 Internet Applications

with the Java(2 Platform

(2001 Art Gittleman

Chapter 2

Networking
This chapter has been typed in a draft mode and not formatted for publication.
Introduction

 Java makes it easy to connect to other computers, using classes from the java.net package. We first write client programs that connect to a server, which is a program that performs a task useful to its clients, and then write our own servers. A web server provides files such as web pages, Java applets, and images.

 To write client programs, we first use Java classes that enable us to hide the details of the interaction between client and server. We then try classes that let us customize the connection, and present classes that give us full control of the communication, but require us then to know the details of the request and response commands.

 The simplest clients connect to a server using a URL object, or for more flexibility, a URLConnection object. The URLConnection talks to a server using a specific protocol. We introduce HTTP, the Hypertext Transfer Protocol used to connect to a web server. Understanding HTTP allows us to customize a connection using URLConnection methods, and to write our own simple web client and web server using Socket and ServerSocket objects. This will enable us to develop and use our own protocols for clients and servers to communicate.

 On a higher level, Remote Method Invocation (RMI) allows us to invoke objects on remote machines, introducing powerful distributed computing using Java.

 Objectives:

· Use a URL to connect to a remote site from an applet or an application.

· Introduce HTTP to understand how web clients and servers communicate.

· Use URLConnection to customize a connection.

· Use Socket and ServerSocket objects to have full control over the communication.

· Write a very simple browser and a very simple web server.

· Use threads to enable a server to handle multiple clients.

· Introduce distributed computing using RMI.

2.1 Using a URL to Connect

 Computers use protocols to communicate. A client sends requests using the commands provided by the protocol in the order specified in the protocol, and the server responds similarly. The URL class encapsulates several popular protocols, handling their details thereby making it easier for Java programmers to make network connections to display a page, retrieve a file, or get mail, for example.

 We will describe a URL, then show how to use an applet to display a resource downloaded from a remote site. Finally we use a standalone application to make a connection using a URL.

The Uniform Resource Locator (URL)

 A URL has four parts: the protocol name, the host address, the port, and the path to the resource file. The port number specifies a specific communication link between computers. For example, the full URL for Sun's Java home page is

 http://java.sun.com:80/index.html

where HTTP is the protocol, java.sun.com is the host address, 80 is the port, and index.html is the path to the resource. Because 80 is the default port for the HTTP service, and index.html is the default file name, we can write the same URL more concisely as

 http://java.sun.com/

 Using the URL for Sun's Java home page, our Java client connects our machine to the web server on Sun's host machine. This server program must understand HTTP, which we will introduce in the next section. Using a URL and a URLConnection to write our client programs, we let Java handle the details of the messages specified by the HTTP protocol to communicate with a web server.

Connecting from an Applet

 We can use the URL class in a Java applet to have the browser get and display a resource for us. We pass a string specifying a URL to the URL constructor, as in:

 URL url = new URL("http://java.sun.com/");

for Sun's Java home page, or

 URL myURL = new URL("http://www.cecs.csulb.edu/~artg/");
for the author's home page.

 Each applet has a getAppletContext() method which returns an object that implements the AppletContext interface. The applet context is the browser or applet viewer that started the applet. Each object that implements the AppletContext interface has a showDocument method which will display the document specified by the URL object, if it is able to do so. We can use the applet context to display the resource using the showDocument method, as in:

 getAppletContext().showDocument(url);

Tip

 If the applet context is a browser, then the showDocument method will

 cause the browser to display the page requested in the URL. However, if

 the applet context is an applet viewer, then the showDocument method will

 only display the applets contained in the document, and not the rest of the

 page, as the applet viewer just runs applets and does not interpret HTML.

 Example 2.1 shows how an applet can get the browser to display a document. We input the URL as a parameter in the HTML file to make it easier to change. The HTML file we use to run the applet of Example 2.1 is:

 <applet code = ShowURL.class width=300 height=400>

 <param name = url value = http://www.cecs.csulb.edu/~artg/>

 </applet>

Naturally, when requesting a resource from a remote site, we must be connected to the Internet.

 Example 1 ShowURL.java

 /* Running this applet in a browser will cause

 * the browser to display the resource specified

 * in the URL parameter in the HTML file used to run

 * the applet. The applet viewer cannot

 * show a document.

 */

 import java.net.*;

 import java.applet.Applet;

 public class ShowURL extends Applet {

 public void init() {

 try { // Note 1

 URL url = new URL(getParameter("url"));

 getAppletContext().showDocument(url);

 }catch(MalformedURLException e) {

 e.printStackTrace();

 }

 }

 }

Note 1: Java will throw a MalformedURLException if the argument to the

 constructor does not have the correct form for a URL.

 [image: image1.jpg]
 Figure 2.1 Example 2.1 displaying a web site

Connecting from a Standalone Application

 We can use a URL object in a standalone program, reading characters from the resource specified by the URL. The URL class has a method, openStream, which opens a connection to the server, and allows us to read its responses to our client's request. The openStream method returns an InputStream that we pass to an InputStreamReader to convert the bytes to characters, and then pass the InputStreamReader to a BufferedReader to buffer the input so we can read one line at a time.

BufferedReader input = new BufferedReader
 (new InputStreamReader(url.openStream()));
 Example 2.2 reads one line at a time from the URL specified on the command line, writing each line to the screen. Our Java program is not a browser, so when we read HTML files we get output with the embedded HTML tags. Passing the program argument

 http://java.sun.com/

will list the HTML file for Sun's Java home page.
 Most files that we access on web servers are HTML files, but we can get other types of files too. Passing the program argument

 http://www.cecs.csulb.edu/~artg/TryURL.java/
will connect to the web server at the California State University Long Beach Computer Engineering and Computer Science department, retrieving the source code file, TryURL.java. We could read a file from the local machine passing a file URL as a program argument, as in:

 file:///java/TryURL.java/
where the file TryURL.java is in the directory c:\java on a Windows system.
 Leaving the host name empty defaults to localhost, which is the

user's machine rather than a remote host. Including localhost, as in,

 file://localhost/java/TryURL.java/
gives the same URL.

Tip

 Use forward slashes in writing URLs, even on Windows machines for which

 the default separator is the backslash.

 Example 2.2 TryURL.java

 /* Displays the resource specified by the URL

 * entered on the command line.

 */

 import java.net.*;

 import java.io.*;

 public class TryURL {

 public static void main(String[] args) {

 BufferedReader input;

 try {

 URL url = new URL(args[0]);

 input = new BufferedReader

 (new InputStreamReader(url.openStream()));

 String s;

 while ((s = input.readLine()) != null)

 System.out.println(s);

 input.close();

 }catch(Exception e) { // Note 1

 e.printStackTrace();

 }

 }

 }

Output

 (The output will display the contents of any file we pass as the program

 argument. Passing

 http://www.cecs.csulb.edu/~artg/TryURL.java/

 will display the code for this example.)

Note 1: The URL constructor may throw a MalformedURLException, and the

 readLine method may throw an IOException. We could write a

 catch clause for each, but we are not taking the trouble to do anything

 special for these exceptions so we just catch the superclass

 Exception which is the parent of both of these exceptions. If Java

 throws either a MalformedURLException or an IOException,

 control will jump here to print the stack trace and the message

 indicating which exception occurred.

Test Your Understanding

1. (Try It Yourself) Try using an applet viewer, rather than a browser, to run

 Example 2.1. What is the result?

2. (Try It Yourself) Use Example 2.2 to display the file TryURL.java. Use

 a file URL to get the program from the local disk. For example, using

 Windows, if the file is in the directory c:\java, use the URL

 file:///c:/java/TryURL.java
3. (Try It Yourself) Use Example 2.2 to connect to the author's home page,

 http://www.cecs.csulb.edu/~artg/. Explain the result.

2.2 Protocols with a URLConnection

 The URLConnection class makes a connection using a URL, but it adds methods for us to customize the connection and get its properties. It still hides the details of the protocol, while giving the programmer more control.

The Hypertext Transfer Protocol (HTTP)

 We used the HTTP protocol for our URL in Example 2.1, and suggested the HTTP or file protocols for the URL in Example 2.2. Java supports other protocols, including FTP (File Transfer Protocol) and mailto, when connecting using a URL, but here we concentrate on HTTP. Each protocol allows a formal exchange of messages using well-specified formats. Before going further with networking we describe HTTP, which we will use when customizing a URLConnection, and when writing our own HTTP client and server.

 An HTTP client sends a request to the server in which the first line has the form

 Method used Identifier for the resource Protocol version

The following lines of the request are various request headers which provide information about the capabilities of the client. After the request headers comes the data (if any) to be sent to the server. Figure 2.2, obtained using the HeaderServer program of Example 2.7, shows the request sent by the Java client of Example 2.2 when we pass it the argument.

 http://www.cecs.csulb.edu/~artg/TryURL.java
 GET /~artg/TryURL.java HTTP/1.0

 User-Agent: Java1.3.0

 Host: www.cecs.csulb.edu:80

 Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

 Connection: keep-alive

 Figure 2.2 The HTTP client request from Example 2.2

 In the first line of Figure 2.2, GET is the method used; we are asking the server to get us a file. The path to that file is the second part of that first line, while the protocol, HTTP/1.0, is the third.

 The next four lines of Figure 2.2 are request headers of the form

 name: value

They are:

 Field Description

 User-Agent Indicates that Java 1.3.0 is running our client.

 Host Identifies the server.

 Accept Specifies the types of files that the client is prepared to

 accept. Each type has a preference associated with it

 given by the value of q (for "quality"). This value ranges

 from a low of 0 to the default of 1. The three types

 text/html, image/gif, and image/jpeg have the highest

 preference (the default of q=1 is not shown). If the server

 cannot send these types, then the client will accept any

 type, denoted by *, or any subtype of any type, denoted

 by */*. These latter generic types have preferences of

 q=.2.

 Connection Specifies the type of connection. Here keep-alive

 expresses the client's wish to keep the connection alive

 for multiple requests.

 Our Java client has sent a request followed by four request headers selected from various header types available. We will see in the next section how to determine the client's request, and will see that different clients such as Netscape and Internet Explorer send different request headers to the server.

 An HTTP server responds to a request with a status line followed by various response headers. The status line has the form

 HTTP Version Status Code Reason
We will use Example 2.3 to find the server's response to a request. Figure 2.3 shows the server's response to the client request of Figure 2.2.

 Status line:

 HTTP/1.0 200 Document follows

 Response headers:

 Date: Mon, 07 Dec 1998 21:12:05 GMT

 Server: NCSA/1.4.2

 Content-type: text/plain

 Last-modified: Wed, 11 Feb 1998 19:19:01 GMT

 Content-length: 439

 Figure 2.3 The HTTP server response

 The server sends a status line showing the HTTP version, 1.0 in this example, a code, 200, and the reason for the code, Document follows.

The response headers are:

 Field Description

 Date Gives the day and Greenwich Mean Time.

 Server Names the web server used.

 Content-type Describes the content. (Here text/plain for a Java

 program.

 Content-length Number of bytes in the file.

As we shall see in Example 2.3, other servers use different response headers.

A Little Extra

 Status codes have five types, distinguished by their first digit. Some are:

 Success 200 OK

 Redirection 301 Moved Permanently

 Client Error 400 Bad Request

 404 Not Found

 406 Not Acceptable

 Server Error 501 Not Implemented

Using a URLConnection

 Using a URL we can download a file. For more flexibility, we can use a URLConnection to set some capabilities of a connection, including the client request header fields, and to retrieve the server response status and headers.

 We implicitly used a URLConnection in Example 2.2 because the URL openStream method is supplied by Java as a convenient shorthand for

 openConnection().getInputStream()
where openConnection is a URL method that returns a URLConnection whose getInputStream method returns an InputStream to the caller. By using URLConnection explicitly, we can use the other URLConnection methods.

 To get the names of the response header fields that the server sends, we use the getHeaderFieldKey method, and to get the field value we use getHeaderField. The first field returned is the status line.

Example 2.3 GetResponses.java

/* Uses a URLConnection to find the response status

 * and headers sent by the server.

 */

import java.net.*;

import java.io.*;

public class GetResponses {

 public static void main(String[] args) {

 try {

 URL url = new URL(args[0]);

 URLConnection c = url.openConnection(); // Note 1

 System.out.println("Status line: ");

 System.out.println('\t' + c.getHeaderField(0)); // Note 2

 System.out.println("Response headers:");

 String value = "";

 int n = 1;

 while (true){ // Note 3

 value = c.getHeaderField(n);

 if (value == null) break;

 System.out.println('\t' + c.getHeaderFieldKey(n++) + ": " + value);

 }

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Output -- Connecting to http://www.cecs.csulb.edu/~artg/TryURL.java

See Figure 2.3

Output -- Connecting to http://java.sun.com/

Status line:

 HTTP/1.1 200 OK

Response headers:

 Date: Mon, 07 Dec 1998 21:14:55 GMT

 Server: Apache/1.3.3 (Unix)

 Connection: close

 Content-Type: text/html

Output -- Connecting to http://ibm.com/

Status line:

 HTTP/1.0 200 IBM-Planetwide Document OK

Response headers:

 MIME-Version: 1.0

 Server: Domino-Go-Webserver/4.6

 Title: IBM Corporation

 Date: Mon, 07 Dec 1998 21:17:45 GMT

 Last-modified: Mon, 07 Dec 1998 21:17:45 GMT

 Connection: keep-alive

 Expires: Tue, 08 Dec 1998 01:17:45 GMT

 Window-target: _top

 Vary: User-agent

 Reply-to: webmaste@us.ibm.com

 Content-type: text/html

 Content-Language: en-us

 Content-Length: 9919

Note 1: In contrast to Examples 2.1 and 2.2, we explicitly open a

 URLConnection. With its various methods we can customize a

 connection as we shall see in Example 2.4.

Note 2: We use the getHeaderField method that takes an integer argument

 which is the number of the header in the order sent by the server.

 Given the argument 0, getHeaderField returns the status line sent by

 the server.

Note 3: The loop continues indefinitely until getHeaderField returns a null

 value, which it does when there is no header with number n.

 In the output from the second run of Example 2.3 we see that the Sun server sends a Connection: close response header meaning that it closes the connection after each response. It sends Content-type: text/html because we have requested its Java home page which is an HTML file.

 The IBM server, in the third run, includes an Expires response with an expiration date. This is to aid the client in using a cache to store the response. If we connect again to IBM's home page, we can save the time and effort of downloading that HTML file again by using the file that we saved in the cache the last time we browsed IBM's site. However when reading the cache, the client should connect with IBM's web server again if the date is later than the expiration date. By including an Expires response header, the server advises the client when it might be necessary to download a fresh copy of the file.

 The Vary response header states the file the server returns may vary based on the fields indicated, in this case User-agent. IBM might have versions customized for particular browsers which do not always display HTML files in the same way.

 The Content-Language header describes the language for the intended audience for the response, using first a language abbreviation such as "en" for English, and then a country code such as us for United States, to represent a dialect of the language.

A Little Extra

 The language abbreviations are registered with the International Standards Organization (ISO-639). Some abbreviations are:

 Chinese zh

 French fr

 German de

 Greek el

 Spanish sp

 The country codes follow ISO-3166. Some country codes are:

 Canada CA

 China CN

 Germany DE

 Great Britain GB

 Greece GR

 Spain ES

 Switzerland CH

 Taiwan TW

 In Example 2.3, we used the generic getHeaderField method to list all the response headers sent by the server. We can also get response headers using their names, as in

 getHeaderField("Content-length")
The URLConnection class has separate methods for the most common header requests, so we could also get the content length using

 getContentLength()
which returns -1 if the server does not send a Content-length response.

 We can use the setRequestProperty method to customize the request headers sent by the client. For example,

 setRequestProperty("Accept", "text/plain");
would indicate a client preference for a plain text file. The server should send a 406 (not acceptable) status code if it cannot supply an entity of that type for the request, but it is not required to do so.

 Example 2.4 modifies Example 2.2 to use a URLConnection explicitly, using some of the URL methods to customize the connection and get information about the response.

Tip

 When requesting a large file, the response will scroll out of the command

 window. In many operating systems we can redirect the output to a file.

 For example, the command

 java TryURLConnect http://java.sun.com/ text/html
 causes the output of the response to scroll out of the window, but

 java TryURLConnect http://java.sun.com/ text/html >out
 writes the output to a file named out which we can read using a text editor.

 In Windows, we can use the MSDOS, Properties menu to increase the

 height of the command window.

Example 2.4 TryURLConnect.java

/* Displays the resource specified by the URL passed as the

 * first program argument, with the MIME types acceptable for

 * the response passed as the second program argument.

 * Uses URLConnection methods.

 */

import java.net.*;

import java.io.*;

import java.util.*;

public class TryURLConnect {

 public static void main(String[] args) {

 BufferedReader input;

 try {

 URL url = new URL(args[0]);

 URLConnection c = url.openConnection();

 c.setRequestProperty("Accept", args[1]); // Note 1

 input = new BufferedReader

 (new InputStreamReader(c.getInputStream()));

 String s;

 while ((s = input.readLine()) != null)

 System.out.println(s);

 input.close();

 System.out.println();

 System.out.println("Content type: " + c.getContentType());

 System.out.println("Content length: " + c.getContentLength()); // Note 2

 System.out.println("Length using getHeaderField: "

 + c.getHeaderField("Content-length")); // Note 3

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Output -- arguments http://www.cecs.csulb.edu/~artg/TryURL.java text/plain

(The file of Example 2, not shown)

Content type: text/plain

Content length: 439

Length using getHeaderField: 439

--

Output -- arguments http://www.cecs.csulb.edu/~artg/ShowURL.java text/plain

(The file of Example 1, not shown)

Content type: text/plain

Content length: 305

Length using getHeaderField: 305

Output -- arguments http://java.sun.com/ text/html

(Sun's HTML file for its Java home page, not shown)

Content type: text/html

Content length: -1

Length using getHeaderField: null

Output -- arguments http://ibm.com/ text/html

(IBM's HTML file for its home page, not shown)

Content type: text/html

Content length: 9924

Length using getHeaderField: 9924

Note 1: Passing text/plain as a program argument will change the client's

 default Accept request header to request text/plain. We could use

 the setRequestProperty method to set any of the client's request

 headers.

Note 2: In Example 2.3 we listed the response headers actually sent by the

 server. Here when we ask for the content length, the server may not

 have sent it, in which case the method returns -1.

Note 3: This version of the getHeaderField returns a response header for the

 field name passed as its argument. Its return value has type String so

 if the server has not sent any header for that field, it returns null.

Test Your Understanding

4. For the Accept request header given by

 Accept: text/plain; q=0.5, text/html,

 application/zip; q=0.8, image/gif
 which two file types are most preferred, which is next, and which is least

 preferred.

5. (Try It Yourself) Rewrite Example 2.2 to explicitly use URLConnection

 rather than implicitly using it via the openStream method.

6. (Try It Yourself) Use Example 2.3 to connect to five different web sites, in

 addition to those tried in the text.

7. (Try It Yourself) In Example 2.4 use the getHeaderField method to get

 the content type instead of getContentType.

2.3 Clients and Servers Using Sockets

 The URL and URLConnection classes hide the details of a few common protocols, most importantly HTTP, so we can easily write programs to connect to a web server, for example. With the Socket and ServerSocket classes, we can write clients and servers using existing protocols, and develop our own protocols for communicating between client and server. After introducing ports, through which we connect, we use our own protocol, writing both a server and a client to illustrate the use of sockets. Finally, we use the HTTP protocol to write a server which echoes the requests sent by the client.

Server Ports

 Each server listens on a numbered port. The system servers use port numbers below 1024; we can use higher numbered ports for our servers. The familiar services use standard port numbers. For example web servers usually use port 80, SMTP servers (Simple Mail Transfer Protocol) for sending mail use port 25, and POP3 servers (Post Office Protocol-version3) for receiving mail use port 110.

 We could use Java to write a client to connect to a system server. For example we could get our email by writing a client for a POP3 server. In writing such a client we would have to follow the Post Office Protocol-version 3 which specifies the form of the communication between the client and the server. Figure 4 shows sample interaction between a client and a POP3 server.

 Server: +OK POP3 server ready // server sends welcome

 Client: USER username // client sends user's name

 Server: +OK // server responds OK

 Client: PASS password // client sends the password

 Server: +OK 23 messages 3040 octets // server sends message info

 Client: RETR 23 // asks for message 23

 Server: text of message 23, ending

 with a '.' alone on a line

 Client: QUIT

 Figure 2.4 Interacting with the POP3 server

A Client-Server Example

 If we write our own server we can use our own protocol for communicating with a client. We write a very simple server which reverses the text that the client sends it. Figure 2.5 shows the client window and the server window.

[image: image2.jpg]
 a. ReverseServer
[image: image3.jpg]
 b. ReverseClient
 Figure 2.5 ReverseClient and ReverseServer

 Java provides a Socket class for the client to connect to a server on a specific port, and a ServerSocket class for the server to listen for clients who wish to make a connection. Once the client connects with the server, they use the reader and writer classes to send and receive data to and from one another. Example 2.5 shows the code for a server that reverses whatever the client sends it.

 We choose an arbitrary port number, 5678, on which our server will listen. The accept method waits for a client to make a connection. When a client connects, the accept method returns a client socket and our server prints a message announcing the connection. The client socket has a getInputStream method which the server uses to create a BufferedReader to read from the client. The server uses the client's getOuputStream method to create a PrintWriter to write to the client. The server reads one line at a time from the client, reversing it and sending it back.

 Example 2.5 ReverseServer.java

 /* Listens on port 5678. When a client connects, the server

 * reverses whatever the client sends, and sends it back.

 */

 import java.net.*;

 import java.io.*;

 public class ReverseServer {

 public static void main(String [] args) {

 String s; // the string to reverse

 int size; // the length of the string

 char[] c; // the reversed characters

 try {

 ServerSocket server = new ServerSocket(5678); // Note 1

 Socket client = server.accept(); // Note 2

 BufferedReader input = new BufferedReader

 (new InputStreamReader(client.getInputStream()));

 PrintWriter output = new PrintWriter

 (client.getOutputStream(),true); // Note 3

 while ((s = input.readLine()) != null){

 size = s.length();

 c = new char[size]; // Note 4

 for (int i = 0; i < size; i++)

 c[i] = s.charAt(size - 1 - i); // Note 5

 output.println(c); // Note 6

 }

 input.close();

 output.close();

 client.close();

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

 }

Note 1: We create a server to listen for connections on port 5678.

Note 2: The accept statement blocks any further progress in the program until

 a client connects; it then returns the client socket.

Note 3: We set the second argument to the PrintWriter constructor to true

 so println statements will flush the output, rather than waiting

 until the buffer fills up.

Note 4: We cannot change a String object, so we create an array of

 characters to hold the reverse of the line the client inputs. We could

 also have used a StringBuffer object which is like a String but

 allows changes.

Note 5: We use the charAt method to get the character which is i positions

 from the right end of the string and copy it into element i of the char

 array.

Note 6: output.println(c);

 The array c contains the reversed characters of the string sent by the

 client. We send these reversed characters back to the client.

 We can run the server on the same machine as the client or on a different machine.
 The server does not terminate until we abort it, so we should run it in the background in its own thread, and we can do other things while it is waiting for clients to connect.
 Figure 2.5 shows the client and server running on the same machine. The client connects using the address of the host which we pass as a program argument. The name localhost denotes the local machine so the client connects to the server on the same machine with the command

 java ReverseClient localhost
 Using two machines, we would have started the server on one machine and let the client connect to it using the server's name or its IP address
. We usually refer to machines by their names, as for example, www.cecs.csulb.edu, but underlying each name is a four byte IP (Internet Protocol) address, as for example 134.139.67.68. (The local machine, named localhost, has the IP address 127.0.0.1.) In connecting in a small lab, whose computers are linked to the Internet, we may just use these basic IP addresses. If we start ReverseServer on machine 134.139.67.68, we would connect to the server from another machine using the command

 java ReverseClient 134.139.67.68.

. The client creates a socket using the port, 5678, on which the server is listening. The client uses the getInetAddress method of the socket to display the address of the host to which it is connected. As in the server of Example 2.5, the client and the server use readers and writers to communicate with each other. The client uses the getInputStream method of the socket to create a BufferedReader to read from the server, and uses the getOutputStream method of the socket to create a PrintWriter to write to the server. The client also creates a BufferedReader to get the input from the user.

 The client enters a loop printing a prompt, getting a line from the user, sending it to the server, getting the reversed line from the server, and displaying it on the screen, exiting when the user signals the end of input (Control + Z in Windows). Example 2.6 shows the client program which connects to a server that reverses its input.

Example 2.6 ReverseClient.java

 /* Connects to a server which reverses whatever

 * the user inputs. Specifies the host of the

 * server on the command line.

 */

 import java.net.*;

 import java.io.*;

 public class ReverseClient {

 public static void main(String[] args) {

 String s; // the string to reverse

 if (args.length != 1){ // Note 1

 System.out.println("Pass the server's address");

 System.exit(1);

 }

 try {

 Socket server = new Socket(args[0],5678); // Note 2

 System.out.println("Connected to ReverseServer host "

 + server.getInetAddress());

 BufferedReader fromServer = new BufferedReader

 (new InputStreamReader(server.getInputStream()));

 PrintWriter toServer = new PrintWriter

 (server.getOutputStream(),true);

 BufferedReader input = new BufferedReader(

 new InputStreamReader(System.in));

 while (true) {

 System.out.print("# ");

 System.out.flush();

 if ((s=input.readLine()) == null)

 break;

 toServer.println(s);

 System.out.println(fromServer.readLine());

 }

 fromServer.close();

 toServer.close();

 input.close();

 server.close();

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

 }

Note 1: We check that the user passed the address of the server's host

 machine as a program argument. If not, we abort the program with a

 message indicating the omission.

Note 2: The client creates a socket connection to the server on port 5678, the

 port on which the server is listening.

A Request Header Server

 While ReverseServer (Example 2.5) works fine when connected to by ReverseClient (Example 2.6), we will see it does not respond properly to an HTTP client such as our TryURL program of Example 2.2. ReverseServer does not respond properly to TryURL because it does not follow HTTP. We modify it, producing a server, HeaderServer, that echoes the lines sent by the client.

 We used ReverseClient to connect to ReverseServer, but we can use other clients to connect to ReverseServer. Using our TryURL client using the command

 java TryURL http://localhost:5678/~artg/TryURL.java

gives the result shown in Figure 2.6.

[image: image4.jpg]
 Figure 2.6 Connecting to ReverseServer using TryURL
 We wrote the TryURL program to connect to a server and request it to send us a file. TryURL does not send any user data to the server; it only sends its request headers. ReverseServer reverses those headers and sends them back to the client which displays them as if they were the sought after file. Thus Figure 2.6 looks almost like Figure 2.2, except in reverse, of course, because ReverseServer dutifully reverses everything sent to it before sending it back.

 One difference is minor. Line 3 (reversed so that we can read it) shows the host as localhost:5678 because we connected to our ReverseServer on the local machine rather than to a web server at a remote site. The important difference is in the first line which is shortened in Figure 2.6 to

 H avaj.LRUyrT/gtra~/ TEG
which reversed is GET /~artg/TryURL.java H.

 The explanation for this mysterious shortening is that the client, TryURL, is using HTTP, and expects the server to follow that protocol. A web server should send the status line, any response headers, and then a blank line to signal the beginning of file to the client. The browser, or other web client, such as TryURL, uses the response headers internally but does not display them. It waits for the blank line, using the header information it received to appropriately display what follows the blank line.

 ReverseServer, not using HTTP, does not send a blank line. This confuses TryURL which discards the first seven characters of the first line of data sent by ReverseServer. The first line that TryURL sent was the request, and we see in the result that the first seven characters, 0.1/PTT, of the reversed request line are missing from Figure 2.6.

 By modifying ReverseServer, we can make a very simple server to show us the request and headers that an HTTP client sends. We send a status line

 HTTP/1.0 200 OK
and the single response header

 Content-type: text/plain
then send a blank line before sending any data to the client. We no longer want to reverse what the client sends, so we can remove the code from ReverseServer that does the reversing. Rather than trying to satisfy the client's request, our server will return to the client whatever it sent. An HTTP client sends a request and perhaps some request headers, so this is what the server will return.

[image: image5.jpg]
 Figure 2.7 A Netscape client connected to HeaderServer

Because the server indicates that every file has type text/plain, Internet Explorer, when connecting to HeaderServer, pops up a Notepad editor window, shown in Figure 2.8, to display the text.

[image: image6.jpg]
 Figure 2.8 An Internet Explorer client connected to HeaderServer
We see that each client has its own variants of the request headers that it sends to the server.

Example 2.7 HeaderServer.java

import java.net.*;

import java.io.*;

import java.util.*;

public class HeaderServer {

 public static void main(String [] args) {

 String s;

 Vector v = new Vector();

 try {

 ServerSocket server =

 new ServerSocket(Integer.parseInt(args[0]));

 Socket client = server.accept();

 BufferedReader fromClient = new BufferedReader

 (new InputStreamReader(client.getInputStream()));

 PrintWriter toClient = new PrintWriter

 (client.getOutputStream(), true);

 while (!(s=fromClient.readLine()).equals("")) // Note 1

 v.addElement(s);

 toClient.println("HTTP/1.0 200 OK"); // Note 2

 toClient.println("Content-type: text/plain"); // Note 3
 toClient.println();

 Enumeration e = v.elements();

 while(e.hasMoreElements())

 toClient.println((String)e.nextElement());

 fromClient.close();

 toClient.close();

 client.close();

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Output from java TryURL http://localhost:11111/TryURL.java.
 (See also Figures 7 and 8)

GET /TryURL.java HTTP/1.0

User-Agent: Java1.3.0

Host: localhost:11111

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Note 1: We check for the empty string instead of null. The ReverseClient

 user sends an end-of-file which terminates ReverseServer. TryURL

 sends a request and then request headers terminated by an empty line,

 but not an end-of-file.

Note 2: A web server must send a status line to the client which reflects the

 status of the request. For simplicity, we always send the code 200

 meaning OK even though we make no attempt to serve the file

 requested. We leave improvements to the server to the exercises.

 Were we to omit sending the status line, HTTP clients would drop some

 characters from the response.

Note 3: If we do not send this header to the client, then both Netscape and

 Internet Explorer run all the headers together in a long line rather

 than displaying each header on a separate line as we see in Figures

 2.7 and 2.8. This shows that HTTP clients use the response headers

 sent by the server to display the requested resource.

Test Your Understanding

8. (Try It Yourself) Start the ReverseServer of Example 2.5. Connect to it

 with a client. After sending some strings for the server to reverse, send an

 end-of-file to the server. What happens to the client and the server

 programs? In the Exercises we will suggest modifications to the

 ReverseServer to change this behavior.

9. (Try It Yourself) Revise Example 2.7 to omit sending the status line to the

 client. What error occurs in the result?

10. (Try It Yourself) Revise Example 2.7 to omit the Content-type response

 header. How does the output change when using either Netscape or

 Internet Explorer as the client?

2.4 Browsers and Web Servers

 A browser is an HTTP client, which may use other protocols, while a web server is an HTTP server. In this section we write a very simple browser and a very simple web server, leaving to the exercises many improvements to make them more functional. We conclude with a threaded web server, which can handle multiple clients connected simultaneously.

A Very Simple Browser

 An HTTP client sends a request to the server followed by request headers and a blank line. It then reads the status line, response headers, and the requested file from the server. A browser typically can handle several types of files, the most important being HTML files which define web pages. The browser has to interpret the HTML tags to guide it in displaying the page. With so many file types to handle, and such intricate processing necessary for web pages, a useful browser is not a small or simple undertaking. Our very simple browser just handles plain text files.

 Figure 2.9 shows VerySimpleBrowser connecting to the author's web site to download a file using the command

 java VerySimpleBrowser www.cecs.csulb.edu 80

 /~artg/TryURL.java

where 80 is the standard HTTP port on which the server is running. An alternative approach would pass a URL, as in the command

 java VerySimpleBrowser

 http://www.cecs.csulb.edu/~artg/TryURL.java
and use the URL methods getFile, getHost, and getProtocol, which each return a String, and getPort, which returns an int, to break the URL into the parts needed in Example 2.8.

[image: image7.jpg]
 Figure 2.9 VerySimpleBrowser downloads a file

 VerySimpleBrowser always sends a GET request, and a Host request header. It ignores the status line and response headers sent by the server, rather than trying to use them to get information that would help it to display the requested resource.

Example 2.8 VerySimpleBrowser

/* Connects to a web server to download a text file.

 * Exercises suggest extensions to handle other file types.

 */

import java.net.*;

import java.io.*;

public class VerySimpleBrowser {

 public static void main(String[] args) {

 String s;

 if (args.length != 3){

 System.out.println("Usage: java VerySimpleBrowser host port file");

 System.exit(1);

 }

 try {

 int port = Integer.parseInt(args[1]); // Note 1

 Socket server = new Socket(args[0],port);

 System.out.println("Connected to host "

 + server.getInetAddress());

 BufferedReader fromServer = new BufferedReader

 (new InputStreamReader(server.getInputStream()));

 PrintWriter toServer = new PrintWriter

 (server.getOutputStream(),true);

 toServer.println("GET " + args[2] + " HTTP/1.0"); // Note 2

 toServer.println("Host: " + args[0]+ ':' + args[1]);

 toServer.println();

 while (!(s = fromServer.readLine()).equals("")); // Note 3

 while ((s = fromServer.readLine()) != null) // Note 4

 System.out.println(s);

 fromServer.close();

 toServer.close();

 server.close();

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Note 1: The standard HTTP port is 80, but some servers use 8080. We run our

 simple web server on port 11111. The user should pass the server port

 number as the second program argument.

Note 2: We use the path to the resource, /~artg/TryURL.java in Figure

 2.9, sending the host address and port in a separate Host header.

 Alternatively, we could have sent the GET command

 GET www.cecs.csulb.edu:80/~artg/TryURL.java HTTP/1.0
Note 3: We read and ignore the status line and headers sent by the server,

 looking for the blank line that signals the end of the headers and the

 start of the file we requested. We leave it to the exercises to improve

 the browser to make use of this information.

Note 4: This loop reads the file we requested from the server, displaying it in the

 command window. Extending this very simple browser to display HTML

 would use graphics extensively.

A Very Simple Web Server

 An HTTP server reads the request from the client, any headers, and in some cases additional data. It sends a status line followed by headers and the requested resource, if any. Web servers often transmit data from the client to other programs for processing before returning results to the client. Our very simple web server only responds to GET requests, and only serves text files. We leave it to the exercises to add features to make this server more functional.

 To start VerySimpleWebServer, we use the command

 start java VerySimpleWebServer 11111

which, on Windows systems, starts the server in a new window. Figure 2.10 shows Netscape connecting to VerySimpleWebServer to download a file. We could also have used VerySimpleBrowser as the client.

[image: image8.jpg]
 Figure 2.10 A Netscape client connecting to VerySimpleWebServer
Example 2.9 VerySimpleWebServer.java

/* Serves a text file to an HTTP client submitting a GET

 * request. Exercises suggest extensions to make the

 * server more functional.

 */

import java.net.*;

import java.io.*;

import java.util.StringTokenizer;

public class VerySimpleWebServer {

 public static void main(String[] args) {

 String s;

 try {

 ServerSocket server = new ServerSocket(Integer.parseInt(args[0]));

 Socket client = server.accept();

 System.out.println

 ("VerySimpleWebServer Connected on port " + args[0]);

 BufferedReader fromClient = new BufferedReader

 (new InputStreamReader(client.getInputStream()));

 PrintWriter toClient = new PrintWriter

 (client.getOutputStream(), true);

 s = fromClient.readLine(); // Note 1

 StringTokenizer tokens = new StringTokenizer(s); // Note 2

 if (!(tokens.nextToken()).equals("GET")) { // Note 3

 toClient.println("HTTP/1.0 501 Not Implemented");

 toClient.println();

 }

 else {

 String filename = tokens.nextToken(); // Note 4

 while (!(s = fromClient.readLine()).equals("")); // Note 5

 BufferedReader file =

 new BufferedReader(new FileReader(filename)); // Note 6

 toClient.println("HTTP/1.0 200 OK"); // Note 7

 toClient.println("Content-type: text/plain");

 toClient.println();

 while ((s = file.readLine()) != null) // Note 8

 toClient.println(s);

 file.close();

 }

 fromClient.close();

 toClient.close();

 client.close();

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Note 1: We read the first line from the client to find the method and the identifier

 for the resource.

Note 2: Blanks separate each item of the request. We use a

 StringTokenizer to get the method and identifier parts of the

 request.

Note 3: If the request method is anything other than GET, the server sends a

 status line with a code of 501 to indicate the method is not

 implemented.

Note 4: The file name comes after GET, separated by a blank, in the request

 from the client. We save it here before we read the next line from the

 client which will overwrite the string s.

Note 5: We read and ignore any request headers sent by the client, looking for

 the blank line that separates the request and headers from any data the

 client might send.

Note 6: BufferedReader file =

 new BufferedReader(new FileReader(filename));
 If file cannot be found or another error occurs, the exception thrown will

 cause control to jump to the catch clause and the server to terminate.

 We leave to the exercises the improvement of the server to handle the

 error and send an error message to the client

Note 7: toClient.println("HTTP/1.0 200 OK");
 Having created the file to send, the server sends a status line with code

 200 meaning OK, and follows with one header describing the content

 type to help the client to display it.

Note 8: while ((s = file.readLine()) != null)
 This loop sends the file to the client.

A Threaded Web Server

 Our VerySimpleWebServer has the very unusual behavior for a server in that it serves one request and terminates. We can easily modify Example 2.9 to put the server code in a loop. After it responds to one request, it can respond to another, and keep serving clients one at a time. Each client has to wait until the server finishes with the preceding client before being served.

 Web servers may get requests from many clients at many dispersed locations. Using threads would allow the server to serve many clients simultaneously. The server interacts with one client while others are preparing their requests or displaying responses. It divides its attention among all connected clients so that they share the server. Large web sites may have a number of servers sharing the load of serving many, many clients.

 Our ThreadedWebServer runs in an unending loop. Each time a client connects, the server creates a thread to handle its processing with that client. The client thread creates the files needed to communicate with the server in its constructor and starts itself running. Its run method contains the code from Example 2.9 in which the server responds to the client.

 A good test for a threaded server would check how it handles simultaneous requests. We can make a step in that direction by starting two VerySimpleBrowser clients, each requesting a large file so the server will give each request some of its attention. We will see both browser windows scrolling the text of the file. The server will alternate, sending some of the first file to the first browser, then some of the second file to the second browser, then returning to the first, and so on until it has satisfied both requests.

 We start ThreadedWebServer using the command

 start java ThreadedWebServer 11111

on Windows systems, and

 java ThreadedWebServer 11111 &

on Unix systems. Once the server is running, we start the two clients. Figure 2.11 shows both clients receiving the text of this chapter from a ThreadedWebServer.

[image: image9.jpg]
 a. First client

[image: image10.jpg]
 b. Second client

 Figure 2.11 Two browsers receiving text from ThreadedWebServer
Example 2.10 ThreadedWebServer.java

/* When an HTTP client connects, the server creates a thread

 * to respond to the client's request, so that multiple clients

 * can be connected simultaneously.

 */

import java.net.*;

import java.io.*;

import java.util.StringTokenizer;

public class ThreadedWebServer {

 public static void main(String [] args) {

 try {

 ServerSocket server = new ServerSocket(Integer.parseInt(args[0]));

 while(true) { // Note 1
 Socket client = server.accept();

 new ClientThread(client); // Note 2
 System.out.println("ThreadedWebServer Connected to "

 + client.getInetAddress());

 }

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

 class ClientThread extends Thread {

 Socket client;

 BufferedReader fromClient;

 PrintWriter toClient;

 public ClientThread(Socket c) {

 try {

 client = c;

 fromClient = new BufferedReader

 (new InputStreamReader(client.getInputStream()));

 toClient = new PrintWriter

 (client.getOutputStream(), true);

 start(); // Note 3
 }catch(Exception e) {

 e.printStackTrace();

 }

 }

 public void run() { // Note 4
 try {

 String s;

 s = fromClient.readLine();

 StringTokenizer tokens = new StringTokenizer(s);

 if (!(tokens.nextToken()).equals("GET")) {

 toClient.println("HTTP/1.0 501 Not Implemented");

 toClient.println();

 }

 else {

 String filename = tokens.nextToken();

 while (!(s = fromClient.readLine()).equals(""));

 BufferedReader file =

 new BufferedReader(new FileReader(filename));

 toClient.println("HTTP/1.0 200 OK");

 toClient.println("Content-type: text/plain");

 toClient.println();

 while ((s=file.readLine()) != null)

 toClient.println(s);

 file.close();

 }

 fromClient.close();

 client.close();

 toClient.close();

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

 }

--

Note 1: The server runs in an unending loop, until aborted, continuing to serve

 clients as they connect.

Note 2: By making ClientThread an inner class, we avoid conflicts in the

 global namespace. ClientThread has the full name

 ThreadedWebServer$ClientThread, so the name ClientThread

 may be used in other contexts without conflict. Because ClientThread is

 an inner class of ThreadedWebServer, we create a ClientThread

 instance using the instance, web, of ThreadedWebServer. We leave

 the alternative, defining ClientThread outside of

 ThreadedWebServer, as an exercise.

Note 3: This makes this thread runnable, so when it gets scheduled, Java

 will execute its run method.

Note 4: The run method contains the code from Example 2.9 by which the

 server and client communicate. If several threads are active, then the

 server will be communicating with several clients who are all connected

 simultaneously.

Test Your Understanding

11. (Try It Yourself) Modify Example 2.8 to use the HEAD method which just

 sends headers and does not ask for a resource in response. Connect with

 the very simple web server of Example 2.9. What happens?

12. (Try It Yourself) Put the server of Example 2.9 into a loop so instead of

 terminating after each connection, it waits for another client to connect.

 Make the loop unending, so the server will have to be aborted to terminate

 it.

13. (Try It Yourself) Test the threaded web server of Example 2.10 by

 connecting to it from two simple web browser clients at close to the same

 time. Find long text files to request so both clients will be connected to

 the server at the same time while downloading the requested files. Describe

 what you observe.

2.5 Remote Method Invocation (RMI)

 Remote Method Invocation (RMI) takes networking to a higher level, providing distributed computing for Java programs. In distributed computing a program can be composed of parts located on more than one computer. So far we have used input and output streams to communicate between a client and server. These streams transfer data from one machine to another. Using RMI we can distribute our objects on various machines, invoking methods of objects located on remote sites.

Distributed Computing: The RMI Solution

 We use a very simple example, a fortune server, to show how RMI works without introducing the extra complications of an involved example. The fortune server may be running on one machine. Clients, from remote sites, can request a fortune. In making these requests, clients will invoke a method of an object on the server. A distributed computing system must provide the following capabilities:

 1. Clients must know what services the fortune server provides.

 RMI Solution: A Fortune interface lists the methods available to

 remote clients.

 2. Clients must find a Fortune object on the server.

 RMI Solution: The fortune server registers an object with a special

 server, called the rmiregistry, so that clients can look

 it up by name.

 3. Clients must be able to pass arguments to, and invoke a method of the

 Fortune object located on the server.

 RMI Solution: A special compiler, called rmic, creates a stub class for

 use on the client, and a skeleton class for use on the

 server. The stub takes the request from the client, passes

 the arguments to the skeleton which invokes the

 Fortune method and sends the return value back to the

 stub which passes it to the client.

Figure 2.12 shows how RMI operates.

 finds object by name stores object by name

 creates

 creates

 uses

 Client Server

 Figure 2.12 The parts of RMI illustrated

 For our example which provides a fortune server that will enable clients to request fortunes (the fortune cookie kind, not the billionaire kind), we need to write the following programs:

 Fortune The interface that shows the client what remote

 methods it can invoke, the getFortune method

 in this example.

 FortuneServer The implementation of the Fortune interface to

 provide the remote object which is served to

 clients who wish to use its method to get a fortune.

 FortuneClient A client that gets a reference to a Fortune object

 and invokes its getFortune method remotely.

 We run this example on one machine but use two directories, one for the client and one for the server, to simulate the use of a remote site. To compile and run our example we follow these steps:

 In the server directory

 1. Compile Fortune.java and FortuneServer.java.

 2. Create the stub and skeleton classes using the command

 rmic FortuneServer
 3. Copy FortuneServer_Stub.class to the client directory.

 4. Start the registry server using the command

 start rmiregistry
 on Windows systems, or

 rmiregistry &
 on Unix systems.

 5. Start FortuneServer using the command

 start java FortuneServer localhost
 on Windows systems, or

 java FortuneServer localhost &
 on Unix systems.

 In the client directory

 6. Compile Fortune.java and FortuneClient.java.

 6. Run FortuneClient using the command

 java FortuneClient localhost
Tip

 To run using two machines, follow the above steps, changing localhost,

 in steps 5 and 6, to the address of the server.

[image: image11.jpg]
a. The rmiregistry server
[image: image12.jpg]
 b. FortuneServer
[image: image13.jpg]
 c. FortuneClient

 Figure 2.13 An RMI example

The Interface

 Let us build each part of this example RMI application. The Fortune interface specifies the getFortune method. We ensure that objects that implement the Fortune interface can be used remotely by making Fortune extend the Remote interface. Because any network communication may fail, every method used remotely must declare that it may throw a RemoteException.

Example 2.11 Fortune.java

/* The server implements this interface and clients call

 * its method remotely. Clients get a fortune from the server.

 */

import java.rmi.*; // Note 1

public interface Fortune extends Remote {

 public static final String NOW = "Now"; // Note 2

 public static final String LATER = "Later";

 public String getFortune(String when) throws RemoteException; // Note 3

}

Note 1: The java.rmi package contains the basic classes and interfaces

 needed for RMI, such as Remote and RemoteException in this

 example.

Note 2: In addition to methods, we can declare constants in an interface. We

 declare two String constants here to show clients the choices they

 have for arguments to the getFortune method. They can either

 request a fortune for NOW or for LATER.

Note 3: Using RMI, Java passes arguments and return values across the

 network using object serialization. Objects passed must have a type,

 such as String, that implements the Serializable interface.

The Server

 On the server, the FortuneServer class implements the Fortune interface. Figure 2.12 shows the client uses the Fortune interface, and only sees that part of the FortuneServer object declared in the interface. The client only sees the getFortune method, and cannot access any other methods of the FortuneServer object. The getFortune method, which returns a message of good fortune to the client, must declare that it throws RemoteException because it will be called from a remote site. By contrast, the find method, used only within the FortuneServer class and declared as private, does not throw RemoteException.

 We declare the getFortune method as synchronized because many clients may try to access the server simultaneously. Although our example is so simple it is really not necessary to synchronize access, in many cases we want a client to have exclusive access to the server object so any changes made will be completed before another client gets access.

 The java.rmi.server package contains the classes needed for implementing servers of objects accessed remotely using RMI. Our FortuneServer class directly extends UnicastRemoteObject, a remote object sent to one destination at each request.

 In the main method, we set up a server for a FortuneServer object, so remote clients can call its getFortune method to get a fortune. When using RMI, we may need to load class files from a remote site and need a security manager to ensure the safety of such operations. Java provides the RMISecurityManager class for this purpose, which we install using the setSecurityManager method of the System class.

 The server and the client use the URL syntax with the RMI protocol to refer to remote objects. The server gives the object a name and places it, using that name, in the registry server, using the form

 rmi://host:port/name
which the client also uses to locate that object. The Naming class handles interactions with the registry. Here the server uses the rebind method which registers the object with the rmiregistry server, replacing an earlier object of that name if any in the registry. In our example, the server binds a FortuneServer object in the registry under the name Seer.

 Example 2.12 FortuneServer.java

/* Implements the Fortune interface. Establishes a server

 * for remote clients to use a FortuneServer object.

 */

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

import java.util.Vector;

public class FortuneServer extends UnicastRemoteObject

 implements Fortune {

 public static final int SIZE = 3;

 private Vector now = new Vector(SIZE); // Fortunes for NOW

 private Vector later = new Vector(SIZE); // Fortunes for LATER

 public FortuneServer() throws RemoteException {

 now.addElement("A friend is near");

 now.addElement("Expect a call");

 now.addElement("Someone misses you");

 later.addElement("Wealth awaits -- if you desire it.");

 later.addElement("Climb the hill of effort for high grades.");

 later.addElement("The door to success is open to you.");

 }

 private Vector find(String when) { // Note 1

 if (when.equals(Fortune.NOW))

 return now;

 else return later;

 }

 public synchronized String getFortune(String when)

 throws RemoteException {

 int number = (int)(SIZE*Math.random()); // Note 2

 Vector fortunes = find(when);

 return (String)fortunes.elementAt(number); // Note 3

 }

 public static void main(String[] args) {

 System.setSecurityManager(new RMISecurityManager());

 try {

 Fortune fortune = new FortuneServer();

 String url = "rmi://" + args[0] + "/Seer"; // Note 4

 Naming.rebind(url,fortune); // Note 5

 System.out.println("Starting Fortune server");

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Note 1: We only use the find method within FortuneServer to select a

 vector of fortunes based on the argument passed by the client. Just in

 case the client passes something other than NOW or LATER, we do not

 put a condition in the else clause and return LATER if the client passes

 anything but NOW.

Note 2: We get a random number between 0 and SIZE-1 to choose one of the

 fortunes to return to the client.

Note 3: Because elementAt returns type Object, we must cast the return

 value to type String. We know the elements of the vector have type

 String because we created them that way.

Note 4: We use the name Seer for the fortune object. The client uses the

 same name when looking up a reference to this object on the

 rmiregistry server. We pass the host and port as a program argument

 so that we can run our server on different machines without having to

 recompile the program. By default the rmiregistry server runs on port

 1099; if we do not wish to change the port, we may omit it from the URL,

 just passing the host name as the program argument. Note that

 although we use the URL syntax, we do not declare a URL object, but

 rather a string.

Note 5: We associate the fortune object with the Seer URL when binding to

 the registry, so client can find it.

The Client

 FortuneClient is the last program we need to complete our RMI example. It sets RMISecurityManager, just as the server does, and looks up a reference to the Seer object in the rmiregistry server. When the client calls the getFortune method of this remote object, it receives a fortune as the return value. From the client's point of view there is no difference between calling a method of a remote object and a method of a local object. RMI handles the details of the remote method call, using the stub and skeleton classes to pass arguments to the server and return values to the client.

Example 2.13 FortuneClient.java

/* Looks up a Fortune object in the registry.

 * Invokes its getFortune method remotely to

 * get a fortune for now and for later.

 */

import java.rmi.*;

public class FortuneClient {

 public static void main(String[] args) {

 System.setSecurityManager(new RMISecurityManager());

 try {

 String url = "rmi://" + args[0] + "/Seer"; // Note 1

 Fortune fortuneTeller = (Fortune)Naming.lookup(url); // Note 2

 String fortune = fortuneTeller.getFortune(Fortune.NOW); // Note 3

 System.out.println("Today's fortune is: " + fortune);

 fortune = fortuneTeller.getFortune(Fortune.LATER);

 System.out.println("Future fortune is: " + fortune);

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

}

--

Note 1: We pass the host name of the server as a program argument, omitting

 the port number, because we have no need to change the default port of

 1099 used by the rmiregistry server.

Note 2: The lookup method returns a reference, obtained from the

 rmiregistry server, to an object of type Remote, meaning it

 implements the Remote interface. We need to cast this reference to

 type Fortune to invoke the getFortune method.

Note 3: This remote method invocation looks like a method call of a local

 method, but the fortuneTeller object is actually on the server, which

 may be at a remote site. The FortuneServer_Stub sends the

 argument to FortuneServer_Skel on the host which invokes the

 getFortune method of the fortuneTeller object on the host.

 FortuneServer_Skel gets the return value from the getFortune

 method and sends it to the FortuneServer_Stub back on the client

 which returns it to the caller here to display. Fortunately, RMI handles

 all these details of communication using object serialization to transfer

 values.

Test Your Understanding

14. In Example 2.12 which classes from the java.rmi package are we using?

15. (Try It Yourself) Run the RMI example of this section using port 3000 for the

 rmiregistry server. Start the registry with the command start

 rmiregistry 3000. Change the localhost program argument to

 localhost:3000.

Summary

· Java makes it easy to connect to other computers. The URL class encapsulates some of the common communication protocols, such as HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol). Its four parts are the protocol name, the host name, port, and path to the resource. In an applet, we can use the showDocument method of the applet context to display a resource specified by a URL. The openStream method allows us to download the object referred to by a URL.

· The Hypertext Transfer Protocol specifies the messages by which browsers and web servers communicate. A browser or other web client sends a request, then some request headers, and a blank line to the server. The server sends a status line, followed by response headers, a blank line, and the requested resource. The examples show web clients and servers vary in the headers they choose to send.

· The URLConnection class has methods which allow us to set properties of the connection to customize it, or to get information about the connection. The getHeaderField method lets us determine the response headers sent by the server. The setRequestProperty method allows us to set request headers to send to the server. Special methods such as getContentLength return the value of specific headers.

· Sockets allow us to communicate using standard protocols, or to devise protocols of our own for use with clients and servers. A ServerSocket accepts connections on a numbered port. Standard services have default ports such as 80 for web servers, 25 for sending mail, and 110 for receiving it. Once we make a connection, we use input and output streams to send data back and forth between the client and the server. The ReverseClient example sends strings to the ReverseServer which sends them reversed back to the client. Modifying the ReverseServer produces HeaderServer, which just sends back to a web client the headers that it sent.

· To display a web page, a browser must interpret all the HTML tags embedded in that page. Our VerySimpleBrowser uses HTTP to communicate with web servers. It is a bare outline of a browser, following HTTP but ignoring the response headers and only displaying plain text, not HTML or images. Similarly our VerySimpleWebServer ignores any headers the client sends, and puts no effort into accurately sending response headers. Nevertheless our browser can connect and download files from various web servers and our web server can respond to plain text request from browsers. The exercises suggest many improvements. Our ThreadedWebServer permits several clients to be connected at the same time, each served in its own thread.

· Remote Method Invocation (RMI) takes networking to a higher level in which a client can invoke methods of a remote object on the server. The rmiregistry server allows the client to find a reference to a remote object. The rmic compiler creates the stub and skeleton files used to pass arguments and return values across the network. An interface, implemented on the server, specifies the remote methods available to the client.

Program Modification Exercises

1. Modify Example 2.3 to use a String argument to getHeaderField

 instead of an int. User getHeaderFieldKey to find the names of the

 headers.

2. Example 2.4 uses two program arguments. Add a check that the user

 passed two arguments and if not, print a message showing the proper

 usage and exit the program.

3. Modify Example 2.8 to pass a URL such as

 http://www.cecs.csulb.edu/TryURL.java
 rather than passing the host, port, and resource path program arguments.

 The URL methods getHost, getPort, getHost, and getProtocol will

 be helpful.

4. Modify Example 2.9 to send a status line with code 404 and reason Not

 Found when the file requested is not available on the server.

5. Modify Example 2.9 so when the server has responded to one client it can

 accept a request from another.

6. Modify Example 2.10 to avoid using any inner classes.

7. Modify Example 2.9 to send a Content-length header giving the length of

 the file in bytes.

8. Modify Examples 2.5 and 2.6 to pass the port number as a program

 argument.

9. Modify Example 2.5 to put the accept statement and the code following it

 into a nonterminating loop, so the server can accept another client as

 soon as the current client finishes.

10. Modify Example 2.5 so the server can handle several clients simultaneously.

 After the server accepts a connection from the client, the server should

 create a separate thread to handle the communication with that client and

 loop back to the accept statement waiting for another client to connect.

11. Modify Example 2.13 to ask if the user wants another fortune. When

 testing, let two clients stay connected at the same time.

12. Modify Examples 2.11, 2.12, and 2.13 to allow the client to request a lucky

 number. The server will return a number from 1 to 10 at random.

Program Design Exercises

13. Write an applet which lists URLs in a choice box. When the user selects

 a URL, use the showDocument method to display the page to which it

 refers.

14. Write a multithreaded server which will pass whatever message line it

 receives from a client to all the other clients that are connected. Write a

 client program to connect to this server, which sends its lines and receives

 the lines sent by the other clients.

15. Write a mail client which will connect to a POP3 server (find the address

 of your server) and retrieve the first message. Specify the server

 address, user name, and password as program arguments. The protocol of

 Figure 2.4 may be helpful.

16. Write a browser that displays a plain text file in a text area, rather than in

 the command window as VerySimpleBrowser does.

17. Write a piece of a browser which will display HTML files. This piece will

 only display text within header tags, <h1> ... <h6>. Use the largest point

 size for text between <h1> and </h1> tags, and the smallest for text

 between <h6> and </h6> tags.

18. Add to the browser of Exercise 2.17 the capability to handle and

 tags.

19. Write a new version of ReverseClient in which the user enters the text to

 be reversed in a text field.

20. Use RMI to allow clients to connect to a broker to get the price of a stock,

 or to buy and sell some stock. Use just three stocks, StockA, StockB, and

 StockC, each with a price that varies randomly within a range. Assume

 two accounts numbered 1111 and 2222.

 a. For simplicity, do not maintain account information, so no records are

 kept about buy and sell orders.

 b. Add account information, so each account keeps a record of how many

 of each stock it contains.

21. Improve the very simple browser of Example 2.8. The browser should

 properly interpret HTML tags <h1>, ..., <h6>, , , ,

 ,
, <p>, <a>, and .

22. Improve the very simple web server of Example 2.9. Use the status codes

 200, 301, 400, 404, 406, and 501 appropriately. Send Date,

 Last-modified, Content-type, and Content-length response

 headers.

23. Implement a chess game in which the server relays moves from one player

 to the other. Two clients play against one another, with each showing the

 board and the moves as they are made. Players will use the mouse to drag

 a piece to its new position. (Alternatively, substitute another game for chess.

 For example, checkers would be simpler.)

24. Make a user interface for the mail-reading client of Exercise 2.15. The

 screen will show the message headers and allow the user to choose which

 message to read. For additional information on the POP3 protocol, search

 the Internet for RFC 1939 which contains its specification.

25. Implement an SMTP client to send email. Provide a user interface to

 compose and send the message. Testing requires access to an SMTP

 server. A example session is:

 Server: 220 charlotte.cecs.csulb.edu ESMTP Sendmail 8.8.4/8.8.4;

 Thu, 11 Feb 1999 15:31:27 -0800 (PST)

 Client: HELO gordian.com // sent from

 Server: 250 charlotte.cecs.csulb.edu Hello ppool3.gordian.com

 [207.211.232.196], pleased to meet you

 Client: MAIL FROM:artg@csulb.edu // email address

 Server: 250 <artg@csulb.edu>... Sender ok

 Client: RCPT TO: artg@csulb.edu // recipient

 Server: 250 <artg@csulb.edu>... Recipient ok

 Client: DATA // signals message

 Server: 354 Enter mail, end with "." on a line by itself

 Client: This is // message

 a test.

 . // signals end

 Server: 250 PAA27651 Message accepted for delivery

 Client: QUIT

 Server: 221 Closing connection.

 THE BIG PICTURE

Network clients and servers communicate using protocols. The URL class hides the details of some popular protocols, letting us make connections more easily. An applet can ask its context, the browser, to show a document. A standalone client uses streams to send data to the servers and receive its response. A URL consists of a protocol, a server address, a port, and a path to the resource.

 THE BIG PICTURE

Using HTTP to communicate with a web server, the client sends a request followed by various request headers giving information about the client. The server responds with a status line and various response headers describing the server and the response. The URLConnection class still hides the details of the protocol, but allows us to customize the request and inquire about the response.

 THE BIG PICTURE

Using a Socket to connect gives the most flexibility, but both client and server must follow the appropriate protocol. When writing our own server, we can define the protocol by which client and server communicate. The server creates a ServerSocket and uses an accept statement to wait for a client to connect.

 THE BIG PICTURE

Browsers and web servers use HTTP to communicate. Our ThreadedWebServer spawns a new thread to handle a connection from a client, so many clients may be connected to this server simultaneously. Rather than terminating after a client connects, ThreadedWebServer remains in a loop waiting for the next client.

rmiregistry

rmic

Fortune

Server

Fortune

Client

Stub

Skeleton

Fortune

Fortune

 THE BIG PICTURE

RMI lets us distribute our program across the network. We can bind an object in the rmiregistry server, so an object on another machine can look it up, and invoke its methods. The rmic compiler creates the skeleton and stub needed to call remote methods. Remote objects use interfaces to declare their remote methods.

� Using the JDK we enter the URL on the command line,

 java TryURL http://java.sun.com/.

� On Windows systems, we could include the drive letter, as for example

 file:///c:/java/TryURL.java/

� See http://www.w3.org/ for the complete HTTP specification.

� The type names are MIME (Multipurpose Internet Mail Extensions) types.

� When running a server on the same machine as the client in Windows, the machine does not need to be connected to the Internet, but the TCP/IP protocol should be installed. (Click on the Start button, Settings, Control Panel, Network icons, then Protocol tab to check the installed protocols.)

� Using the JDK, in Windows systems, use the start command to run the server in the

 background: start java ReverseServer. On Unix systems, run in the background

 using the command java ReverseServer &. If using an integrated development

 environment, use separate projects for the server and client, running the server first.

� The IP address is actually associated with a network interface card.

� Use the command start java HeaderServer 11111, where 11111 is the port number, to start header server running in the background in Windows. This server will terminate after one client connects.

� If this command generates an error, it may be necessary to set the classpath.

� When using the Java(2 Platform, due to changes in the security model, we need to specify a security policy on the command line, so the command would be

 start java -Djava.security.policy=d:\policy FortuneServer localhost

where d:\policy is the file containing the security policy. For testing RMI, the policy file

 grant { permission java.security.AllPermission; }; will work.

� When using the Java(2 Platform, we need to make the same change as in footnote 10.

PAGE
38

