Internet Applications

with the Java(2 Platform

(2001 Art Gittleman
Chapter 1

Preliminaries

This chapter has been typed in a draft mode and not formatted for publication.

Objectives:

This chapter presents material that may not have been covered in a prior Java course that will be useful in succeeding chapters.

· Handle standard exceptions: Exception handling is essential for input and output, which in turn is essential for networking.

· Read and write binary, text, and object data: Input and output forms the basis for network communication.

· Understand the Java event model: We review event-driven programming, which is useful in implementing client interfaces.

· Create threads and synchronize access to data: Concurrent programming using threads supports large enterprise applications.

· Use the gridbag layout to create a user interface: The gridbag layout provides more flexibility for user-interface design.

· Utilize vectors and enumerations: Vectors are useful in concurrent applications and will be contrasted with the new Collection classes.

1.1. Exception Handling

 Java provides an exception handling facility to allow the programmer to insert code to handle unexpected errors and allow the program to recover and continue executing, or to terminate gracefully, whichever is appropriate. An exception signals that a condition such as an error has occurred. We throw an exception as a signal, and catch it to handle it and take appropriate action.

Exception Classes

 In Java, exceptions are instances of a class derived from Throwable. Figure 1.1 shows the exception classes that we discuss in this chapter (the ... indicates a class that we do not use and has been omitted from the display.)

 ...

 Figure 1.1 Classes of Exceptions

 In this section we consider array index out of bounds and number format exceptions, leaving the IO exceptions to the next section. Java allows us to handle array index out of bounds and number format exceptions, but does not require us to handle them. Java requires that we handle IO errors, usually beyond our control, which would otherwise cause our program to abort.

The Array Index Out of Bounds Exception

 The array

 int[] a = {4,5,6};

has three elements which we can access using the indices 0, 1, and 2. If we try to use an index other than these three, as for example in the expression i=a[3], Java will throw an array index out of bounds exception. Each exception is an instance of a class. We can write our own classes to define new types of exceptions, but in this text we use the Java exception classes.

 Throwing an exception interrupts the program, transferring control to a user-defined catch clause, if any, which specifies how to handle the exception, or aborting if no catch clause is found

 Java does not require the programmer to handle the array index out of bounds exception, but it allows the programmer to do so. To handle an exception, we put the code that could cause that exception to occur in a try block followed by a catch clause to handle the exception, as in:

 try {

 // some code that might generate an out of bounds exception

 } catch(ArrayIndexOutOfBoundsException e) {

 // some code to execute when that exception occurs

 }

ArrayIndexOutOfBoundsException is the type of exception we are trying to catch. Java passes an instance, e, of this exception, which contains information about the array index out of bounds exception that occurred, to the catch clause.

 If an exception occurs in the try block, Java looks for a catch clause that handles that exception. If it finds one, it jumps immediately to execute that code, never returning to any code in the try block after that which caused the exception. If Java does not find such a catch clause, it will abort the program with an error message.

 In Example 1.1 we put our use of the array index into a try block, and when Java throws the array index out of bounds exception, we catch it and display an error message. Our program does not abort, and execution continues after the catch clause. With a little more effort, we could use a loop to give the user another chance to input a correct value after making an error. We leave this enhancement to the exercises.

 Example 1.1 TryException.java

 /* Puts the array code in a try block and

 * catches the array index out of bounds exception

 * if it occurs.

 */

 public class TryException{

 public static void main(String [] args) {

 int value;

 try {

 int [] anArray = {5,6,7};

 int index = Integer.parseInt(args[0]); // Note 1

 value = anArray[index]; // Note 2

 System.out.println("Execution does not get here if index is bad");

 }catch (ArrayIndexOutOfBoundsException e) { // Note 3

 System.out.println("Stick with 0, 1, or 2");

 }

 System.out.println("This is the end of the program"); // Note 4

 }

 }

Output (from java TryException 2)

Execution does not get here if index is bad

This is the end of the program

Output (from java TryException 89)

Stick with 0, 1, or 2

This is the end of the program

--

Note 1: The parseInt method converts the string that we pass as a program

 argument to an integer.

Note 2: Java will throw an array index out of bounds exception if index < 0 or

 if index > 2.

Note 3: After throwing an array index out of bounds exception, Java jumps here

 to the handler, skipping any code remaining in the try block.

Note 4: After executing the code in the catch clause, Java continues executing

 here. Handling the array index out of bounds exception allows the

 program to continue executing whether or not Java throws this

 exception.

 If there is no catch clause for an exception immediately following the try block, then, when that exception occurs, Java looks for the catch clause in the caller of the method in which the try block is contained.

 In Example 1.2, we use an out of bounds array index in the getSquare method, but do not include a catch clause in that method. When Java encounters the invalid index during execution it throws an array index out of bounds exception and looks for a catch clause which handles that exception. Not finding one in getSquare, Java looks in the caller of the getSquare method, the main method, which does have a clause that catches the exception. Java jumps to the catch clause in the main method in which we call e.printStackTrace(), where e is the array index out of bounds exception which Java passes to the catch clause.

 An important use of stacks is in implementing method calls in programming languages. We stack up local variables and arguments passed to the method. When starting to execute the main method, Java pushes the data that main needs onto the stack. When the main method calls the getSquare method, Java pushes the data that getSquare needs onto the top of the previous data on the stack. In Example 1.2, we have only two methods, but in larger examples we could have half a dozen or more methods using the stack, many of them from the Java library packages.

 The data for the method that Java is currently executing is on the top of the stack. When Java throws an array index out of bounds exception it passes an object of that exception type to the catch clause for that exception. This object contains a list of all the methods whose data is on the stack when the exception occurred. To see this list, we call the printStackTrace() method, which outputs

 java.lang.ArrayIndexOutOfBoundsException: 98

 at TryExceptionTrace.getSquare(TryExceptionTrace.java:10)

 at TryExceptionTrace.main(TryExceptionTrace.java:15)

The first line names the exception that occurred and displays the invalid value, 98. The next two lines are the stack entries. TryExceptionTrace is the class name for Example 1.2. The data for getSquare is on the top of the stack and the exception occurred at line 10 of the program. By printing the stack trace we can find the line at which the exception occurred. The second stack entry says that the bottom of the stack contains the data for the main method, and that the main method called the getSquare method at line 15 of the program.

 By reading the stack trace, we can follow the sequence of method calls that culminated in the throwing of the exception. After executing the code in the catch clause, Java continues execution with the code following the catch clause. Had we omitted the catch clause, Java would have aborted the program with an error message. Handling the exception allows us to recover from the error and continue executing the remainder of the program.

 Example 1.2 TryExceptionTrace.java

 /* Shows the use of the printStackTrace method

 * to obtain the sequence of method calls that

 * culminated in the throwing of the array index

 * out of bounds exception.

 */

 public class TryExceptionTrace{

 public static int getSquare(int index) {

 int [] anArray = {5,6,7};

 return anArray[index]*anArray[index]; // Note 1

 }

 public static void main(String [] args) {

 int value;

 try {

 value = getSquare(Integer.parseInt(args[0])); // Note 2

 System.out.println("Execution does not get here if the index is bad");

 }catch (ArrayIndexOutOfBoundsException e) {

 e.printStackTrace();

 }

 System.out.println("This is the end of the program");

 }

 }

Output (from java TryExceptionTrace 98)

java.lang.ArrayIndexOutOfBoundsException: 98

 at TryExceptionTrace.getSquare(TryExceptionTrace.java:10)

 at TryExceptionTrace.main(TryExceptionTrace.java:15)

This is the end of the program

Note 1: This is line 10 which causes the exception.

Note 2: This is line 15, where the main method calls the getSquare method

 that produces the exception.

The Number Format Exception

 Java allows us to construct an Integer object from a string, as in:

 Integer i = new Integer("375");
If we provide a string that is not a valid integer constant, as in:

 Integer j = new Integer("3.75");
Java will throw a number format exception. If we do not handle the exception in a catch clause, Java will abort the program with an error message.

 Example 1.3 shows both valid and invalid attempts to construct Integer and Double objects from strings. As in Example 1.2, we call the printStackTrace method to determine the exception and where it occurred. In this example the stack of method calls shows three entries, the bottom from our main method and the top two from the Integer class of the Java library. Java uses <init> to denote a constructor.

 Example 1.3 StringToNumber.java

 /* Illustrates wrapper classes used to convert

 * a string to an int or a double, and the number format

 * exception when the string has an invalid format.

 */

 public class StringToNumber {

 public static void main(String [] args) {

 try {

 int i = new Integer("435").intValue(); // Note 1

 System.out.println("i = " + i);

 int j = new Integer("45.2").intValue(); // Note 2

 System.out.println("j = " + j);

 }catch(NumberFormatException e) {

 e.printStackTrace(); // Note 3

 }

 double d = new Double("3.14").doubleValue(); // Note 4

 System.out.println("d = " + d);

 }

 }

--

Output

i = 435

java.lang.NumberFormatException: 45.2

 at java.lang.Integer.parseInt(Integer.java:238)

 at java.lang.Integer.<init>(Integer.java:342)

 at StringToNumber.main(StringToNumber.java:11)

d = 3.14

--

Note 1: We construct an Integer object from the string “435” which represents

 an integer literal. The intValue method returns a value, 435, of type

 int.

Note 2: Passing the string “45.2” to the Integer constructor causes Java

 to throw a number format exception, as 45.2 is not a valid integer

 literal.

Note 3: The stack trace shows two methods from the Integer class. The

 bottom line of the trace shows that line 11 of our program caused Java

 to throw the exception.

Note 4: After handling the exception, we wrap a valid double value as a

 Double.

Test Your Understanding

1. (Try It Yourself) Run Examples 1.1 and 1.2, entering a negative value for the

 index to see that Java throws an exception in this case.

2. (Try It Yourself) Revise Example 1.3 to remove the try statement and the

 catch clause for the NumberFormatException. Rerun the revised code

 and note what happens and what code gets executed.

3. Which of the following will cause Java to throw a

 NumberFormatException?

 a. Integer i = new Integer("-7200");

 b. Double d = new Double("PI");
 c. String s = new String("PI");

 d. String s = new String("64000");
 e. Double d = new Double(".123");
1.2. Input and Output

 Java distinguishes between binary and character I/O. Binary data consists of 8-bit bytes. Java uses input and output streams to read and write binary data. A stream is an ordered sequence of bytes. We think of input flowing in and output flowing out, so the term stream evokes the right image.

 Internally, Java character data consists of 16-bit Unicode characters. Java uses readers and writers to read and write character data. Readers convert from various character encodings to Unicode and writers reverse that process.

 Java reads and writes values of the various primitive types, and provides object serialization to read and write objects properly. When reading and writing objects, we must be very careful in dealing with shared objects. Fortunately the Java object serialization facilities handle these details automatically, allowing us to easily store and retrieve objects.

The File Class

 The File class has several methods that return properties of the file. Example 1.4 uses some of these methods, whose names nicely signify their functions.

Example 1.4 FileProperties.java

/* Creates a file and returns some of its properties.

 */

import java.io.*;

public class FileProperties {

 public static void main(String [] args) {

 File f = new File(args[0]);

 System.out.println("Name: "+f.getName());

 System.out.println("Path: "+f.getPath());

 System.out.println("Can write: "+f.canWrite());

 System.out.println("Is directory: "+f.isDirectory());

 System.out.println("Length: "+f.length());

 System.out.println("Parent directory: "+f.getParent());

 }

}

Output (from java FileProperties

 \book3\prelim\FileProperties.java)

Name: FileProperties.java

Path: \book3\prelim\FileProperties.java

Can write: true

Is directory: false

Length: 635

Parent directory: \book3\prelim

--

Reading and Writing Bytes

 The abstract InputStream class contains three read methods. The method

 public native int read() throws IOException;
where the modifier native indicates that Java implements this method in a platform-dependent manner, reads a single byte. The int return type guarantees that the return value will be positive. The byte type represents values from -128 to 127. Character codes use unsigned values better represented using the int type where a single byte will have a value between 0 and 255.

 The method

 public int read(byte[] b) throws IOException;
reads into a byte array. It may not fill the array if not enough input bytes are available. The three-argument version of read,

 public int read(byte[] b, int off, int len)

 throws IOException;
reads into an array of bytes, with the second argument specifying the starting offset in the file, and the third giving the number of bytes to read. The last two read methods return the number of bytes read, or -1 if at the end of the file.

 Because files represent external resources there is always a possibility of hardware failure or corruption or deletion by other users, so Java requires that we catch the IOException that would be thrown when such an error occurs. Omitting the try-catch code in Example 1.5 will cause a compiler error.

 In Example 1.5, we read and display bytes from standard input by default, but can read from a file by entering its name on the command line. Java declares the standard input stream, System.in, usually the keyboard, as an InputStream. The FileInputStream class lets us read from a file.

Example 1.5 ReadBytes.java

/* Reads and displays bytes until end-of-file. Reads from the keyboard

 * or from a file name entered as a program argument.

 */

import java.io.*;

public class ReadBytes {

 public static void main(String[] args) {

 InputStream input;

 try {

 if (args.length == 1)

 input = new FileInputStream(args[0]);

 else

 input = System.in;

 int i;

 while((i = input.read()) != -1)

 System.out.print(i + " ");

 input.close();

 }catch(IOException e) {

 e.printStackTrace();

 }

 }

}

Output (from java ReadBytes)

a big car

97 32 98 105 103 32 99 97 114 13 10 ^Z // Note 1

Output (from java ReadBytes test.data where test.data contains

 á big car)

225 32 98 105 103 32 99 97 114 // Note 2

Note 1: The program outputs the ASCII values for the characters. The last two

 values, 13 and 10, represent carriage return and newline generated in

 Windows by pressing the Enter key. Java buffers the standard input

 so that the user can backspace and make changes. Hitting the Enter

 key signals that the user is satisfied with the input. To signal the end of

 the input, the user enters Control Z on a separate line of input.

Note 2: We added an accented character, á, to show a value, 225, that would

 be negative if the return type was byte.

 We can make reading from a file much more efficient by buffering the input. Buffering involves reading a block, say 2048 bytes, from the disk to an internal memory buffer. The next reads will take bytes from the buffer rather than having to make inefficient disk accesses. When the buffer is empty, the next read will grab another block to fill it. We could have buffered the file input in Example 1.5 using the constructor

 new BufferedInputStream(new FileInputStream(args[0]))
 Example 1.6 uses a read statement to read a file, and copies it to a new location with the write method of FileOutputStream. We can copy either text files or binary files this way. The FileOutputStream class has three versions of the write method: write one byte, write an array of bytes, or write a given length of an array of bytes from a starting offset in the file.

 We close the file in a finally clause, which is an extra exception handling option to ensure proper clean up. Java executes the finally clause whether or not an exception was thrown.

Example 1.6 FileCopy.java

/* Copies a file using read and write statements.

 * Pass source and target file names as program arguments.

 */

import java.io.*;

public class FileCopy {

 public static void main(String [] args) {

 FileInputStream input = null;

 FileOutputStream output = null;

 try {

 File f = new File(args[0]);

 input = new FileInputStream(f); // Note 1

 int length = (int)f.length(); // Note 2

 byte [] data = new byte[length]; // Note 3

 input.read(data); // Note 4

 output = new FileOutputStream(args[1]); // Note 5

 output.write(data);

 }catch (IOException e) {

 e.printStackTrace();

 }finally {

 try {

 input.close(); // Note 6

 output.close();

 }catch(IOException ex) {

 ex.printStackTrace();

 }

 }

 }

}

Output

 The command java FileCopy FileCopy.java NewFileCopy.java
 copies FileCopy.java to NewFileCopy.java

Note 1: We create a File object, f, and pass it rather than the file name,

 because we need a File object to get the file's length. We leave the

 buffering of the input as an exercise.

Note 2: The length method returns a value of type long, which we must cast

 to an int because the new operator creates an array with size given by

 a value of type int.

Note 3: We create an array large enough to hold the entire file.

Note 4: We created the data array to have the size of the file, so we use the

 read method that fills the entire array. This is equivalent to

 read(data,0,length).

Note 5: We do not need a File object for the output file, so we just pass the

 file name directly to the constructor.

Note 6: We close each file to release any operating system resources used.

 Closing them in the finally clause means that Java will close the files

 whether or not an exception occurs. The close statements may throw

 an exception and need to be in a try-catch block.

 For greater efficiency, we could have buffered the output using the constructor.

 new BufferedOutputStream(new FileOutputStream(target))

We leave the buffering of the output as an exercise.

Reading and Writing Primitive Types

 The DataOutputStream class has methods for writing each of the primitive types in binary form, including writeBoolean, writeChar, writeDouble, writeFloat, writeInt, and writeLong, while DataInputStream has methods for reading these types including readBoolean, readChar, readDouble, readFloat, readInt, and readLong.

 To create a DataOutputStream, we first create a FileOutputStream
 new FileOutputStream(args[0])
where args[0] is the name of the file to which we write. We pass this FileOutputStream to a BufferedOutputStream
 new BufferedOutputStream(
 new FileOutputStream(args[0]))
so that each write statement does not force an expensive write to external storage, but rather writes to a buffer which, when filled, is written to the disk. Finally, we construct the DataOutputStream from the BufferedOutputStream
 new DataOutputStream(new BufferedOutputStream(

 new FileOutputStream(args[0])))
 In Example 1.7, we use the writeDouble method to write the integers 0 through 9 and the decimals from 0.0 through 9.0 to a file. The binary format, used internally, is not suitable for human reading. We use the readDouble method to read from the newly created file, displaying the values on the screen using the System.out.print method to verify the file was written correctly.

Example 1.7 Binary.java

/* Illustrates the DataOutputStream and DataInputStream

 * classes for primitive type IO using int and double.

 */

import java.io.*;

public class Binary {

 public static void main(String [] args) {

 try {

 DataOutputStream output = new DataOutputStream

 (new BufferedOutputStream

 (new FileOutputStream(args[0])));

 for (int i = 0; i < 10; i++) output.writeInt(i);

 for (double d=0.0; d < 10.0; d++) output.writeDouble(d); // Note 1

 output.close();

 DataInputStream input = new DataInputStream

 (new BufferedInputStream

 (new FileInputStream(args[0])));

 for (int i=0; i<10; i++)

 System.out.print(input.readInt() + " ");

 for (int i=0; i<10; i++)

 System.out.print(input.readDouble() + " ");

 input.close();

 }catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Output (from java Binary primitive.data)

0 1 2 3 4 5 6 7 8 9 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Note 1: Although for loops usually use integer indices, using a double index

 suits this example well. We illustrate the DataOutputStream and

 DataInputStream classes using types double and int, leaving the use

 of other primitive types for the exercises.

 Example 1.7 writes the int and double values in binary form, using four bytes for each int and eight for each double. Running Example 1.5 to inspect this representation, using the command

 java ReadBytes primitive.data

produces

0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5

0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9

0 0 0 0 0 0 0 0 63 240 0 0 0 0 0 0 64 0 0 0 0 0 0 0

64 8 0 0 0 0 0 0 64 16 0 0 0 0 0 0 64 20 0 0 0 0 0 0

64 24 0 0 0 0 0 0 64 28 0 0 0 0 0 0 64 32 0 0 0 0 0 0

64 34 0 0 0 0 0 0

The first ten entries show the four-byte integer values, while the second ten show eight-byte doubles. The double format is not obvious, and not meant for human reading. It separates each number into a fraction part and an exponent, and includes a sign bit.

Reading and Writing Text

 Example 1.5 works well for ASCII characters, but is not satisfactory for the 16-bit Unicode characters needed to handle most of the world's languages. Java provides Reader and Writer classes for 16-bit character input. The three Reader read methods are int read(), int read(char[] chars), and int read(char[] chars, int offset, int length). The Writer class contains analogous write methods.

 We often use the subclasses InputStreamReader, BufferedReader, FileReader for input and PrintWriter, BufferedWriter, FileWriter, and OutputStreamWriter for output. The BufferedReader class has a readLine method that returns the next line of input as a String, returning null at end-of-file. PrintWriter, which is buffered, includes print and println methods for strings and for each primitive type.

 The PrintWriter constructor

 public PrintWriter(OutputStream out, boolean autoFlush)

includes a second argument which, if true, causes Java to flush the output when executing a println statement. This automatic flushing helps to see each line of output immediately when writing to the screen. Otherwise, we would have to wait until the buffer fills before seeing the output.

 Example 1.8 writes a string and a decimal to a file. We use the readLine method to read each string from the file. We could easily display each line as a string. However, in order to compute with the decimal, we need to convert the decimal string to a binary representation for a double value. We try to convert each string we read to a double. A string, such as 123.4567, which has the proper format will convert properly, but a character string, such as "Bottles of glue," will cause Java to throw a number format exception. In the catch clause we display the original string instead.

Example 1.8 TextIO.java

/* Writes a string and a double to a file. Reads each, from text.data

 * containing the lines

 * Bottles of glue

 * 123.4567

 * and tries to convert it to a double. Displays the original

 * string if conversion fails.

 */

import java.io.*;

public class TextIO {

 public static void main(String [] args) {

 String line;

 try {

 PrintWriter writer =

 new PrintWriter(new FileWriter(args[0]));

 writer.println("Bottles of glue");

 double d = 123.4567;

 writer.println(d);

 writer.close();

 BufferedReader reader =

 new BufferedReader(new FileReader(args[0]));

 while((line=reader.readLine()) != null)

 try {

 double convert = new Double(line).doubleValue(); // Note 1

 System.out.println(convert*convert); // Note 2

 }catch(NumberFormatException e) {

 System.out.println(line); // Note 3

 }

 reader.close();

 }catch(IOException e) {

 e.printStackTrace();

 }

 }

}

--

Output (from java TextIO text.data)

Bottles of glue

15241.55677489
--

Note 1: To convert a string to a double, we construct a Double object from the

 string and use the doubleValue method to retrieve the value of type

 double.

Note 2: We convert the input string to a double so that we can compute its

 square, for example.

Note 3: If the conversion fails, because the string did not have the proper format,

 we catch the exception and display the unconverted input string. The

 conversion code is in a while loop that reads the whole file, no mater

 what the outcome of each attempted conversion.

 The text.data file used in Example 1.8 contains one value on each line. We can use a StreamTokenizer object to parse a line containing multiple fields.

Random Access Files

 We access FileInputStream, FileOutputStream, DataInputStream, and DataOutputStream objects sequentially. We read one item after another, going forward in the file, but cannot go back to data before the current file position. Similarly, when writing data, we cannot return to an earlier position in the file. By contrast, the random access file, which we can use for both reading and writing, allows us to read or write at any position in the file.

 A random access file implements the methods to write primitive types that a DataOutputStream does, and provides the same methods to read primitive types as found in a DataInputStream. The seek method locates a position in the file. Calling seek(20) sets the position at the twentieth byte in the file, at which position we can either read or write. After completing a read or write operation, we can use seek(4) to move the position to the location further back in the file at byte 4.

 When creating a random access file, we use the second argument in its constructor to specify the access mode, "r" for read-only or "rw" for read-write access. For example,

 new RandomAccessFile("random.dat", "rw");
creates a random access file with read and write capabilities on the file random.dat. The system will create random.dat if it does not exist.

Example 1.9 RandomAccess.java

/* Seek forward and back to write and read

 * in a random access file.

 */

import java.io.*;

public class RandomAccess {

 public static void main(String [] args) {

 try {

 RandomAccessFile raf = new RandomAccessFile("random.dat", "rw");

 for (int i = 0; i < 10; i++)

 raf.writeInt(i);

 raf.seek(20); // Note 1

 int number = raf.readInt();

 System.out.println("The number starting at byte 20 is " + number);

 raf.seek(4); // Note 2

 number = raf.readInt();

 System.out.println("The number starting at byte 4 is " + number);

 raf.close();

 }catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Output

The number starting at byte 20 is 5

The number starting at byte 4 is 1

Note 1: Each integer is 32 bits or 4 bytes, so the position at byte 20 will bypass

 the first five integers, 0, 1, 2, 3, and 4, in the file. (The bytes are

 numbered 0, 1, .., 19.) Reading at byte 20 should result in reading the

 integer 5.

Note 2: Going back to byte 4 will position the file after the first integer, 0, so

 reading an integer at this position should return the value 1.

Reading and Writing Objects

 Java provides object persistence, the ability to write objects to and read them from external files. Each class whose objects we wish to store must implement the Serializable interface, which has no methods. Implementing Serializable shows we intend to write objects of that class to disk. For security reasons, Java did not make the capability for persistence the default, but requires programmers to explicitly permit persistence by implementing the Serializable interface.

 Transparently to the programmer, Java writes an object's type information to the file. Reading the object will automatically recover its type.

 Sharing objects could cause problems.

· References are memory addresses that would be meaningless when we reload the objects.

· Saving a copy of a shared object each time it is referenced may result in the maintenance of several copies of the formerly shared object.

 Java solves these problems by automatically numbering objects and using these numbers to refer to shared objects which need to be saved only once. This process of coding objects so they can be written to external storage and recovered properly is called object serialization.

 Example 1.10 illustrates the saving and restoring of objects. An Account, general, and a SavingsAccount, savings, share an account holder, fred, of type Person.

 Figure 1.2 Two accounts share an account holder

To show that Java handles types correctly, we declare both accounts as Account and create an ObjectOutputStream, calling writeObject to serialize these objects to a file. The classes, Account, SavingsAccount, and Person all implement Serializable.

We cast the objects to their compile-time type, Account. ObjectInputStream provides the readObject method to read these objects, allowing us to verify that Java restored the types correctly. The aGeneral object should be just a plain Account, not an instance of the subclass SavingsAccount, while the aSavings object should be a SavingsAccount. We also check that both the aGeneral and the aSavings accounts have the identical account holder, fred, which shows that Java restored the shared object correctly. Using object serialization, Java saves all the type information and does the object numbering automatically.

Example 1.10 ObjectIO.java

/* Illustrates object persistence.

 */

import java.io.*;

public class ObjectIO {

 public static void main(String [] args) {

 try {

 Person fred = new Person("Fred");

 Account general = new Account(fred, 110.0);

 Account savings = new SavingsAccount(fred, 500.0, 6.0); // Note 1

 ObjectOutputStream oos = new ObjectOutputStream(

 new FileOutputStream("Objects.dat"));

 oos.writeObject(general); // Note 2

 oos.writeObject(savings);

 oos.close();

 ObjectInputStream ois = new ObjectInputStream(

 new FileInputStream("Objects.dat"));

 Account aGeneral = (Account)ois.readObject();

 Account aSavings = (Account)ois.readObject(); // Note 3

 if (aGeneral instanceof SavingsAccount)

 System.out.println("aGeneral account is a SavingsAccount");

 else if (aGeneral instanceof Account)

 System.out.println("aGeneral account is an Account"); // Note 4

 if (aSavings instanceof SavingsAccount)

 System.out.println("aSavings account is a SavingsAccount");

 else if (aSavings instanceof Account)

 System.out.println("aSavings account is an Account"); // Note 5

 if (aGeneral.holder == aSavings.holder) // Note 6

 System.out.println("The account holder, fred, is shared");

 else

 System.out.println("The account holder, fred, has been duplicated");

 ois.close();

 }catch (IOException ioe) {

 ioe.printStackTrace();

 }catch (ClassNotFoundException cnfe) { // Note 7

 cnfe.printStackTrace();

 }

 }

}

class Person implements Serializable { // Note 8

 String name;

 Person (String name) { this.name = name; }

}

class Account implements Serializable {

 Person holder;

 double balance;

 Account(Person p, double amount) {

 holder = p;

 balance = amount;

 }

}

class SavingsAccount extends Account implements Serializable {

 double rate;

 SavingsAccount(Person p, double amount, double r) {

 super(p,amount);

 rate = r;

 }

}

Output

aGeneral account is an Account

aSavings account is a SavingsAccount

The account holder, fred, is shared

Note 1: We declare savings to have type Account, but assign it an instance

 of the SavingsAccount subclass to check that writeObject saves

 the object's actual type correctly.

Note 2: Besides the writeObject method, ObjectOutputStream provides

 the primitive type output methods such as writeDouble and

 writeInt. The object written, general, is of type Account which

 implements the Serializable interface.

Note 3: The second object written had type SavingsAccount. Reading it

 should create an object of type SavingsAccount. The readObject

 method returns type Object, so we cast the return value to type

 Account and assign it to an Account reference, but will check later

 that its original SavingsAccount type has been preserved.

Note 4: The object aGeneral was read from the first object written, general,

 so it should be an Account object.

Note 5: The object aSavings was read from the second object written,

 savings, so it should be a SavingsAccount.

Note 6: if (aGeneral.holder == aSavings.holder)
 We check that these references are equal, meaning they point to the

 identical object. The structure of the objects has been preserved due to

 the object serialization facility. Objects shared before writing are still

 shared after being read again. In our example both accounts have the

 identical account holder, fred.

Note 7: }catch (ClassNotFoundException cnfe) {
 The readObject method may throw a ClassNotFoundException.

Note 8: class Person implements Serializable {
 The Person, Account, and SavingsAccount classes are simplified

 versions of these classes which we use to illustrate object serialization.

 Each must implement the Serializable interface.

Test Your Understanding

4. (Try It Yourself) Modify Example 1.6 to add buffering using the

 BufferedInputStream and BufferedOutputStream classes.

5. (Try It Yourself) Modify Example 1.10 so that class Person does not

 implement the Serializable interface. Describe the result.

6. (Try It Yourself) Modify Example 1.7 to use the readLong and writeLong

 methods instead of readDouble and writeDouble.

7. (Try It Yourself) Modify Example 9 to write the same values using type

 double instead of int. Seek the position of 5.0, and then the position of 1.0.

1.3. Event-Driven Programming

 Interactive programs respond to user-generated events. When the user enters text in a field or presses a button the program responds. Much of the code of such a program handles these events and responds appropriately. Possible responses include getting information, placing an order, or updating a database, for example. We assume readers have had some exposure to event-driven programming in Java. This section serves as a brief review.

The Java Event Model

 Each event has a source and a target action. For example, when the user presses a button, we may wish to display a message. The button is the source of the event, and displaying the message is the target action. Java uses an adapter class to connect the target action with the event source. At runtime

· the user presses a button

· the button generates an event object

· the button calls a method of the adapter class, passing it the event

 object. We call this method the event handler method.

· the event handler method of the adapter class executes the target

 action.

 In order for these event-handling steps to work, Java provides

· an event class, for each event type, to describe the properties of

 the event that an event handler needs to implement the target

 action.

· a listener interface, for each event type, to specify the methods that

 the adapter class must implement to handle events of that type.

· an addEventNameListener method in the source class, so the

 source knows which adapters are listening for source events.

 For the example of a button press displaying a message, Java provides

· the ActionEvent class to describe events including button presses and text field entries. It contains the methods

 getSource returns the button object pressed

 getActionCommand by default, returns the button's label

· the ActionListener interface which the adapter implements. It

 contains the method

 public void actionPerformed(ActionEvent e)

 that performs the target action.

· the addActionListener(ActionListener listener)

 method of the Button class which informs the button about an

 adapter which is listening for action events generated by

 presses of that button.

 Java event handling uses a callback approach, in which the adapter registers as an event listener with the event source. When the event occurs, the source calls the appropriate method of the listener interface implemented by the adapter. In our example,

· the adapter class implements the ActionListener interface,

 providing a definition of the actionPerformed method to

 display the message.

· the startup code calls the button's addActionListener method,

 to inform the button that the adapter is listening.

· when the user presses the button, the button calls the

 adapter's actionPerformed method to display the

 message.

Four Types of Adapters

 The adapter class can be any of the following:

· the same as the user interface class

 (Takes the least thought, but combines the user interface code

 with the program logic, which is often not a good design.)

· a separate class

 (Separates interface code from program logic. Adds another

 class name to the global space.)

· an inner class

 (Class name is local, but may only be needed once.)

· an anonymous inner class

 (Defined where needed)

 We illustrate each of these four types of adapters using an example in which pressing a Print button displays the button's label, while pressing the Clear button erases the display. The UIAdapter applet serves also as the adapter. To run it, we use the applet viewer or a browser with the HTML file

<applet code = UIAdapter.class width=300 height=200>

</applet>
Figure 1.3 shows the resulting user interface after the user has pressed the Print button.

[image: image1.jpg]
 Figure 1.3 The user interface for the four examples

Example 1.11 UIAdapter.java

/* A print button prints a message. A clear button erases

 * the message. We use a Label component to hold the

 * message. The applet is also the adapter.

 */

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class UIAdapter extends Applet

 implements ActionListener { // Note 1

 private Button print = new Button("Print");

 private Button clear = new Button("Clear");

 private Label message = new Label("Message goes here");

 public void init() {

 add(message);

 add(print);

 add(clear);

 print.addActionListener(this); // Note 2

 clear.addActionListener(this);

 }

 public void actionPerformed(ActionEvent event) { // Note 3

 Object source = event.getSource(); // Note 4

 if (source == print)

 message.setText(event.getActionCommand()); // Note 5

 else if (source == clear)

 message.setText("");

 }

}

--

Note 1: The applet is also the adapter class. It implements the ActionListener

 interface.

Note 2: We pass this to each button, representing the adapter object whose

 actionPerformed method the button will call when pressed by the

 user.

Note 3: The actionPerformed method implements the desired action, which

 is to display a message when the Print button is pressed, and to erase

 the message when the user presses the Clear button.

Note 4: The getSource method returns the button that the user pressed. We

 choose the action depending on which button was pressed.

Note 5: The getActionCommand method returns the command name set using

 the setActionCommand method, or, by default, the button's label.

 In Example 1.12, the adapter class is separate from the user interface class.

The class Separate defines the user interface, while the class SeparateAdapter implements ActionListener to handle action events.

Example 1.12 Separate.java

/* Uses a separate adapter class.

 */

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class Separate extends Applet {

 private Button print = new Button("Print");

 private Button clear = new Button("Clear");

 private Label message = new Label("Message goes here");

 private SeparateAdapter adapter =

 new SeparateAdapter(message); // Note 1

 public void init() {

 add(message);

 add(print);

 add(clear);

 print.addActionListener(adapter); // Note 2

 clear.addActionListener(adapter);

 }

}

class SeparateAdapter implements ActionListener { // Note 3

 private Label message;

 public SeparateAdapter(Label l) { // Note 4

 message = l;

 }

 public void actionPerformed(ActionEvent event) {

 String command = event.getActionCommand();

 if (command.equals("Print")) // Note 5

 message.setText(command);

 else

 message.setText("");

 }

}

--

Note 1: We create an adapter object, passing it the label in which to display the

 message. Because the adapter class is separate, it does not have

 access to the user interface fields.

Note 2: We pass the adapter object to each button.

Note 3: The adapter class for a button must implement the ActionListener
 interface to handle action events generated by the button. This adapter

 handles action events generated by both the Print and the Clear
 buttons. We could have defined an adapter class for each button.

Note 4: The constructor saves the applet's label to use to display the message.

Note 5: Since the adapter class does not have access to the button fields in the

 applet, using the getSource method to get the source object for the

 event is not helpful. Instead we check the action command to see

 which button was pressed. We could have avoided this problem by

 using a separate adapter class for each button. We leave this

 modification as an exercise.

 When compiling Separate.java, the compiler also produces a class file, SeparateAdapter.class, for the adapter class. The name, SeparateAdapter, would conflict with any use of that name. This is not a problem for small examples which use few names, but could present problems in larger applications.

 Example 1.13 uses a named inner adapter class. We define InnerAdapter inside the class Outer. We call such classes inner classes.

Example 1.13 Outer.java

/* Uses an inner adapter class.

 */

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class Outer extends Applet {

 private Button print = new Button("Print");

 private Button clear = new Button("Clear");

 private Label message = new Label("Message goes here");

 private InnerAdapter adapter = new InnerAdapter();

 public void init() {

 add(message);

 add(print);

 add(clear);

 print.addActionListener(adapter);

 clear.addActionListener(adapter);

 }

 public class InnerAdapter implements ActionListener { // Note 1

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 if (source == print)

 message.setText(event.getActionCommand());

 else if (source == clear)

 message.setText("");

 }

 }

}

--

Note 1: We define the InnerAdapter class inside the applet. It has access to

 the applet's fields so we can use the same code we used when the

 applet was the adapter class. We could have defined a separate inner

 adapter class for each button.

 When compiling Outer.java, the compiler also creates a file, Outer$InnerAdapter.class, for the adapter class. Because the adapter is an inner class its name, InnerAdapter, is prefixed by the outer class name, Outer, followed by a dollar sign.

 We can avoid naming an inner class by defining it, without a name, where it is to be used. The only use we make of an adapter class is to pass an instance of it to the addActionListener method to let the button know whom to notify when a button press occurs. The syntax "new ActionListener()" means that we will create a new, unnamed class that implements the ActionListener interface. The definition of that class follows. In this example it consists of an actionPerformed method, but in general could have several constructors, fields, and methods. Example 1.14 uses an anonymous inner adapter class.

Example 1.14 Anonymous.java

/* Uses an anonymous inner adapter class.

 */

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class Anonymous extends Applet {

 private Button print = new Button("Print");

 private Button clear = new Button("Clear");

 private Label message = new Label("Message goes here");

 public void init() {

 add(message);

 add(print);

 add(clear);

 print.addActionListener(new ActionListener() { // Note 1

 public void actionPerformed(ActionEvent event) {

 message.setText(event.getActionCommand());

 }

 });

 clear.addActionListener(new ActionListener() { // Note 2

 public void actionPerformed(ActionEvent event) {

 message.setText("");

 }

 });

 }

}

--

Note 1: We define an anonymous class that implements the ActionListener

 interface. The class contains the definition of the actionPerformed

 method. We define the class at the place we use it. Here we pass it to

 the addActionListener method of the Print button.

Note 2: Using anonymous classes, we define a separate adapter for each

 button.

 When compiling Anonymous.java, the compiler produces two additional class files, Anonymous$1.class and Anonymous$2.class. Because they have no names, the compiler uses the numbers 1 and 2 to label them.

Window Events

 The Java event model applies to high-level events generated by user interface components and to low-level events generated by the mouse and keyboard. Appendix A lists some of these event types and their corresponding listener interfaces. We look briefly at window events so that we can close our standalone windows.

 The WindowListener interface has seven methods to handle each of the window events.

 windowActivated The window gets the focus.

 windowDeactivated The window loses the focus.

 windowOpened The window is opened.

 windowClosed The window is closed.

 windowClosing The user asks to close the window.

 windowIconified The window is minimized as an icon.

 windowDeiconified The window is restored from an icon.

An adapter class must implement all seven methods so it can handle any of the window events that might occur. We only care about the WINDOW_CLOSING event that occurs when the user closes the window.

 Fortunately, Java provides a WindowAdapter class that implements each of the seven WindowListener methods with empty bodies. For example,

public void windowActivated(WindowEvent e) {

}

We create our window adapter class by extending WindowAdapter and overriding methods for window events we wish to handle. To close a top-level window, we override the windowClosing method to dispose of any resources used and terminate the program. We use the addWindowListener method to inform a window of an adapter that wishes to be notified when a window events occurs.

 Example 1.15 simply creates a window, shown in Figure 1.4, and responds to the user's request to close it, made by clicking the x in the upper-right corner, or by selecting the Close item from the menu in the upper-left corner.

[image: image2.jpg]
 Figure 1.4 A top-level closeable window.

Example 1.15 CloseIt.java

/* Creates a top-level window and allows the

 * user to close it.

 */

import java.awt.*;

import java.awt.event.*;

public class CloseIt extends Frame { // Note 1

 public CloseIt(String title) {

 super(title); // Note 2

 addWindowListener(new WindowClose()); // Note 3

 }

 public static void main(String[] args) {

 CloseIt f = new CloseIt("Close this frame"); // Note 4

 f.setSize(300,200); // Note 5

 f.setVisible(true); // Note 6

 }

 class WindowClose extends WindowAdapter { // Note 7

 public void windowClosing(WindowEvent e) {

 System.exit(0); // Note 8

 }

 }

}

--

Note 1: The Frame class represents a top-level window with a title bar.

Note 2: We pass the title to the Frame constructor.

Note 3: The CloseIt class define the frame that we want to close. Thus we

 add the window listener to the this object, which we omit because it is

 understood.

Note 4: Creates the frame, passing it the title.

Note 5: Defines the size of the frame in pixels.

Note 6: f.setVisible(true);

 Makes the frame visible.

Note 7: class WindowClose extends WindowAdapter
 The WindowAdapter class implements the WindowListener

 interface. We need only override the methods for the window events we

 wish to handle.

Note 8: System.exit(0);

 We terminate the program when we close the frame.

Test Your Understanding

8. (Try It Yourself) What happens in Example 1.11 if we omit the call to the

 Print button's addActionListener method?

9. (Try It Yourself) In Example 1.12, the SeparateAdapter class handled

 presses from both buttons. Replace it with adapter classes, PrintAdapter

 and ClearAdapter, for each button.

1.4. Introduction to Threads

 The term thread is short for thread of control. Someone who can read a book and watch television at the same time is processing two threads. For awhile she concentrates on the book, perhaps during a commercial, but then devotes her attention to a segment of the TV program. Because the TV program does not require her undivided attention, she reads a few more lines every now and then. Each thread gets some of her attention. Perhaps she can concentrate on both threads simultaneously, like musicians who are able to follow the different parts of the harmony.

 If we have only one thread of control, then we have to wait whenever that thread gets delayed. For example, suppose our thread is downloading a picture from the Internet. It may have to wait while the system transfers all the pixels of the picture from some remote site. If our program can create a second thread to wait for the input from the remote site, it can go with other processing while the new thread is waiting. When some new data comes in from the remote site, the new thread can receive it while the first thread waits for awhile. The two threads share the processor. Figure 5 illustrates this sharing.

 Thread 1

 Thread 2

 Figure 1.5 Two threads sharing the processor

The Thread Class

 Java allows us to use threads in our program. Our program can define two or more threads, and the processor will divide its attention among the active threads. Each thread that we define executes a run method when it gets the processor. We can define a thread by extending the Thread class, overriding the run method to specify what our thread will do when it has control, as in

 public class MyThread extends Thread {

 ...

 public void run () {

 // put code here for thread to run

 // when it gets control

 }

 }

 To make a thread, we can create a new thread and call its start method, as in

 MyThread t = new MyThread();

 t.start();

This will make the thread ready, and when it gets scheduled, it will execute its run method. When another thread gets a turn, the thread, t, will stop executing the code in its run method, but will continue from where it left off, when it gets another turn.

 Optionally, we can name our thread, passing the name to the constructor which in turn passes it to the Thread superclass constructor, as in:

 public MyThread(String name) {

 super(name);

 ...

 }

 The Thread class has a static method, sleep(int milliseconds), which will cause its caller to sleep (be blocked from using the processor) for the specified number of milliseconds. While one thread sleeps, another will get a turn. We call the sleep method in a try block, as in:

 try {

 Thread.sleep(1000);

 }catch(InterruptedException e) { return;}

where we have to catch the InterruptedException which would occur if another thread interrupted this one. We will not consider interruption or other more advanced thread concepts in this text.

 In Example 16 we create two threads, Bonnie and Clyde, and let them write their names five times, sleeping after each writing. Bonnie will sleep for 1000 milliseconds after each writing, while Clyde will sleep for 700 milliseconds. Processors are so fast that a thread could do a large amount of output while it has its turn. We sleep here to slow the thread down to human scale, so we only have to read a few lines of output. The main method runs in a thread, different from the two we create, so we will actually have three threads sharing the processor, writing their names when they get their turns. We let main sleep for 1100 milliseconds after it writes.

 Example 1.16 NameThread.java

 /* Creates two threads that write their names and

 * sleep. The main thread also writes its name

 * and sleeps.

 */

 import java.io.*;

 public class NameThread extends Thread {

 int time; // time in milliseconds to sleep

 public NameThread(String n, int t) {

 super(n);

 time = t;

 }

 public void run() {

 for (int i = 1;i <= 5;i++) { // Note 1

 System.out.println(getName() + " " + i); // Note 2

 try {

 Thread.sleep(time);

 } catch (InterruptedException e) {return;}

 }

 }

 public static void main(String argv[]) { // Note 3

 NameThread bonnie = new NameThread("Bonnie",1000);

 bonnie.start();

 NameThread clyde = new NameThread("Clyde",700);

 clyde.start();

 for (int i = 1; i <= 5; i++) { // Note 4

 System.out.println(Thread.currentThread().getName() + " " + i);

 try {

 Thread.sleep(1100);

 } catch (InterruptedException e) {return;}

 }

 }

 }

Output

main 1

Bonnie 1

Clyde 1

Clyde 2

Bonnie 2

main 2

Clyde 3

Bonnie 3

Clyde 4

main 3

Clyde 5

Bonnie 4

main 4

Bonnie 5

main 5

--

Note 1: Each thread will print its name five times and sleep after each time,

 returning where it left off when it gets the processor again. We can see

 in the output that after Bonnie prints her name the first time, Clyde

 gets a turn and manages to print his name twice before Bonnie returns

 printing her name the second time. Main started first because it had the

 processor first, at the start of the program.

Note 2: The getName method of the Thread class returns the thread's name.

Note 3: We put the main method in the NameThread class for simplicity. We

 could have created another class, say TryNameThread, with a main

 method to create the threads.

Note 4: The main method also writes its name five times. Because we did not

 create this thread in our program we get it using the static

 currentThread method of the Thread class.

 Figure 1.6 helps us to understand the order in which the three threads execute in Example 1.16. Each thread spends most of its time sleeping; printing its name takes a mere fraction of the time it sleeps. By graphing the sleep times we can get a good idea of when each thread will be ready to run.

 Main 1 2 3 4 5

 Bonnie 1 2 3 4 5

 Clyde 1 2 3 4 5

 time 1 2 3 4 5

 Figure 1.6 Threads of Example16 sleeping and waking up

 Main prints its name first and then sleeps for 1.1 seconds. Bonnie starts next, printing her name and sleeping for 1 second. Clyde prints his name and sleeps for .7 second. When he wakes up the other two threads are still sleeping so he prints his name again (#2). Because Bonnie woke up before main, she prints her name (#2) first, followed by main (#2). (Picking the thread that becomes ready first is a choice made by the thread scheduler.) When main finishes both Bonnie and Clyde are awake, but Clyde woke up first and executes first (#3). We leave it to the reader to continue following the diagram in Figure 1.6 to explain the results of Example 1.16.

The Runnable Interface

 In Example 1.16 we extended the Thread class, creating a NameThread subclass which overrode the run method to provide the code for a NameThread object to execute in its thread of control. The Runnable interface provides an alternate method to use threads. In this approach we use an interface to perform a callback as we have been doing with the various listener interfaces used in event handling.

 The Runnable interface contains just the one run method.

 public interface Runnable {

 public void run();

 }

A concrete class that implements the Runnable interface must implement the run method. An object of this class must pass itself to a thread so that when that thread gets the processor it will execute the object's run method. In Example 1.17 we rewrite the last example, creating a class that implements the Runnable interface rather than extending Thread.

 Example 1.17 NameUsingThread.java

 /* Revises Example 1.16 to implement the Runnable

 * interface rather than extending Thread.

 */

 import java.io.*;

 public class NameUsingThread implements Runnable {

 private int time;

 private Thread thread; // the thread to execute the run method

 public NameUsingThread(String n, int t) {

 time = t;

 thread = new Thread(this,n); // Note 1

 thread.start();

 }

 public void run() { // Note 2

 for (int i = 1;i <= 5;i++) {

 System.out.println(thread.getName() + " " + i);

 try {

 Thread.sleep(time);

 } catch (InterruptedException e) {return;}

 }

 }

 public static void main(String argv[]) {

 NameUsingThread bonnie = new NameUsingThread("Bonnie",1000);

 NameUsingThread clyde = new NameUsingThread("Clyde",700);

 for (int i = 1;i <= 5; i++) {

 System.out.println(Thread.currentThread().getName() + " " + i);

 try {

 Thread.sleep(1100);

 } catch (InterruptedException e) {return;}

 }

 }

 }

Output is the same as that from Example 1.16.

Note 1: We create a new thread, passing it the current object of type

 NameUsingThread, which implements the run method that the thread

 will run when it gets the processor, and the name of the thread. The

 next line starts the thread, making it ready to run when it gets its turn.

Note 2: The NameUsingThread class implements the run method which the

 thread will call when it gets the processor.

 Either Example 1.15 or 1.16 works fine; there is no reason to prefer one approach. When a class already extends a class, it cannot extend the Thread class, therefore only the approach of Example 1.16, implementing the Runnable interface, would work.

Test Your Understanding

10. (Try It Yourself) In Example 16, change the sleep amounts for threads

 Bonnie, and Clyde to 300 and 200 milliseconds respectively. How does

 the output change when you rerun the example?

11. (Try It Yourself) In Example 1.17, change the sleep times for the main

 thread to 200 milliseconds. How does the output change when you rerun the

 example?

12. (Try It Yourself) What do you predict the output would be if you omit all the

 sleep statements from Example 1.16? Rerun the program with these

 changes, and see if your supposition is correct.

1.5. Concurrent Programming

 Having seen threads running independently in the last section, we take up the interesting and difficult problem of threads which share data and need to cooperate with each other to operate correctly.

An Example without Synchronization

To illustrate the problem, suppose that two threads are depositing to an account, and that a deposit involves two steps:

 1. computing the new balance

 2. recording the change in a log

We assume each thread computes the balance separately, but shares the log to enter the result.

 A thread runs for a certain time period, and then another thread gets its turn. If each thread completes both steps when it has its turn, the balance and the log will be consistent, but perhaps thread1 loses its turn after completing step 1.

 thread1 thread2
 balance = $100

 balance = $200

 enter $200 in log

 enter $100 in log

 Figure 1.7 A problem with threads

 The execution sequence of Figure 1.7 shows that after thread1 computes a balance of $100 it loses its turn to thread2 which computes a balance of $200 and records the new balance in the log. When thread1 gets its turn again it finishes where it left off, entering $100 in the log, which is now incorrect.

 To create a simple program to illustrate this phenomenon, we use a buffer that contains an integer, number, which two threads share. We save the number

in the Buffer in a local variable i. Each method then does some computation,

here simulated by a loop that repeats a multiplication. At the end of the

computation, we increment the variable i, simulating a change due to the

computation, and save it in the number field.

In TallyWrong.java a thread may lose its turn after it has obtained a value

for i, but before it has saved the updated value. The second thread will

access the same number field and change its value, but when the first thread

returns it will overwrite the number field with the old saved value in the

variable i. TallyRight.java makes the increment method synchronized so that each thread will finish the increment method before losing its turn.

Example 1.18 TallyWrong.java

/* Two threads occasionally err in reporting

 * values because they get interrupted before

 * finishing to execute a method.

 */

public class TallyWrong {

 class Buffer {

 int number = 0; // the number to increase or decrease

 int total = 0; // total number of increments

 public void increment() {

 int i = number;

 total++;

 for(int j = 0; j < 50000; j++) { int k = j*j; }

 number = ++i;

 }

 public String result() {

 return "total = " + total + " number = " + number;

 }

 }

 class Plus extends Thread {

 Buffer buf;

 Plus(Buffer b) {

 buf=b;

 }

 public void run() {

 for(int i = 0; i < 100; i++){

 System.out.println(Thread.currentThread().getName() +

 " " + buf.result());

 buf.increment();

 }

 System.out.println(buf.result());

 }

 }

 public static void main(String[] argv) {

 TallyWrong tw = new TallyWrong();

 Buffer b = tw.new Buffer();

 Plus p1 = tw.new Plus(b);

 Plus p2 = tw.new Plus(b);

 p1.start();

 p2.start();

 }

}

Output (Showing only significant lines)

Thread-0 total = 0 number = 0

...

Thread-0 total = 45 number = 45

Thread-1 total = 46 number = 45

...

Thread-1 total = 130 number = 129

Thread-0 total = 131 number = 46

...

Thread-0 total = 184 number = 99

total = 185 number = 100

Thread-1 total = 185 number = 130

...

Thread-1 total = 199 number = 144

total = 200 number = 145

Synchronization

 To correct the problem exhibited by Example 1.18, we need to enable the increment method to execute completely once it has begun. Java provides the synchronized keyword to enforce this behavior. We declare the increment method as

 public synchronized void increment() {

 number++;

 report(number);

 }

For example, when thread1 calls this method of the buf object,

 buf.increment();
if no other thread is executing any method of buf, thread1 gets a lock for the object. Therefore no other thread can use buf until thread1 has finished executing the increment method. If another thread is executing a method of buf, then thread1 must wait until that operation completes. If several threads are waiting to get a lock on an object, the thread scheduler determines who will get it when it becomes available.

 thread2

 Figure 1.8 thread1 locks buf while thread2 waits

 We only need make the increment method in Example 1.18 synchronized to ensure that it works correctly when accessed by multiple threads. With synchronized methods, behavior like that shown in Figure 1.7 cannot occur because once a thread starts executing a synchronized method it is allowed to finish.

Example 1.19 TallyRight.java

public class TallyRight {

 class Buffer {

 int number = 0; // the number to increase or decrease

 int total = 0; // total number of increments

 public synchronized void increment() {

 int i = number;

 total++;

 for(int j = 0; j < 50000; j++) { int k = j*j; }

 number = ++i;

 }

 public synchronized String result() {

 return "total = " + total + " number = " + number;

 }

 }

 class Plus extends Thread {

 Buffer buf;

 Plus(Buffer b) {

 buf=b;

 }

 public void run() {

 for(int i = 0; i < 100; i++) {

 System.out.println(Thread.currentThread().getName() +

 " " + buf.result());

 buf.increment();

 }

 System.out.println(buf.result());

 }

 }

 public static void main(String[] argv) {

 TallyRight tr = new TallyRight();

 Buffer b = tr.new Buffer();

 Plus p1 = tr.new Plus(b);

 Plus p2 = tr.new Plus(b);

 p1.start();

 p2.start();

 }

}

Output (Showing only significant lines)

Thread-0 total = 0 number = 0

...

Thread-0 total = 45 number = 45

Thread-1 total = 46 number = 46

...

Thread-1 total = 145 number = 145

total = 146 number = 146

Thread-0 total = 146 number = 146

...

Thread-0 total = 199 number = 199

total = 200 number = 200

A Little Extra

 Synchronizing methods exacts a performance penalty. If only a portion of the code of a large method is critical, we can improve performance by only synchronizing that portion of the code. Schematically,

 public returnType someMethod(someParameters) {

 // some code not synchronized

 synchronized(this) {

 // synchronize the critical code here

 }

 // more non-synchronized code

 }

When a thread calls this method it will only lock the object while executing the synchronized block.

Communication

 Synchronization allows threads to complete portions of code without interruption. Sometimes threads also need to communicate with one another to signal the occurrence of a condition that may affect their ability to proceed. For our example, we look at the classic producer-consumer problem, in which both producer threads and consumer threads access a data buffer. Producers add data to the buffer, while consumers remove it.

 Assuming a fixed-size buffer, a producer cannot add more than the buffer can hold, while a consumer cannot retrieve data from an empty buffer. Each Java object has wait and notify methods which are useful in this situation.

 When a producer has a lock on the buffer, and cannot add data because the buffer is full, it executes the wait method causing it to release the lock and wait to be notified the state of the buffer has changed. When a consumer removes an item from a full buffer, it executes the notify method to notify a waiting thread that the buffer is no longer full.

 Similarly, when a consumer has a lock on the buffer, and cannot remove data because the buffer is empty, it executes the wait method causing it to release the lock and wait to be notified that the state of the buffer has changed. When a producer puts an item into an empty buffer, it executes the notify method to notify a waiting thread that the buffer is no longer empty.

 Example 1.20 solves this producer-consumer problem. We input sleep times for each thread to see how the behavior varies depending on which thread has more time. We use one producer and one consumer thread.

Example 1.20 PutGet.java

/* Uses wait and notify to enable

 * producer and consumer threads to

 * cooperate in using a buffer.

 */

public class PutGet {

 public static final int size = 3;

 class Buffer {

 int[] buffer = new int [size]; // the data

 int putpos = 0; // next position to put a value

 int getpos = 0; // next position to get a value

 int number = 0; // number of items in the buffer

 public synchronized void put(int value)

 throws InterruptedException { // Note 1

 if (number == size) {

 System.out.println("Cannot put -- Buffer full");

 wait(); // Note 2

 }

 number++;

 buffer[putpos] = value;

 System.out.println("Put "+value);

 putpos = (putpos + 1) % size; // Note 3

 if (number == 1) notify(); // Note 4

 }

 public synchronized int get() throws InterruptedException {

 if (number == 0) {

 System.out.println("Cannot get -- Buffer empty");

 wait();

 }

 number--;

 int n = buffer[getpos];

 System.out.println("Get "+n);

 getpos = (getpos + 1) % size;

 if (number == size - 1) notify(); // Note 5

 return n;

 }

 }

 class Producer extends Thread {

 Buffer buf;

 int time;

 Producer(Buffer b, int t) {

 buf = b;

 time = t;

 }

 public void run() {

 for(int i = 1; i <= 10; i++) // Note 6

 try {

 buf.put(i);

 sleep(time); // Note 7

 }catch (InterruptedException e){

 e.printStackTrace();

 }

 }

 }

 class Consumer extends Thread {

 Buffer buf;

 int time;

 Consumer(Buffer b, int t) {

 buf = b;

 time = t;

 }

 public void run() {

 for (int i = 1; i <= 10;i++)

 try {

 buf.get();

 sleep(time);

 }catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

 public static void main(String[] args) {

 PutGet pg = new PutGet();

 Buffer b = pg.new Buffer();

 Producer p = pg.new Producer(b,Integer.parseInt(args[0]));

 Consumer c = pg.new Consumer(b,Integer.parseInt(args[1]));

 p.start();

 c.start();

 }

}

--

Output -- from java PutGet 300 500

Put 1

Get 1

Put 2

Get 2

Put 3

Put 4

Get 3

Put 5

Put 6

Get 4

Put 7

Get 5

Put 8

Cannot put -- Buffer full

Get 6

Put 9

Cannot put -- Buffer full

Get 7

Put 10

Get 8

Get 9

Get 10

--

Note 1: The wait method may throw an InterrupedException, which we

 declare here to pass it on to the caller of the put method who will

 handle it.

Note 2: The wait method is a member of the Object class, so any object, such

 as a buffer in this example, may invoke it. wait must be invoked in a

 synchronized method so the thread invoking it has a lock on the object.

Note 3: We use a circular buffer. Visualizing the array as a circle shows that

 after filling position 2, we move to position 0 again. This formula

 computes indices in this way: 0, 1, 2, 0, 1, 2, ... and so on.

 0 1

 2

Note 4: After putting an item into an empty buffer, we call notify. The

 scheduler will notify one thread, making it ready to run. In our example,

 we have at most one thread waiting, so if it is waiting it will be notified

 that the buffer is non-empty. When more than one thread may be

 waiting, calling notifyAll will wake them all up.

Note 5: By removing an item from a full buffer, the consumer has just made it

 possible for a waiting producer to add an item. Calling notify will

 wake up a waiting producer.

Note 6: for(int i = 1; i <= 10; i++)

 We let the producer produce 10 numbers, and the consumer consume

 these 10. We could have run these threads in an unending loop, and

 aborted the program manually.

Note 7: sleep(time);
 Typically there will be some extended computation to produce the value

 to put in the buffer. For simplicity we sleep to simulate some

 computational time.

Deadlock

 When threads wait for locks to be freed that cannot be freed we have deadlock. We can easily modify Example 1.20 to produce deadlock. If we change the condition for the producer to put only when the buffer is empty and the consumer to get only when the buffer is full we reach a deadlocked state almost immediately. The buffer starts out empty so the producer can put one item into it, but no more until the consumer removes that item, making the buffer empty again. The consumer cannot remove the one item in the buffer until the producer adds two more items to fill the buffer. Both the producer and consumer are stuck, each waiting an action by the other that can never occur.

 Good programming is the only prevention for deadlock. In more complicated situations it can be very difficult to determine if deadlock can occur.

Example 1.21 Deadlock.java

/* Modifies Example 1.20 to illustrate deadlock.

 */

public class Deadlock {

 // the rest of the code is the same as Example 1.20

 public synchronized void put(int value) throws InterruptedException {

 if (number != 0) {

 System.out.println("Cannot put -- Buffer not empty");

 wait();

 }

 }

 public synchronized int get() throws InterruptedException {

 if (number != size) {

 System.out.println("Cannot get -- Buffer not full");

 wait();

 }

 }

}

Output

Put 1

Cannot get -- Buffer not full

Cannot put -- Buffer not empty

(At this point the program hangs up because neither the producer nor the consumer can proceed.)

Test Your Understanding

13. (Try It Yourself) Vary the sleep times when running Example 1.20, and

 determine how that affects the results.

14. (Try It Yourself) Modify Example 1.20 to start two producers and two

 consumers, and explain the resulting behavior.

1.6. Gridbag Layout

 The gridbag layout provides a grid of variable-sized cells, giving more flexibility than the flow, border, or grid layouts, but is more complex and difficult to learn. The best way to understand its features is through experimentation with simple examples. Figure 1.9 shows a form designed using a gridbag layout whose code appears as Example 1.27.

[image: image3.jpg]
 Figure 1.9 A form with a gridbag layout

Default GridBag Constraints

 A GridBagConstraints object holds the values which customize the location and appearance of each component. Setting the values of these constraint variables determines how the layout manager will display a component. The GridBagConstraints variables, with their default values and uses, are:

 Variable Default value Use

 gridx, gridy RELATIVE
 Upper-left corner of display area

 gridwidth 1 Number of cells used for width

 gridheight 1 Number of cells used for height

 fill NONE Resizing behavior

 ipadx, ipady 0 Internal padding

 insets new Insets(0,0,0,0) External padding

 anchor CENTER Placement

 weightx 0.0 Distribute row space

 weighty 0.0 Distribute column space

As we experiment, we will come to understand the meaning of these default values.

 The applet of Example 1.22, shown in Figure 1.10, adds two buttons to an applet using all default settings for the GridBagConstraints. We do not activate the buttons; our purpose is to discuss the layout.

[image: image4.jpg]
 Figure 1.10 Using the GridBagConstraints defaults in Example 1-22

 gridx and gridy each start out at 0, indicating column 0 and row 0. The default of GridBagConstraints.RELATIVE positions the component just to the right of the previous component (or below if placing it in a column). Thus b2 is just to the right of b1. Because gridwidth and gridheight are 1, they each use one row and one column. Because weightx and weighty are each 0.0, the extra space in the applet is outside the layout of the two components, which are clustered in the center. The fill constraint has no effect as there is no extra space to fill.

Example 1.22 GridBag1.java

/* Uses default settings for GridBagConstraints.

 */

import java.awt.*;

import java.applet.*;

public class GridBag1 extends Applet {

 private Button b1 = new Button("b1");

 private Button b2 = new Button("b2");

 public void init() {

 GridBagLayout gbl = new GridBagLayout();

 setLayout(gbl);

 GridBagConstraints c = new GridBagConstraints(); // Note 1

 gbl.setConstraints(b1, c); // Note 2

 add(b1);

 gbl.setConstraints(b2, c);

 add(b2);

 }

}

Note 1: We only need one GridBagConstraints object, c, which we can

 reuse for each component. In this example, we do not change any

 values of its variables, using the default settings.

Note 2: Before adding a component to the applet, we call the setConstraints

 method to associate the current constraint settings with the component

 to be added.

Setting Weight and Fill

 The weight and the fill determine how a component uses the available space. weightx and weighty distribute the space and fill specifies how a component uses it.

 In Example 1.23, we set weightx to .7 for button b1 and weightx to .3 for b2. We see, in Figure 1.11, that b1 is centered in the left 70 percent of the applet while b2 is centered in the right 30 percent. Had we left the default fill of NONE, the buttons would have remained their normal size as in Figure 1.10. By giving b1 VERTICAL fill, it expands to fill its space vertically. Button b2, with HORIZONTAL fill, expands horizontally. Had we chosen BOTH for fill the button would have expanded to fill its entire area. Had we left weightx and weighty at the default of 0.0, no additional area would have been allocated to each component and the setting fill would have no effect. Had we left weighty at 0.0, specifying VERTICAL fill would have no effect.

[image: image5.jpg]
 Figure 1.11 Using weightx, weighty, and fill in Example 22

Example 1.23 GridBag2.java

/* Sets weightx, weighty, and fill.

 */

import java.awt.*;

import java.applet.*;

public class GridBag2 extends Applet {

 private Button b1 = new Button("b1");

 private Button b2 = new Button("b2");

 public void init() {

 GridBagLayout gbl = new GridBagLayout();

 setLayout(gbl);

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = .7; // Note 1

 c.fill = GridBagConstraints.VERTICAL;

 gbl.setConstraints(b1, c);

 add(b1);

 c.weightx = .3;

 c.weighty = 1.0; // Note 2

 c.fill = GridBagConstraints.HORIZONTAL;

 gbl.setConstraints(b2, c);

 add(b2);

 }

}

Note 1: The weightx setting applies to the whole column of components. In

 this case we have only b1 in the first column, but with more components

 the layout manager takes weightx for the column to be the maximum

 of weightx for each component.

Note 2: The weighty setting applies to the whole row of components. The

 layout manager takes weighty for the row to be the maximum of

 weighty for each component. Thus b1 expands vertically even though

 its weighty setting is 0.0, because the weighty setting for the entire

 row is 1.0.

Anchoring and Internal Padding

 Example 1.24 illustrates anchoring and internal padding. We use the anchor field to position a component that is smaller than its display area. Its possible values are CENTER, NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, and NORTHWEST. Internal padding adds to the dimensions of the component. Setting ipadx to 25 causes the buttons in Figure 1.12 to have 25 pixels of internal padding on both the left and the right. Similarly, setting ipady to 25 causes the buttons to have 25 pixels of top and bottom padding. We anchor b1 to the WEST of its area and b2 to the NORTH. In this example, we return to the default NONE for fill.

[image: image6.jpg]

 Figure 1.12 Anchoring and internal padding in Example 1.24

Example 1.24 GridBag3.java

/*Illustrates anchoring and internal padding

 */

import java.awt.*;

import java.applet.*;

public class GridBag3 extends Applet {

 private Button b1 = new Button("b1");

 private Button b2 = new Button("b2");

 public void init() {

 GridBagLayout gbl = new GridBagLayout();

 setLayout(gbl);

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = .7;

 c.anchor = GridBagConstraints.WEST;

 c.ipadx = 25;

 c.ipady = 25;

 gbl.setConstraints(b1, c);

 add(b1);

 c.weightx = .3;

 c.weighty = 1.0;

 c.anchor = GridBagConstraints.NORTH;

 gbl.setConstraints(b2, c);

 add(b2);

 }

}

Insets

 The insets determine the external padding around a component. In Example 1-25, we set fill to BOTH so the buttons expand to fill their display areas. However, we set the external padding for b2 to provide a border of 10 pixels around it. The type of the insets variable is Insets, a class used to specify the four values for the border in each direction., top, left, bottom, and right.

[image: image7.jpg]

 Figure 1.13 Insets and fill.BOTH in Example 1.25

Example 1.25 GridBag4.java

/* Illustrates Insets and fill BOTH

 */

import java.awt.*;

import java.applet.*;

public class GridBag4 extends Applet {

 private Button b1 = new Button("b1");

 private Button b2 = new Button("b2");

 public void init() {

 GridBagLayout gbl = new GridBagLayout();

 setLayout(gbl);

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = .7;

 c.fill = GridBagConstraints.BOTH;

 gbl.setConstraints(b1, c);

 add(b1);

 c.weightx = .3;

 c.weighty = 1.0;

 c.insets = new Insets(10,10,10,10);

 gbl.setConstraints(b2, c);

 add(b2);

 }

}

Positioning Constraints

 By setting gridx and gridy we can locate a component at a specific row and column, while setting gridwidth and gridheight defines the number of cells for a component. The constant GridBagConstraints.REMAINDER specifies the remaining space in the row or column, while GridBagConstraints.RELATIVE indicates a position next to the preceding component.

 In Example 1.26, shown in Figure 1.14, we use six buttons to illustrate the use of positioning constraints.

[image: image8.jpg]

 Figure 1.14 The applet of Example 1.26

Example 1.26 GridBag5.java

/* Illustrates positioning constraints

 */

import java.awt.*;

import java.applet.*;

public class GridBag5 extends Applet {

 private void makebutton(String name, // Note 1

 GridBagLayout gridbag, GridBagConstraints c) {

 Button button = new Button(name);

 gridbag.setConstraints(button, c);

 add(button);

 }

 public void init() {

 GridBagLayout gbl = new GridBagLayout();

 setLayout(gbl);

 GridBagConstraints c = new GridBagConstraints();

 c.fill=GridBagConstraints.BOTH;

 makebutton("b1",gbl,c);

 makebutton("b2",gbl,c);

 c.gridwidth = GridBagConstraints.REMAINDER; // Note 2

 makebutton("b3",gbl,c);

 c.gridwidth = 1; // Note 3

 c.gridx = 1; // Note 4

 makebutton("b4",gbl,c);

 c.gridx = GridBagConstraints.RELATIVE; // Note 5

 makebutton("b5",gbl,c);

 c.weightx = 1.0; // Note 6

 c.weighty = 1.0;

 makebutton("b6",gbl,c);

 }

}

Note 1: Because we are using six buttons, we use a method to create each

 button, set its constraints, and add it to the applet.

Note 2: Using REMAINDER for gridwidth specifies that it is the last

 component in its row.

Note 3: We set gridwidth back to its default value of 1. Had we not done that,

 buttons b5 and b6 would appear under b4, each filling an entire row.

Note 4: Setting gridx to 1 positions b4 in the second column, because a value

 of 0 represents the first column.

Note 5: Returning to the default RELATIVE for gridx keeps b5 and b6 in the

 same row as b4; otherwise they would each be positioned with gridx

 equal to 1, underneath b4.

Note 6: c.weightx = 1.0;
 The other buttons in the second row, b4 and b5, have weightx equal to

 0.0, so b6, with weightx equal to 1.0, gets all the extra space.

 Because b3 occupies the remainder of the first row, it gets stretched

 along with b6.
The Form Applet

 Finally, Example 1.27 contains the code for the Form applet shown in Figure 1.9. Typically, the user would be filling out the form to buy a product or register for access to a restricted site. The information would go to a web site server which would return a response. In this example, since we do not really submit the data anywhere, we just display the information the user enters in a text area.

 A text area provides a rectangular area in which to display information. We can specify initial text and the number of rows and columns of the display using the constructor

 public TextArea(String initialText, int rows, int cols);
or use the default constructor

 public TextArea();
to get a blank text area with a default size. The text area comes with scroll bars to see the text that is not visible.

 We want this form to look good when the applet is resized, so we keep the fill HORIZONTAL for all text fields except those with a small fixed size, which along with the buttons have fill NONE. The text area for messages expands in both directions.

Example 1.27 Form.java

/* Illustrates creating a form with a GridBagLayout.

 */

import java.awt.*;

import java.applet.*;

public class Form extends Applet implements ActionListener {

 private TextField first = new TextField("first name",12);

 private TextField middle = new TextField("I",1);

 private TextField last = new TextField("last name",15);

 private TextField address = new TextField("address",25);

 private TextField city = new TextField("city",20);

 private TextField state = new TextField("state",2);

 private TextField zip = new TextField("zip",5);

 private Button submit = new Button("Submit");

 private Button reset = new Button("Reset");

 private TextArea message = new TextArea();

 public void init() {

 GridBagLayout gbl = new GridBagLayout();

 setLayout(gbl);

 GridBagConstraints c = new GridBagConstraints();

 c.anchor = GridBagConstraints.WEST;

 c.weightx=1.0;

 c.weighty=1.0;

 c.fill=GridBagConstraints.HORIZONTAL;

 c.insets = new Insets(5,5,5,5);

 gbl.setConstraints(first,c); add(first);

 c.fill=GridBagConstraints.NONE;

 gbl.setConstraints(middle,c); add(middle);

 c.fill=GridBagConstraints.HORIZONTAL;

 gbl.setConstraints(last,c); add(last);

 c.gridy=1;

 gbl.setConstraints(address,c); add(address);

 c.gridy=2;

 gbl.setConstraints(city,c); add(city);

 c.fill=GridBagConstraints.NONE;

 gbl.setConstraints(state,c); add(state);

 c.gridy=3;

 gbl.setConstraints(zip,c); add(zip);

 c.gridy=4;

 c.anchor = GridBagConstraints.CENTER;

 gbl.setConstraints(submit,c); add(submit);

 gbl.setConstraints(reset,c); add(reset);

 c.gridy=5;

 c.gridwidth=3;

 c.fill=GridBagConstraints.BOTH;

 gbl.setConstraints(message,c); add(message);

 submit.addActionListener(this);

 reset.addActionListener(this);

 }

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 if (source == submit){

 String initial = middle.getText();

 if (initial != null)

 initial += ". ";

 message.setText(first.getText() + ' ' + initial + last.getText());

 message.append('\n' + address.getText());

 message.append('\n' + city.getText() + ", " + state.getText());

 message.append(' ' + zip.getText());

 }

 else if (source == reset) {

 message.setText("");

 first.setText("");

 middle.setText("");

 last.setText("");

 address.setText("");

 city.setText("");

 state.setText("");

 zip.setText("");

 }

 }

}

--

Test Your Understanding

15. (Try It Yourself) Modify Example 1.23 so b1 has a weighty of 1.0 and b2

 has a weighty of 0.0. Explain the result.

16. (Try It Yourself) Modify Example 1.26 to omit the line c.gridwidth = 1.

 Explain the result.

17. (Try It Yourself) Modify Example 1.26 to omit the line

 c.gridx = GridBagConstraints.RELATIVE;

 Explain the result.

18. (Try It Yourself) Modify Example 1.26 to omit the line

 c.gridwidth = GridBagConstraints.REMAINDER;

 Explain the result.

1.7. Vectors and Enumerations

 A vector is like an array that can grow in size. The cost of this flexibility is a decrease in performance compared to arrays. Vectors are useful in multithreaded applications as they are designed for safe access from concurrent threads.

 The Vector class, in the java.util package, has three constructors. We can specify the initial size of the vector and the amount to increase its size when it becomes full. Using the default

 new Vector();
will give us a vector of capacity 10 which doubles in size when more space is needed. The constructor

 new Vector(20);
creates a vector with the capacity to hold 20 elements, which doubles in size when necessary. Finally,

 new Vector(15,5);

starts out with a capacity of 15 which increases by 5 when necessary.

 To add an element to the end of a vector, we use the addElement method which has a parameter of type Object. Because every class is, directly or indirectly, a subclass of Object, we can add any object to a vector. The code

 Vector v = new Vector();

 String s = "Happy days";

 v.addElement(s);

creates a vector and a string and adds the string to the vector. We can only add objects to a vector. To add primitive types we must use the wrapper classes such as Integer and Double.

 Using the addElement method, as in

 v.addElement("A big car");

 v.addElement("Less is more");

adds the strings at the end of the vector

 Happy days

 A big car

 Less is more

We could use the insertElementAt method to insert an item at a given index in the vector, but that is less efficient than adding at the end. For example,

 v.insertElementAt("Candy and cake",1);
changes v to

 Happy days

 Candy and cake

 A big car

 Less is more

requiring the moving of two elements. In a large vector, insertion might require moving a large number of elements.

 The elementAt method lets us get the element at a given index. For example,

 String atTwo = (String)v.elementAt(2);
assigns "A big car" to atTwo. Because elementAt returns a value of type Object, we must cast it to String to assign it to a string variable. The vector v contains only string elements so we know casting to a string will not cause an error.

 The Vector class provides several methods to locate elements in a vector. The contains method returns true if its argument is an element of the vector and false otherwise. Thus

 v.contains("A big car");
returns true, while

 v.contains("Sweet dreams");

returns false. If we need the exact location of an element, the indexOf method returns the index of its first occurrence in the vector, or -1 if it does not occur. For example,

 v.indexOf("A big car");
would return 2, while

 v.indexOf("Sweet dreams");
returns -1. The call

 v.indexOf("Happy days",1);
returns -1, because there is no occurrence, in v, of "Happy days" starting at index 1.

 The capacity method returns the number of elements allocated for the vector, while the size method returns the number of its elements. Thus

 v.capacity();
returns 10, while

 v.size();
returns 4.

 Either

 v.removeElement("Candy and cake");
or

 v.removeElementAt(1);
would remove the element at index 1 from v.

 The elements method returns an enumeration which allows us to get all the elements of a vector. The Enumeration interface is a general facility for retrieving the elements of a container. It has two methods, nextElement, which returns the next element in an arbitrary order, and hasMoreElements which returns true if there are more elements not yet returned. We can use the method

 public void listAll(Enumeration e) {

 while(e.hasMoreElements())

 System.out.println(e.nextElement());

 }

to list the elements of any enumeration. This listAll method applies to any container that has an enumeration, completely separating the details of the container type, Vector, Stack, List, or other container, from the listing process. We could list the elements of v with

 Enumeration e = v.elements();
 listAll(e);
 To illustrate Vector objects, we create a vector of the first 1000 Fibonacci numbers. The Fibonacci sequence starts with its first two elements, f1 = f2 = 1, and the remaining computed by

 fi+1 = f i + f i-1
so the first 10 Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. The Fibonacci numbers have useful applications in numerical analysis and occur in nature, but here we use them solely to illustrate vectors.

 We use the BigInteger class, in the java.math package, to handle large Fibonacci numbers. We create big integers from strings as for example,

BigInteger twentyDigits =

 new BigInteger("12345678909876543210");
and add them using the add method, as in

BigInteger stillTwentyDigits =

 twentyDigits.add(twentyDigits);

Example 1.28 Fibonacci.java

/* Uses the Fibonacci sequence to illustrate vectors.

 */

import java.util.*;

import java.math.BigInteger;

public class Fibonacci {

 public static void main(String[] args) {

 Vector fib = new Vector(1000);

 BigInteger previous = new BigInteger("1");

 BigInteger current = previous;

 fib.addElement(previous);

 fib.addElement(current);

 BigInteger temp;

 for(int i=2; i<fib.capacity(); i++) { // Note 1

 temp = current;

 current = previous.add(current);

 previous = temp;

 fib.addElement(current);

 }

 System.out.println

 ("The fifth Fibonacci number is " + fib.elementAt(4)); // Note 2

 System.out.println("The one-thousandth Fibonacci number is "

 + fib.elementAt(999));

 Vector prime = new Vector();

 for (int i = 0; i < 100; i++) {

 BigInteger aFib = (BigInteger)fib.elementAt(i);

 if (aFib.isProbablePrime(10)) // Note 3

 prime.addElement(aFib);

 }

 System.out.println

 ("The probable primes in the first 100 Fibonacci numbers are:");

 Enumeration e = prime.elements(); // Note 4

 while(e.hasMoreElements())

 System.out.println("\t" + e.nextElement());

 System.out.println("Vector prime's capacity is " + prime.capacity());// Note 5

 System.out.println("Vector prime's size is " + prime.size());

 System.out.println("The ninth probable prime is the "

 + (fib.indexOf(new BigInteger("514229")) + 1) // Note 6

 + "th Fibonacci number");

 int count = 0;

 BigInteger random100;

 do {

 random100 = new BigInteger

 (String.valueOf((int)(100*Math.random()) + 1)); // Note 7

 count++;

 }while (!fib.contains(random100)); // Note 8

 System.out.println("It took " + count

 + " tries to find a Fibonacci number randomly");

 }

}

Output

The fifth Fibonacci number is 5

The one-thousandth Fibonacci number is

 434665576869374564356885276750406258025646605173717804024817

 290895365554179490518904038798400792551692959225930803226347

 752096896232398733224711616429964409065331879382989696499285

 16003704476137795166849228875

The probable primes in the first 100 Fibonacci numbers are:

 2

 3

 5

 13

 89

 233

 1597

 28657

 514229

 433494437

 2971215073

 99194853094755497

Vector prime's capacity is 20

Vector prime's size is 12

The ninth probable prime is the 29th Fibonacci number

It took 12 tries to find a Fibonacci number randomly

Note 1: We fill fib to its capacity of 1000. We use two variables, previous

 and current to represent the last two Fibonacci numbers computed.

 Each time through the loop we save the current number, add it to the

 previous number to get the updated current, and then copy the saved

 old current to get the new previous.

Note 2: It is always a good practice to check a computation with a known value,

 which we do here, checking that the fifth Fibonacci number is 5.

Note 3: We create a new vector containing those of the first 100 Fibonacci

 numbers that are probably prime. Determining whether a number is

 prime (has no divisors other than itself and 1) can be time consuming

 for large numbers. The BigInteger class has a method,

 isProbablyPrime, that determines with a certain probability that a

 number is prime. Making the probability higher, makes the computation

 longer. This method uses the probability 1 - (1/2)n where n is its

 argument. We pass the argument 10, so it uses the probability

 1 - 1/1024, which means there is greater than a 99.9% chance that

 the number is prime.

Note 4: Because we are using the Vector class, from the java.util

 package, we can use the elements method to get an enumeration.

 When creating our own container, we can implement an enumeration by

 implementing the hasMoreElements and nextElement methods.

Note 5: There turned out to be 12 probable primes in the first 100 Fibonaaci

 numbers, so the vector, prime, automatically grew to capacity 20 from

 its initial capacity of 10.

Note 6: We check which Fibonacci number happens to be the ninth probable

 prime.

Note 7: We get a random number between 1 and 100 and then convert it to a

 string, using the valueOf method, so we can construct a

 BigInteger from that random number.

Note 8: We keep computing random numbers from 1 to 100 as long as they are

 not Fibonacci numbers. Because there are 11 Fibonacci numbers

 between 1 and 100, we expect about 100/11 = 9.09 trials, on the

 average, until we find a Fibonacci number.

Test Your Understanding

19. Declare a vector that initially can hold 25 elements, and grows by seven

 when it becomes full.

20. Explain the difference between the capacity and the size methods for

 the Vector class.

Summary

· We put code that might throw an exception in a try block, and use a catch clause to include code to handle the exception. A Java class represents each exception. Java passes an exception object to the catch clause when it throws an exception. We often use that object's printStackTrace method to find out where the exception was thrown. Java requires that we handle exceptions thrown that are subclasses of Exception, other than RuntimeException and its subclasses. Thus we do not need to include code that generates a NumberFormatException in a try-catch block, but do need to include code that generates an IOException in such a block.

· The File class encapsulates file properties. Java provides input and out stream classes for reading and writing binary data, and reader and writer classes for reading and writing text data. For binary data, the basic read method returns the int value of a single byte, while two other read methods fill byte arrays. The FileInputStream, DataInputStream, BufferedInputStream, and ObjectInputStream classes let us read from a file, read primitive types, buffer the input for efficiency, and read serializable objects. Corresponding classes exist for writing.

· For text data, the basic read method returns the int value of a single character, while two other read methods fill character arrays. We use the FileReader class to read from a file, and BufferedReader to buffer the input. The readLine method, for buffered input, lets us read lines from a text file. The PrintWriter class includes buffering. It overloads the print and println methods to write each primitive type in a text format. The FileWriter class lets us write to a file. Random access files support reading and writing, and let us seek a particular position in the file.

· Java event-handling uses a callback approach. An adapter class prepares to listen for an event by implementing a listener interface for that event. The event source has a method to add listeners, so it knows whom to notify when an event occurs. When an event occurs, the event source notifies each adapter by calling one of the listener interface methods that it implemented.

· For button presses, an adapter implements the ActionListener interface. The addActionListener method registers an adapter with a button source. An ActionEvent describes the event. When the user presses the button, the button calls the actionPerformed method for each registered adapter.

· The WindowListener interface includes methods to handle each of the seven window events. For window events, the adapter often overrides WindowAdapter, which provides a default implementation of the WindowListener interface.

· The user interface class can also serve as the adapter, or the adapter can be a separate class. Defining the adapter class an inner class, inside the user interface class, allows it easier access to the user interface fields. Anonymous inner classes are especially useful because they are unnamed and defined where they are used.

· Java allows several threads of control to proceed simultaneously, sharing the processor. Each thread executes the code in a run method when it gets the processor. We can extend the Thread class to override the default run method, or another class can declare that it implements the Runnable interface. Such a class must implement the run method and pass itself to a thread that will execute its run method.

· Calling the start method of a thread makes it ready to run. When it gets the processor it will execute either its run method, if it is an extension of the Thread class, or the run method that a Runnable object passed to it. An applet often starts a thread in its start method, which is called by the browser or applet viewer whenever the user returns to the web page containing the applet. To stop the thread, we set a flag and have the thread check the flag periodically during the execution of its run method. If the flag becomes true the thread returns from the run method, terminating itself.

· A thread can sleep for a specified number of milliseconds. A call to the static sleep method occurs in a try block with a catch clause to handle the InterruptedException that might be generated.

· When threads share data we must be careful to ensure correct access. Using the keyword synchronized locks an object either for the duration of a method or block of code. The thread holding the lock may complete the method or block of code without interruption.

· The wait and notify methods help threads communicate. The wait method signals a condition is not satisfied, so the thread executing it must wait. The notify method wakes up one thread, signaling a condition has been satisfied. Concurrent programming requires great care to avoid problems such as deadlock where threads are unable to proceed, halting the system.

· The gridbag layout flexibly positions components by appropriately setting the gridx, gridy, gridwidth, gridheight, fill, ipadx, ipady, insets, anchor, weightx, and weighty constraint variables.

· A vector is like an array, but it can grow in size. The addElement method adds an element, of type Object or a subtype, to the end of a vector, causing the vector to grow in size to accommodate it, if necessary. We retrieve an element using the elementAt method. Other methods help us find an element in a vector. The elements method returns an Enumeration object with which we can list the elements of an array using the hasMoreElements and nextElement methods. Enumerations are useful for listing object from many types of containers.

Program Modification Exercises

1. Modify Example 1.1 to give the user another chance to enter a correct value

 after Java throws an exception.

2. Modify Example 1.9 to close the files in a finally clause so the files will be

 closed even if an exception is thrown.

3. Modify Example 1.13 to define an adapter class for each button, rather than

 one adapter which handles presses from both the Print and Clear buttons.

4. Modify Example 1.15 to use an anonymous inner adapter class rather than

 WindowClose.

5. Modify Example 1.15 to let the CloseIt class be the adapter class instead of

 using the WindowClose adapter.

6. Modify Example 1.11 to be a standalone application instead of an applet. The

 user should be able to close the window.

7. Modify Example 1.14 to be a standalone application instead of an applet. The

 user should be able to close the window.

Program Design Exercises

8. Write a Java standalone application that presents data read from a file in a

 bar chart. Enter the file name as a program argument.

9. Write a Java program that searches a file for a string. Pass the string and

 the file name as program arguments.

10. Write a Java program that reads a text file, removing any extra spaces

 between words, and writes the output to a file. Enter the file names to read

 from and write to as program arguments.

11. Write a Java program with a button which closes the top-level window when

 pressed.

12. Write a Java program which provides a GUI to copy Java programs to the

 screen or to another file. List the Java programs in a choice box. Use

 checkboxes in a checkbox group to indicate whether to copy the file to the

 console window or to another file. Use a text box to enter the name of the

 file receiving the copy.

13. Write a Java program that uses a thread to flash a message every second.

 Alternate the colors between black and red.

14. Write a Java program that displays a digital clock which shows the correct

 time. To get the current time, use the getInstance() method of the

 Calendar class, in the java.util package, to get a Calendar object, c.

 Then use the Calendar get method to get the hours, minutes, and seconds,

 as in:

 int hour = c.get(Calendar.HOUR);
 int minute = c.get(Calendar.MINUTE);

 int second = c.get(Clandar.SECOND);

 Use a thread to allow the clock to keep the correct time.

15. Using a gridbag layout, design a form for a program to send email. Include

 such items as text fields to enter the sender's name, the addresses of the

 recipient(s), a text area to enter the message, and a checkbox to indicate

 whether to save the message. Rather than actually sending email, save the

 message to a file if the checkbox is check, and display it on standard output

 otherwise.

16. Write a program that adds each word on a file to a Vector. Use an

 Enumeration to list all the words of the Vector that do not contain the

 letter 'e'.

fred:Person

Fred

savings:SavingsAccount

500.00

6.0

general:Account

110.00

 THE BIG PICTURE

The File class allows us to get file properties. To read binary files we can use one of the three read methods of a FileInputStream. To read primitive types we construct a DataInputStream from the basic FileInputStream, and use the readInt and other similar methods. To read objects we construct an ObjectInputStream and use the readObject method. Such objects must implement the Serializable interface. Analogous classes and methods exist for writing. A random access file, used for both input and output, allows us to seek specific locations without having to process the file sequentially.

Load some more of the image

Delay on

network

Starts to load image

Time for some

word processing

 THE BIG PICTURE

Threads appear to execute simultaneously. When a thread gets the processor it executes the code in a run method. A thread which extends the Thread class has its own run method. Alternatively a thread may execute the run method of a class which implements the Runnable interface. In either case, the start method makes the thread ready to run. Threads that are ready to run share the processor in a manner determined by a scheduler. We use the sleep method to pause a thread for a specified period of time.

thread1

 buf

12

 THE BIG PICTURE

Concurrent programming coordinates multiple threads. When threads share data we can synchronize access so that a thread using the data will be able to complete its operation before another thread gets access to that data. A thread gets a lock on the object which contains the data until it finishes the synchronized method or block.

Threads can wait on a condition, to be notified by other threads when changes occur that may make the condition satisfied. Deadlock occurs when threads wait for locks that can never be freed and no thread can proceed.

 THE BIG PICTURE

The gridbag layout gives us the most flexibility in arranging components. The various gridbag constraints allow us to specify the starting position of a component, the number of rows and columns it takes, internal padding, anchoring, external padding, the direction(s) in which it will fill up its allocated cell, and its weighting relative to other components which determines how much screen space it gets relative to them. The gridbag layout manager uses the largest weight in a row or column to determine how to allocate space to that row or column. The fill for a component determines how it will appear within its allocated space. Experimenting, as we did in Examples 1.22-1.27, helps to understand the effect of the different constraints.

 THE BIG PICTURE

A vector grows automatically to accommodate more data. We add values of type Object, or any of its subtypes, to a vector. An Enumeration, with hasMoreElements and nextElement methods, lets us iterate through the elements of a vector.

Throwable

Error

Exception

OutOfMemoryError

IOException

RuntimeException

FileNotFound

Exception

ArrayIndexOutOfBounds

Exception

NumberFormat

Exception

 THE BIG PICTURE

Enclosing code that can throw an exception in a try block allows us to handle that exception in a catch clause. When Java throws an exception it will jump to a catch clause for that exception in the same method if there is one, and continue searching for a catch clause in the calling method, otherwise. Printing the stack trace shows the methods that were in progress when the exception occurred.

THE BIG PICTURE

An event-driven program responds to events such as button presses and text field entries. When an event occurs, the event source notifies an adapter, which implements the desired action. The source passes the adapter an event object describing the event. The adapter implements an event listener interface, and the source calls one of the interface methods when an event occurs. Often adapters are anonymous inner classes.

� We need to disable the Just in Time compiler (JIT) to view the line numbers in a stack trace. To disable the JIT in Java 1.2, use the command java -nojit TryExceptionTrace. To disable it in the Java 2 platform use the command

 java -Djava.compiler=NONE TryExceptionTrace.

� See Computing with Java(: Programs, Object, and Graphics, Art Gittleman, Scott/Jones, Inc., 1998, pp. 422-424, or Object to Components with the Java(Platform, Art Gittleman, Scott/Jones, Inc., 2000, pp. 324-326 for examples.

PAGE
50

