design Exercises

12. Write a graphical user interface for the Sales database which lists all

 customer names in one Choice box and all products in another. When the

 user selects a customer name and a product, and presses the Submit

 button, display a list with the customer name, product, quantity, and date of

 orders by customers with that name for that product. Use prepared

 statements wherever possible.

13. Write a graphical user interface for a salesperson using the Sales
 database. The salesperson should be able to enter new orders. Rollback

 the order, if, after part of an order has been entered, a part of the order

 cannot be filled because of insufficient quantity of a product.

14. Develop an Account database to use with an electronic banking system.

 Provide a user interface for a client to transfer funds from one account to

 another. The user should be able to select the source and target accounts,

 and enter an amount to transfer.

15. Design and populate a database for a car rental system. Allow the client to

 check availability of a category of car, and to make reservations.

16. Design and populate a database for a record collection. Provide a screen

 for the collection's owner to add and remove items, to change entries, and to

 search.

17. Design and populate a database for sports records. Use an almanac or

 search the Web for sample data. Provide a screen for the user to add and

 remove items, to change entries, and to search.

 THE BIG PICTURE

In a relational database, we keep our data in tables, making sure not to enter information redundantly. Using SQL, we can write statements to create a table, insert, delete, and update elements, and query the database. Generally SQL is standardized so queries do not reflect implementation details of specific database systems.

Client 2

Database

Server

Client1

Client2

Client1

Application

Server

Database

Server

 THE BIG PICTURE

JDBC uses a driver to translate its platform-independent interface to work in a specific database system. We use the JDBC to ODBC bridge to connect to Access or a text file which have ODBC drivers. A URL, specific to the database system, locates the database. Once connected to the database, we can create tables and insert data into them from a Java program. Optionally we could have created the tables outside of Java.

 THE BIG PICTURE

When querying the database, a result set contains the selected rows. We use methods such as getString to display a value from a row of the result set. The SQL types have corresponding Java methods, so the Java getInt method retrieves INTEGER values, for example. We can write our SQL queries to order the results or to eliminate duplicate rows. A query may have to join several tables on common fields to obtain the desired information.

 THE BIG PICTURE

Database metadata tells us properties of the database such as the names of its tables, and the names and types of the columns in a table. Result set metadata lets us find properties of a result set. We can find the number of columns in the result set and the label and type of each column. We can use result set metadata on a result set from a database metadata method or on a result set from an SQL query. Aggregate functions compute values from the rows of a table.

 THE BIG PICTURE

A prepared statement lets us translate a query once and substitute values for its parameters to execute it repeatedly. By deciding explicitly when to commit changes to the database, we reserve the option to rollback some changes if the entire transaction cannot be completed.

 THE BIG PICTURE

A graphical user interface lets the user compose a query. At each stage the user presses a button which causes some actions to occur and instructions to appear in the text area. The user first selects the tables to be used, then the fields to be displayed. The user may add conditions by joining tables or requiring a field have a specific value. After pressing the Submit button, the user sees the results in the text area.

� The ODBC text driver does not handle prepared statements or transactions.

PAGE
40

