LEARNING ACTIONSCRIPT 2.0
IN FLASH

Al

Adobe

© 2007 Adobe Systems Incorporated. All rights reserved.
Learning ActionScript 2.0 in Adobe® Flash®

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is
furnished under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any
such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note
that the content in this guide is protected under copyright law even if it is not distributed with software that includes an end user
license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability
for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright
law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright
owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any
actual organization.

Adobe’, Flash®, FlashHelp®, Flash® Player, JRun™, Macromedia® and Shockwave® are cither registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Macintosh® is a trademark of Apple Computer, Inc., registered in the United States and other countries. Windows® is either a
registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks
are the property of their respective owners.

Portions of this product contain code licensed from Nellymoser. (www.nellymoser.com).

Sorenson Sorenson Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.

Spark.
Flash CS3 video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc.
All Rights Reserved. http://www.on2.com.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users. The
Software and Documentation are “Commercial Items,” as that term is defined at 48 C.ER. §2.101, consisting of “Commercial
Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.ER. §12.212 or 48
C.ER. §227.7202, as applicable. Consistent with 48 C.ER. §12.212 or 48 C.ER. §§227.7202-1 through 227.7202-4, as
applicable, the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S.
Government end users (a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant
to the terms and conditions herein. Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems
Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with
all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended, Section
402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation
Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action
clause and regulations contained in the preceding sentence shall be incorporated by reference.

Contents

Introductiont i i e 9
Intendedaudience ... e 9
System rrequirements. 10
Updating Flash XML files i, 10
About the documentation. i i "
Additional resources i i e 14
Chapter 1: What’s New in Flash ActionScript 19
New in ActionScript 2.0 and FlashPlayer9.x..................... 19
New in ActionScript 2.0 and

FlashPlayer 8 i 20
Changes to security model for locally installed SWF files.......... 28
Chapter 2: About ActionScript, 31
What is ActionScript e 32
About choosing between ActionScript 1.0 and ActionScript 2.0 ... 33
Understanding ActionScript and Flash Player 34
Chapter 3: Dataand DataTypes.ccvviiiiinnnennnn 35
Aboutdata..... ... e 35
Aboutdatatypes......... ... 36
Aboutvariableso i 50
Organizingdatainobjects i . 72
Aboutcasting ... e 74
Chapter 4: Syntax and Language Fundamentals............. 77
About syntax, statements, and expressions 78
About dot syntax and targetpaths 82
About language punctuators i 88
About constantsand keywords. 99
Aboutstatements.......... .. . 103
About arrays e 125
About operators ... i e 137

Chapter 5: FunctionsandMethods 163

About functionsand methods. oLl 163
Understandingmethods i i i 184
Chapter6: Classesiiiiiiiii it et e e iennnnnn 187
About object-oriented programmingand Flash 188
Writing customclassfiles 196
About working with custom classes in an application............. 199
Example: Writingcustomclasses 223
Example: Using custom class filesinFlash 236
AssigningaclasstosymbolsinFlash........................... 239
Compiling and exportingclasses.................ccoiiiii.... 240
Understanding classesandscope.cocoiiiiiiinin.... 243
About top-level and built-inclasses 246
About working with built-inclasses............................. 256
Chapter7: Inheritance i iiiinann. 263
Aboutinheritance e 263
About writing subclassesinFlash 265
Using polymorphism in an application 27
Chapter8: Interfacest 275
Aboutinterfaces. ... i i e 275
Creating interfaces as datatypes.............................. 280
Understanding inheritance and interfaces....................... 282
Example: Usinginterfaces............ i L. 283
Example: Creating a complexinterface 285
Chapter 9: HandlingEvents 291
About ActionScriptandevents 292
Using event handlermethods............... 293
Usingeventlisteners. 296
Using event listeners with components 298
Using button and movieclipeventhandlers 300
Broadcasting events from componentinstances................ 305
Creating movie clips with buttonstates 305
Eventhandlerscope...........ccoiiiiiiiiii i i 306
Scope ofthethiskeyword 310
Using the Delegateclassc ... 310

4 Contents

Chapter 10: Working with MovieClips..................... 313

About controlling movie clips with ActionScript 314
Calling multiple methods on a single movieclip 316
Loading and unloading SWF files 316
Changing movie clip position and appearance 319
Draggingmovie clips.coviiiii i e 320
Creating movieclipsatruntime..............., 321
Adding parameters to dynamically created movie clips........... 325
Managing movieclipdepthso L. 327
About caching and scrolling movie clips with ActionScript 330
Using movieclipsasmasks it 337
Handling movieclipevents.ottt .. 339
Assigning a class toa movieclipsymbol........................ 339
Initializing class propertiest e 340
Chapter 11: Working with Textand Strings 343
Abouttextfieldso i 344
About loading text and variables into text fields 353
Usingfonts ... 359
About font rendering and anti-aliastext 367
About text layout and formatting. oL 375
Formatting text with Cascading Style Sheetstyles 382
Using HTML-formattedtext 397
Example: Creating scrollingtext 410
About stringsand the Stringclass 4N
Chapter 12: Animation, Filters, and Drawings.............. 429
Scripting animation with ActionScript2.0 430
About bitmap caching, scrolling, and performance 440
About the Tween and TransitionManager classes 441
Usingfiltereffects. i i 456
Working with filters using ActionScript 463
Manipulating filter effects withcode 489
Creating bitmaps with the BitmapDataclass.................... 493
Aboutblendingmodes i 496
About operationorder 498
Drawing with ActionScript i 499
Understanding scaling and sliceguides 514

Contents 5

Chapter 13: Creating Interaction with ActionScript 519

About events andinteraction o 520
Controlling SWF fileplaybacko, 520
Creating interactivity and visual effects 524
Creating runtime data bindings using ActionScript............... 537
Deconstructingasamplescriptco i i 546
Chapter 14: Working with Images, Sound, and Video 549
About loading and working with externalmedia 550
Loading external SWF and image files.......................... 551
About loading and using external MP3 files 555
Assigning linkage to assetsinthelibrary 559
Aboutusing FLV video. i 560
About creating progress animations for mediafiles.............. 580
Chapter 15: Working with ExternalData 589
Sending and loadingvariables 590
Using HTTP to connect to server-side scripts 594
About file uploading and downloading 600
AboUut XML ... 608
Sending messages to and from Flash Player 617
Aboutthe External API. 621
Chapter 16: Understanding Security 631
About compatibility with previous Flash Player security models ... 631
About local file security and Flash Player. 633
Restricting networking APIs 648
About domains, cross-domain security, and SWF files 650
Server-side policy files for permitting accesstodata............. 657
HTTP to HTTPS protocol access between SWF files 662
Chapter 17: Best Practices and Coding Conventions for

ActionScript 2.0 i e e e e e 665
Naming conventions.c it i 666
Using commentsinyourcodec.ccoiiiiiiiinnnnnnnnn. 677
ActionScript coding conventions. oo 679
ActionScript and Flash Player optimization 695
Formatting ActionScriptsyntax............ 697

6 Contents

Appendix A: ErrorMessages.ccii ittt iiiiiiaaan. 707
Appendix B: Deprecated Flash 4 operators 713
Appendix C: Keyboard Keys and Key Code Values 715

Appendix D: Writing Scripts for Earlier Versions of Flash Player. .
721

About targeting earlier versions of Flash Player 721
Using Flash to create content for Flash Player4 722

Appendix E: Object-Oriented Programming with ActionScript 1.0.
725

About ActionScript 1.0 726
Creating a custom object in ActionScript1.0.................... 728
Assigning methods to a custom object in ActionScript1.0........ 729
Defining event handler methods in ActionScript1.0 730
Creating inheritance in ActionScript1.0 732
Adding getter/setter properties to objects in ActionScript 1.0. 734
Using Function object properties in ActionScript1.0............. 735
g o 1= 737

Contents 7

8 Contents

Introduction

Adobe Flash CS3 Professional is the professional standard authoring tool for producing high-
impact web experiences. ActionScript is the language you use to add interactivity to Flash
applications, whether your applications are simple animated SWF files or more complex rich
Internet applications. You don't have to use ActionScript to use Flash, but if you want to
provide basic or complex user interactivity, work with objects other than those built into Flash
(such as buttons and movie clips), or otherwise turn a SWF file into a more robust user
experience, you'll probably want to use ActionScript.

For more information, see the following topics:

Intended audiencCe it e 9
Updating Flash XML files e e 10
System reqUIrEMENtS. e 10
About the documentation. ... "
Additional reSOUICES it 14

Intended audience

This manual assumes that you have already installed Flash and know how to use the user
interface.You should know how to place objects on the Stage and manipulate them in the
Flash authoring environment. If you have used a scripting language before, ActionScript will
seem familiar. But if you're new to programming, ActionScript basics are easy to learn. You
can start with simple commands and build more complexity as you progress. You can add a lot
of interactivity to your files without having to learn (or write) a lot of code.

System requirements

ActionScript 2.0 does not have any system requirements in addition to Flash.

Flash CS3 Professional introduces ActionScript 3.0. Flash Player 9 and ActionScript 3.0 are
the default publishing settings for Flash. This manual provides information on how to use
ActionScript 2.0 with Flash. You must change the publishing settings for your Flash files to
Flash Player 9 and ActionScript 2.0. If you do not change the default settings, explanations
and code samples in the documentation might not work correctly. If you develop applications
for earlier versions of Flash Player, see Appendix D, “Writing Scripts for Earlier Versions of
Flash Player,” on page 721.

Updating Flash XML files

It is important that you always have the latest Flash XML files installed. Adobe sometimes
introduces features in dot releases (minor releases) of Flash Player. When such a release is
available, you should update your version of Flash to get the latest XML files. Otherwise, the
Flash compiler might generate errors if you use new properties or methods that were
unavailable in the version of Flash Player that came with your Flash installation.

For example, Flash Player 7 (7.0.19.0) contained a new method for the System object,
System.security.loadPolicyFile. To access this method, you must use the Player
Updater installer to update all the Flash players that are installed with Flash. Otherwise, the
Flash compiler displays errors.

Remember that you can install a Player Updater that is one or more major versions ahead of
your version of Flash. By doing this, you will get the XML files that you need but shouldn’t
have any compiler errors when you publish to older versions of Flash Player. Sometimes new
methods or properties are available to older versions, and having the latest XML files
minimizes the compiler errors you get when you try to access older methods or properties.

10 Introduction

About the documentation

This manual provides an overview of ActionScript syntax and information on how to use
ActionScript when working with different types of objects. For details on the syntax and usage
of every language element, see the ActionScript 2.0 Language Reference.

For more information, see the following topics:

m “Learning ActionScript 2.0 book overview” on page 11

m “About the sample files” on page 14

m “Terms used in this document” on page 13

m “Copy and paste code” on page 13

Learning ActionScript 2.0 book overview

The following list summarizes the contents of this manual:

m Chapter 1, “What's New in Flash ActionScript,” describes features that are new in
ActionScript, changes to the compiler and debugger, and the new programming model for
the ActionScript 2.0 language.

m Chapter 2, “About ActionScript,” outlines what the ActionScript language is and details
how to choose between which version of ActionScript to use.

m Chapter 3, “Data and Data Types,” describes the terminology and basic concepts about
data, data types, and variables. You use these concepts throughout the manual.

m Chapter 4, “Syntax and Language Fundamentals,” describes the terminology and basic
concepts of the ActionScript language. You use these concepts throughout the manual.

m Chapter 5, “Functions and Methods,” describes how to write different kinds of functions
and methods and how to use them in your application.

m Chapter 6, “Classes,” describes how to create custom classes and objects in ActionScript.
This chapter also lists the built-in classes in ActionScript and provides a brief overview of

p p %
how you use them to access powerful features in ActionScript.
y p P

m Chapter 7, “Inheritance,” describes inheritance in the ActionScript language and describes
how to extend built-in or custom classes.

m Chapter 8, “Interfaces,” describes how to create and work with interfaces in ActionScript.

m Chapter 9, “Handling Events,” describes a few different ways to handle events: event
handler methods, event listeners, and button and movie clip event handlers.

m Chapter 10, “Working with Movie Clips,” describes movie clips and the ActionScript you
can use to control them.

About the documentation "

Chapter 11, “Working with Text and Strings,” describes the different ways you can
control text and strings in Flash and includes information on text formatting and
advanced anti-aliasing,.

Chapter 12, “Animation, Filters, and Drawings,” describes how to create code-based
animation and images, add filters to objects, and draw using ActionScript.

Chapter 13, “Creating Interaction with ActionScript,” describes some simple ways in
which you can create more interactive applications, including controlling when SWF files
play, creating custom pointers, and creating sound controls.

Chapter 14, “Working with Images, Sound, and Video,” describes how to import external
media files, such as bitmap images, MP3 files, Flash Video (FLV) files, and other SWF
files, in your Flash applications. This chapter also provides an overview of how to work
with video in your applications, and how to create progress bar loading animations.
Chapter 15, “Working with External Data,” describes how to process data from external
sources using server- or client-side scripts in your applications. This chapter describes how
to integrate data with your applications.

Chapter 16, “Understanding Security,” explains security in Flash Player, as it pertains to
working with SWF files locally on your hard disk. This chapter also explains cross-domain
security issues, and how to load data from servers, or across domains.

Chapter 17, “Best Practices and Coding Conventions for ActionScript 2.0,” explains the
best practices for using Flash and writing ActionScript. This chapter also lists standardized
coding conventions, such as naming variables, and other conventions.

Appendix A, “Error Messages,” lists the error messages that the Flash compiler can
generate.

Appendix B, “Deprecated Flash 4 operators,” lists all the deprecated Flash 4 operators and
their associativity.

Appendix C, “Keyboard Keys and Key Code Values,” lists all the keys on a standard
keyboard and the corresponding ASCII key code values that are used to identify the keys
in ActionScript.

Appendix D, “Writing Scripts for Earlier Versions of Flash Player,” provides guidelines to
help you write scripts that are syntactically correct for the player version you are targeting.
Appendix E, “Object-Oriented Programming with ActionScript 1.0,” provides
information on using the ActionScript 1.0 object model to write scripts.

This manual explains how to use the ActionScript language. For information on the language

elements themselves, see the ActionScripr 2.0 Language Reference.

12

Introduction

Typographical conventions

This manual uses the following typographical conventions:

m Code font indicates ActionScript code.

m Bold code font, typically within a procedure, indicates code that you need to modify or
add to code you have already added to your FLA file. In some case, it might be used to
highlight code to look at.

m Boldface text indicates data you need to type into the user interface, such as a filename or
instance name.

m [ralic text indicates a new term defined in the text that follows. In a file path, it might
indicate a value that should be replaced (for example, with a directory name on your own

hard disk).

Terms used in this document

The following terms are used in this manual:

m Jou refers to the developer who is writing a script or application.

m The user refers to the person who is running your scripts and applications.

m Compile time is the time at which you publish, export, test, or debug your document.

m Runtime is the time at which your script is running in Flash Player.

Copy and paste code

When you paste ActionScript from the Help panel into your FLA or ActionScript file, you
have to be careful about special characters. Special characters include special quotation marks
(also called curly quotation marks or smart quotation marks). These characters are not
interpreted by the ActionScript editor, so your code throws an error if you try to compile it
in Flash.

You can determine that your quotation mark characters are special characters if they do not
color-code correctly. That s, if all your strings do not change in color in the code editor, you
need to replace the special characters with regular straight quotation mark characters. If you
type a single or double quotation mark character directly into the ActionScript editor, you
always type a straight quotation mark character. The compiler (when you test or publish a
SWF file) throws an error and lets you know if there are the wrong kind (special quotation
marks or curly quotation marks) of characters in your code.

You might also encounter special quotation marks if you paste ActionScript from other
locations, such as a web page or a Microsoft Word document.

310N

About the documentation 13

Be cautious of proper line breaks when you copy and paste code. If you paste your code from
some locations, the line of code might break in an improper location. Make sure that the color
coding of your syntax is correct in the ActionScript editor if you think line breaks might be a
problem. You might want to compare your code in the Actions panel to that in the Help panel
to see if it matches. Try turning on Word Wrap in the ActionScript editor to help solve
surplus line breaks in your code (select View > Word Wrap in the Script window, or Word
Werap from the Actions panel pop-up menu.)

Additional resources

In addition to this manual about ActionScript, there are manuals on other Flash topics, such
as components and Adobe Flash Lite. You can access each manual in the Help panel (Help >
Flash Help), by viewing the default Table of Contents. Click the Clear button to see each
manual that’s available; for more information, see “Where to find documentation on other
subjects” on page 17.

For more information about other available resources, see the following topics:

m “About the sample files” on page 14

m “Where to find PDF files or printed documentation” on page 15

m “About LiveDocs” on page 15

m “Additional online resources” on page 16

m “Where to find documentation on other subjects” on page 17

About the sample files

There are numerous ActionScript-based sample files available that install with Flash. These
sample files show you how code works in a FLA file; this is often a useful learning tool. The
chapters in this manual often reference these files, but we recommend that you also check out

the sample files folder on your hard disk.

The sample files include application FLA files that use common Flash functionality installed
with Flash. These applications were designed to introduce new Flash developers to the
capabilities of Flash applications, as well as show advanced developers how Flash features work

in context.

14 Introduction

For samples of ActionScript-focused sample source files, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0 folder to access the samples. For components-focused sample
files, navigate to the ComponentsAS2 folder.

Where to find PDF files or printed documentation

If you prefer to read documentation in printed format, the PDF versions of each Help manual
are available for downloading. Go to www.adobe.com/support/documentation/ and select the
product you're interested in. You can view or download the PDF or link to the LiveDocs

version of the manual.

Often, you can also purchase printed documentation. For updated information, go to the
Documentation support site.

About LiveDocs

You can access documentation at the LiveDocs website, in addition to accessing it from the
Help panel. The LiveDocs website contains all of the Flash Help pages and might contain
comments that clarify, update, or correct parts of the documentation. Click View Comments
on LiveDocs at the bottom of a page in the Help panel to display the equivalent page on the
LiveDocs website. Go to http://livedocs.macromedia.com to see a list of all of the available
documentation in the LiveDocs format.

Technical writers monitor the LiveDocs website. One of the advantages of LiveDocs is seeing
comments that clarify the documentation or correct any errata or issues that arise after a
software release. LiveDocs is not the place to make help requests, such as asking questions
about your code that doesn’t work, comment on problems with software or installation, or ask
how to create something with Flash. It is the correct place to provide feedback about the
documentation (for example, you notice a sentence or paragraph that could be clarified).

When you click the button to add a comment on LiveDocs, there are several points about the
kinds of comments that are acceptable on the system. Please read these guidelines closely, or
your comment might be removed from the website.

If you have a question about Flash, please ask it on the Adobe web forums: www.adobe.com/
support/forums/. The web forums are the best place to ask questions, because there are many
Adobe employees, Team Adobe volunteers, Adobe user group managers and members, and

even technical writers who monitor these forums.

Additional resources 15

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/support/documentation/
http://www.adobe.com/support/documentation/
http://livedocs.macromedia.com/
http://www.adobe.com/support/forums/
http://www.adobe.com/support/forums/

Engineers do not monitor the LiveDocs system but do monitor the Flash wish list. If you
think you have found a bug in the software, or you would like to request an enhancement to
Flash, please fill out the wishform at www.adobe.com/go/wish. If you report your bug or
enhancement request on LiveDocs, it will not be officially added to the bug database. You
must use the wishform instead, if you want an engineer to see your bug or request.

Remember to be careful about special characters and line breaks when you paste from the
web, including LiveDocs. Adobe has made every effort to remove all special characters from
code samples, but if you have problems pasting code, see “Copy and paste code” on page 13.

Additional online resources

There are several resources online that offer a wealth of instruction, help, and guidance to help
you learn Flash. Check the following websites often for updates:

The Adobe Developer Center website (www.adobe.com/devnet) is updated regularly with
the latest information on Flash, plus advice from expert users, advanced topics, examples, tips,
tutorials (including multipart tutorials), and other updates. Check the website often for the
latest news on Flash and how to get the most out of the program.

The Adobe Flash Support Center (www.adobe.com/support/flash) provides TechNotes,
documentation updates, and links to additional resources in the Flash community.

The Adobe Weblogs website (http://weblogs.macromedia.com) provides a list of both
Adobe employee and community weblogs (also known as blogs).

The Adobe web forums (http://www.adobe.com/support/forums/) provides numerous
forums for asking specific questions about Flash, your applications, or the ActionScript
language. The forums are monitored by Team Adobe volunteers and often visited by Adobe
employees as well. If you're not sure where to go, or how to solve a problem, a Flash forum is
a good place to start.

The Adobe Community website (www.adobe.com/community) regularly hosts a series of live
presentations on a variety of topics by Adobe employees or community members. Check the
website often for updates.

16 Introduction

http://www.adobe.com/go/wish/
http://www.adobe.com/devnet
http://www.adobe.com/support/flash
http://weblogs.macromedia.com
http://www.adobe.com/support/forums/
http://www.adobe.com/support/forums/
http://www.adobe.com/community/

Where to find documentation on other subjects

The following manuals offer additional information on subjects commonly associated with
ActionScript 2.0:

m For information about the elements that compose the ActionScript language, see the
ActionScript 2.0 Language Reference.

m For information about working in the Flash authoring environment, see How to Use Help.

m For information about working with components, see Using ActionScript 2.0 Components.

Additional resources 17

18 Introduction

CHAPTER1

What’s New in Flash

ActionScript

Adobe Flash CS3 Professional provides several enhancements that make it easy for you to
write robust scripts using the ActionScript language. The new features, which are discussed in
this chapter, include new language elements (see “Additions to the ActionScript language in
Flash Player 8” on page 22), improved editing tools (see “ActionScript editing changes”

on page 27), changes to the security model, and other ActionScript-related improvements to
the authoring tool.

For more information, see the following topics:

New in ActionScript 2.0 and FlashPlayer Q9.x........... 19
New in ActionScript 2.0and FlashPlayer8 20
Changes to security model for locally installed SWF files...................... 28

New in ActionScript 2.0 and Flash Player
9.x

Flash Player 9.x allows a user to switch the Flash Player into and out of fullscreen mode. The
following items support this new feature:

m Stage.displayState property

m Stage.onFullScreen event handler

m allowFullScreen parameter in the object and embed HTML tags
For more information, see ActionScript 2.0 Language Reference.

Flash Player 9.x also introduces a new FileReference event, onUploadCompleteData. This
event can be invoked after a server receives a successful upload. For more information on this
new item, see ActionScript 2.0 Language Reference.

19

New in ActionScript 2.0 and
Flash Player 8

The ActionScript language has grown and developed since its introduction several years ago.
With each new release of Flash, additional keywords, objects, methods, and other language
elements were added to ActionScript. There are also ActionScript-related improvements to
the Flash 8 authoring environments. Flash Basic 8 and Flash Professional 8 introduced several
new language elements for expressive features, such as filters and blending modes, and
application development, such as JavaScript integration (Externallnterface) and file input and
output (FileReference and FileReferenceList).

This section provides an overview of the ActionScript language elements and classes that are
new or changed in Flash 8 and ActionScript-related improvements to the authoring tool. For
a list of specific additions to ActionScript 2.0, see “Additions to the ActionScript language in
Flash Player 8” on page 22. To use any of the new language elements in your scripts, you must
target Flash Player 8 when you publish your documents.

The following features were added to both Flash Basic 8 and Flash Professional 8 (unless
noted otherwise):

m ActionScript editor enhancements let you show hidden characters in your scripts. For
more information, see “Display hidden characters” in Using Flash.

m Debug options are now available in the Script window, as well as the Actions panel, for
ActionScript files.

m The Configuration directory that includes XML files and Class files is reorganized. See
“Configuration folders installed with Flash” in Using Flash for details.

m You can set a preference to reload modified script files when working on an application,
which helps you avoid working with older versions of script files, and overwriting newer
script files. For more information, see “Set ActionScript preferences” in Using Flash.

m The Script window feature is available in Flash. That means you can now create an
ActionScript file in either program.

m Script Assist (similar to Normal Mode in earlier editions of Flash) helps you code without
needing to understand syntax. For more information on Script Assist, see “About Script
Assist mode” in Using Flash.

m You can load new kinds of image files at runtime, which include progressive JPEG images,
and non-animated GIF and PNG files. If you load an animated file, the first frame of the
animation appears.

m You can assign linkage identifiers to bitmap and sound files stored in the Library, which
means that you can attach images to the Stage or work with these assets in shared libraries.

20 What’s New in Flash ActionScript

Bitmap caching lets you improve the performance of your applications at runtime by
caching a bitmap representation of your instances. You can use ActionScript code to access
this property. For more information, see “About bitmap caching, scrolling, and
performance” on page 440.

9-slice scaling lets you scale movie clip instances without widening the strokes that outline
the movie clip. You can use ActionScript code to access this feature in Flash. For more
information, see “Working with 9-slice scaling in ActionScript” on page 516. For
information about accessing 9-slice scaling in the authoring tool, see Using Flash.

You can now add metadata information to your FLA files in the Document Properties
dialog box. You can add a name and description to your FLA file using the dialog box to
help increase online search visibility.

The Strings panel is improved to include multiline support in the String field and a
language XML file. For more information, see “panel” on page 413.

A new garbage collector is built into Flash Player, which uses an incremental collector to

improve performance.

The workflow for creating accessible applications is improved. Flash Player 8 no longer
requires developers to add all objects to the tab index for content to be read correctly by a
screen reader. For more information on tab index, see tabIndex (Button.tabIndex
property), tabIndex (MovieClip.tabIndex property), and tabIndex
(TextField.tabIndex property) in the ActionScript 2.0 Language Reference.

Flash Player has improved local file security, for additional safety when running SWF files
on your hard disk. For information on local file security, see “About local file security and
Flash Player” on page 633.

Using ActionScript code, you can use the Drawing API to control the line style of strokes
that you draw. For information on new line styles, see “Using line styles” on page 506.
Using ActionScript code, you can use the Drawing API to create more complex gradients
that you fill shapes with. For information on gradient fills, see “Using complex gradient
fills” on page 505.

You can use ActionScript code to apply many filters to objects on the Stage (such as movie
clip instances). For information on filters and ActionScript, see “Working with filters
using ActionScript” on page 463.

You can use the FileReference and FileReferenceList API to upload files to a server. For
more information, see “About file uploading and downloading” on page 600.

You can use ActionScript code to access new and advanced ways of applying and
manipulating colors. For more information, see “Setting color values” on page 530 and
ColorTransform (flash.geom.ColorTransform) in the ActionScript 2.0 Language
Reference.

New in ActionScript 2.0 and Flash Player 8 21

Numerous improvements are made to text handling, including new options, properties,
and parameters in the TextField and TextFormat classes. For more information, see
TextField and TextFormat in the ActionScript 2.0 Language Reference.

You can use ActionScript code to access advanced anti-aliasing features. For more
information, see “About font rendering and anti-alias text” on page 367.

You can delete ASO files when you test your application. Select Control > Delete ASO

files or Control > Delete ASO files and Test Movie in the authoring tool. For information,
see “Using ASO files” on page 242.

For a list of specific classes, language elements, methods, and properties added to ActionScript

2.0 in Flash 8, see “Set ActionScript preferences” in Using Flash.

Additions to the ActionScript language in Flash
Player 8

The following classes and language elements are new additions or newly supported in Flash
Player 8.

The following classes were added to ActionScript 2.0 in Flash 8:

m The BevelFilter class (in flash.filters package) lets you add bevel effects to objects.

m The BitmapData class (in flash.display package) lets you create and manipulate arbitrarily
sized transparent or opaque bitmap images.

m The BitmapFilter class (in flash.display package) is a base class for filter effects.

m The BlurFilter class lets you apply blurs to objects in Flash.

m The ColorMatrixFilter class (in flash.filters package) lets you apply transformations to
ARGB colors and alpha values.

m The ColorTransform class (in the flash.geom package) lets you adjust color values in
movie clips. The Color class is deprecated in favor of this class.

m The ConvolutionFilter class (in the flash.filters package) lets you apply matrix
convolution filter effects.

m The DisplacementMapFilter class (in the flash.filters package) lets you use pixel values
from a BitmapData object to perform displacement on an object.

m The DropShadowFilter class (in the flash.filters package) lets you add drop shadows
to objects.

m The Externallnterface class (in the flash.external package) lets you communicate by using
ActionScript with the Flash Player container (the system holding the Flash application,
such as a browser with JavaScript, or the desktop application).

22 What’s New in Flash ActionScript

m The FileReference class (in the flash.net package) lets you upload and download files

between the user’s computer and a server.

m The FileReferenceList class (in the flash.net package) lets you select one or more files
to upload.

m The GlowFilter class (in the flash.filters package) lets you add glow effects to objects.
m The GradientBevelFilter class (in the flash.filters package) lets you add gradient bevels

to objects.

m TheGradientGlowFilter class (in the flash.filters package) lets you add gradient glow
effects to objects.

m The IME class (in the System class) lets you manipulate the operating system’s input
method editor (IME) within Flash Player.

m The Locale class (in the mx.lang package) lets you control how multilanguage text appears
in a SWF file.

m The Matrix class (in the flash.geom package) represents a transformation matrix that
determines how to map points from one coordinate space to another.

m The Point class (in the flash.geom package) represents a location in a two-dimensional
coordinate system (x represents the horizontal axis, and y represents the vertical axis).

m The Rectangle class (in the flash.geom package) lets you create and modify Rectangle
objects.

m The TextRenderer class (in the flash.text package) provides functionality for advanced
anti-aliased embedded fonts.

m The Transform class (in the flash.geom package) collects data about color transformations
and coordinates manipulations that you apply to a MovieClip instance.

10N

I Official support is added for the AsBroadcaster class in Flash 8.
m

New language elements, methods, and functions added to existing classes in ActionScript
include:

m The showRedrawRegions global function provides the ability for the debugger player to
outline the regions of the screen that are being redrawn (that is, dirty regions that are
being updated). The function has the player show what was redrawn, but does not let you
control redraw regions.

m The blendMode property in the Button class, which sets the blending mode for the
button instance.
m The cacheAsBitmap property in the Button class, which lets you cache the object as an

internal bitmap representation of the instance.

New in ActionScript 2.0 and Flash Player 8 23

The filters property in the Button class, which is an indexed array that contains each
filter object associated with the button.

The scale9Grid property in the Button class, which is the rectangular region that defines
nine scaling regions for the instance.

The hasIME property in the System.capabilities class, which indicates if the system has an
IME installed.

The getUTCYear property in the Date class, which returns the year of this date, according
to universal time.

The isAccessible() method in the Key class returns a Boolean value that indicates
whether the last key pressed may be accessed by other SWF files, depending on

security restrictions.

The onHTTPStatus event handler of the LoadVars class returns the status code that’s
returned from the server (for example, the value 404 for page not found). For more
information, see HTTPStatus (LoadVars.onHTTPStatus handler) in the ActionScript
2.0 Language Reference.

The attachBitmap() method of the MovieClip class, which attaches a bitmap image to a
movie clip. For information, see BitmapData (flash.display.BitmapData) in the
ActionScript 2.0 Language Reference.

The beginBitmapFill() method of the MovieClip class, which fills a movie clip with a
bitmap image.

The spreadMethod, interpolationMethod, and focalPointRatio parameters of the
beginGradientFill() method in the MovieClip class. This method fills a drawing area
with a bitmap image, and the bitmap can be repeated or tiled to fill the area.

The b1endMode property of the MovieClip class, which lets you set the blending mode for
the instance.

The cacheAsBitmap property of the MovieClip class, which lets you cache the object as
an internal bitmap representation of the instance.

The filters property of the MovieClip class, which is an indexed array that contains
each filter object that’s currently associated with the instance.

The getRect () method of the MovieClip class, which returns properties that are the
minimum and maximum coordinate values of the specified instance.

The 1ineGradientStyle() method of the MovieClip class, which specifies a gradient
line style that Flash uses when drawing a path.

The pixelHinting, noScale, capsStyle, jointStyle,and miterLimit parameters of
the 1ineStyle() method in the MovieClip class. These parameters specify kinds of line
styles you can use when drawing lines.

24

What’s New in Flash ActionScript

The opaqueBackground property of the MovieClip class, which sets the color of the
movie clip’s opaque (not transparent) background to the color that the RGB hexadecimal
value specifies.

The scale9Grid property of the MovieClip class, which is the rectangular region that
defines nine scaling regions for the instance.

The scrol1Rect property of the MovieClip class, which lets you quickly scroll movie clip

content and have a window viewing larger content.

The transform property of the MovieClip class, which lets you make settings regarding a
movie clip’s matrix, color transform, and pixel bounds. For more information, see
Transform (flash.geom.Transform) in ActionScript 2.0 Language Reference.

The status parameter of the MovieClipLoader.onLoadComplete event handler returns
the status code that’s returned from the server (for example, the value 404 for page not
found). For more information, see onLoadComplete (MovieClipLoader.onComplete
event listener) in ActionScript 2.0 Language Reference.

The onLoadError event handler of the MovieClipLoader class is invoked when a file
loaded with MovieClipLoader.loadClip() fails to load.

The secure parameter of the SharedObject.getlocal () method determines whether
access to this shared object is restricted to SWF files delivered over an HTTPS connection.
For more information, see getLocal (SharedObject.getlocal method) in
ActionScript 2.0 Language Reference.

The sandboxType property of the System.security class indicates the type of security
sandbox in which the calling SWF file is operating. For more information, see
sandboxType (security.sandboxType property) in ActionScript 2.0 Language
Reference.

The antiATiasType property in the TextField class, which sets the type of advanced anti-
aliasing that you use for the TextField instance.

The filters property in the TextField class, which is an indexed array that contains each
filter object that’s currently associated with the TextField instance.

The gridFitType property in the TextField class, which sets the type of grid fitting that
you use for the instance. For information on grid fitting and TextField.gridFitType, see
gridFitType (TextField.gridFitType property) in ActionScript 2.0 Language
Reference.

The sharpness property in the TextField class, which sets the sharpness of the glyph
edges for the TextField instance. You must set the antiATiasType() method to advanced
if you use this property.

New in ActionScript 2.0 and Flash Player 8 25

m The thickness property in the TextField class, which sets the thickness of the glyph edges
in the TextField instance. You must set the antiAliasType() method to advanced if you
use this property.

m The justify value for the align property of the TextFormart class, which lets you justify
a specified paragraph.

m The indent property of the TextFormat class, which lets you use negative values.

m The kerning property in the TextFormat class, which lets you turn kerning on or off for
the TextFormat object.

m The Teading property of the TextFormat class, which lets you use negative leading, so the
space between lines is less than the text height. This lets you put lines of text close together
in your applications.

m The letterSpacing property in the TextFormat class, which lets you specify the amount
of space that is uniformly distributed between characters.

m The_alpha property in the Video class, which is the specified amount of transparency for
the video object.

m The _height property in the Video class, which indicates the height of the video instance.

m The _name property in the Video class, which indicates the instance name of the video.

m The _parent property in the Video class, which indicates the movie clip instance or
object that contains the video instance.

m The _rotation property in the Video class, which lets you set the amount of rotation of
the video instance in degrees.

m The _visible property in the Video class, which lets you set the visibility of a
video instance.

m The _width property in the Video class, which lets you set the width of the
video instance.

m The _x property in the Video class, which lets you set the x coordinate of the
video instance.

m The_xmouse property in the Video class, which lets you set the x coordinate of the mouse
pointer position.

m The _xscale property in the Video class, which lets you set the horizontal scale
percentage of the video instance.

m The _y property in the Video class, which lets you set the y coordinate of the
video instance.

m The _ymouse property in the Video class, which lets you set the y coordinate of the mouse
pointer position.

26 What’s New in Flash ActionScript

m The _yscale property in the Video class, which lets you set the vertical scale percentage
of the video instance.

m The onHTTPStatus event handler in the XML class returns the status code that’s returned
from the server (for example, the value 404 for page not found). For more information,
see onHTTPStatus (XML.onHTTPStatus handler) in ActionScript 2.0 Language
Reference.

m The TocalName property of the XMLNode class, which returns the full name of the XML
node object (including both the prefix and the local name).

m The namespaceURI property of the XMLNode class, which reads the URI of the
namespace to which the XML node’s prefix resolves. For more information, see
namespaceURI (XMLNode.namespaceURI property) in ActionScript 2.0 Language
Reference.

m The prefix property of the XMLNode class, which reads the prefix of the node name.

m The getNamespaceForPrefix() method of the XMLNode class, which returns the
namespace URI associated with the specified prefix for the node.

m The getPrefixForNamespace method of the XMLNode class, which returns the prefix
associated with a specified namespace URI for the node.

About deprecated language elements

Some language elements are deprecated in Flash Player 8. For a list of deprecated language
elements, and alternatives to use in Flash Player 8, see the following sections in ActionScript
2.0 Language Reference:

m Deprecated Class summary

m Deprecated Function summary

m Deprecated Property summary

m Deprecated Operator summary

ActionScript editing changes

The ActionScript editor in the Actions panel and Script window has been updated in several
ways to make it more robust and easier to use than earlier versions of the tool. The changes are

summarized in this section.

View hidden characters You can now use the Options pop-up menu in the Script pane,
Debugger panel, and Output panel to view or hide hidden characters when you're writing
script files in the Actions panel or Script window. For information on this feature,

see Using Flash.

New in ActionScript 2.0 and Flash Player 8 27

Script assist added to Actions panel In previous versions of Flash, you could work in the
Actions panel either in normal mode, in which you filled in options and parameters to create
code, or in expert mode, in which you added commands directly into the Script pane. These
options were not available in Flash MX 2004 or Flash MX Professional 2004. However, in
Flash Basic 8 and Flash Professional 8, you can work in Scripr Assist modle, which is similar to
(and more robust than) normal mode. For information and a tutorial on Script Assist, see

Using Flash.

Reload modified files You can reload modified script files when working on an application.
A warning message appears, prompting you to reload the modified script files associated with
the application you're working on. This feature is particularly beneficial to teams working on
applications at the same time, in that it helps you avoid working with outdated scripts, or
overwriting newer versions of a script. If a script file was moved or deleted, a warning message
appears and prompts you to save the files as necessary. For more information, see “Set
ActionScript preferences” in Using Flash.

Changes to security model for locally
installed SWF files

Flash Player 9.x introduces support for a new HTML tag, allowNetworking. For more
information, see the Security chapter in Programming ActionScript 3.0.

Flash Player 8 introduced a new, improved security model in which Flash applications and
SWE files on a local computer can communicate with the Internet and the local file system,
rather than run from a remote web server. When you develop a Flash application, you must
indicate whether a SWF file is allowed to communicate with a network or with a local file

system.

In this description, a local SWF file is a SWF file that is locally installed on a user’s
computer, not served from a website, and does not include projector (EXE) files.

310N

In previous versions of Flash Player, local SWF files could interact with other SWF files and
load data from any remote or local computer without configuring security settings. In Flash
Player 8 and later, a SWF file cannot make connections to the local file system and the
network (such as the Internet) in the same application without making a security setting. This
is for your safety, so a SWF file cannot read files on your hard disk and then send the contents
of those files across the Internet.

28 What’s New in Flash ActionScript

This security restriction affects all locally deployed content, whether it’s legacy content (a FLA
file created in an earlier version of Flash) or created in Flash 8 and later. Using the Flash MX
2004 or earlier authoring tool, you could test a Flash application that runs locally and also
accesses the Internet. In Flash Player 8 and later, this application now prompts the user for

permission to communicate with the Internet.

When you test a file on your hard disk, there are several steps to determine whether the file is
a local trusted (safe) document or a potentially untrusted (unsafe) document. If you create the
file in the Flash authoring environment (for example, when you select Control > Test Movie),
your file is trusted because it is in the test environment.

In Flash Player 7 and earlier, local SWF files had permissions to access both the local file
system and the network. In Flash Player 8 and later, local SWF files can have three levels of
permission:

m Access the local file system only (the default level). The local SWF file can read from the
local file system and universal naming convention (UNC) network paths and cannot
communicate with the Internet.

m Access the network only. The local SWF file can access the network only (such as the
Internet) and not the local file system where the SWF file is installed.

m Access to both the local file system and the network. The local SWF file can read from the
local file system where the file is installed, read from and write to any server that grants it
permission, and can cross-script other SWF files on either the network or the local file
system that grant it permission.

For more details about each level of permission, see “About local file security and Flash Player”
on page 633.

There are also minor changes to System.security.allowDomain and improvements to
System.security.allowInsecureDomain. For more information on local file security, see
Chapter 16, “Understanding Security.”

Changes to security model for locally installed SWF files 29

30 What’s New in Flash ActionScript

CHAPTER 2

About ActionScript

The object-oriented programming (OOP) features in ActionScript 2.0 are based on the
ECMAScript 4 Draft Proposal currently in development by ECMA TC39-TGl (see
www.mozilla.org/js/language/es4/index.html). Because the ECMA-4 proposal is not yet a
standard, and because it is still changing, ActionScript 2.0 is loosely based on this
specification.

ActionScript 2.0 supports all the standard elements of the ActionScript language; it lets you
write scripts that more closely adhere to standards used in other object-oriented languages,
such as Java. ActionScript 2.0 should be of interest primarily to intermediate or advanced
Flash developers who are building applications that require the implementation of classes and
subclasses. ActionScript 2.0 also lets you declare the object type of a variable when you create
it (see “About assigning data types and strict data typing” on page 45) and provides
significantly improved compiler errors (see Appendix A, “Error Messages,” on page 707).
Key facts about ActionScript 2.0 include the following points:

m Scripts that use ActionScript 2.0 to define classes or interfaces must be stored as external
script files, with a single class defined in each script; that s, classes and interfaces cannot
be defined in the Actions panel.

m You can import individual class files implicitly (by storing them in a location specified by
global or document-specific search paths and then using them in a script) or explicitly (by
using the import command); you can import packages (collections of class files in a
directory) by using wildcards.

m Applications developed with ActionScript 2.0 are supported by Flash Player 6 and later.

The default publish setting for new files created in Flash CS3 is ActionScript 3.0. If
you plan to modify an existing FLA file with ActionScript 1.0 or ActionScript 2.0 to
use ActionScript 2.0 syntax, ensure that the FLA file specifies ActionScript 2.0 in its
publish settings. If it does not, your file will compile incorrectly, although Flash will not
necessarily generate compiler errors.

NOILNVD

31

http://www.mozilla.org/js/language/es4/index.html

For more information on using ActionScript 2.0 to write object-oriented programs in Flash,
see Chapter 6, “Classes,” on page 187.

Although Adobe recommends that you use ActionScript 3.0, you can continue to use
ActionScript 1.0 and ActionScript 2.0 syntax.

What is ActionScript

The main features of ActionScript 2.0 include the following:

Familiar object-oriented programming (OOP) model The primary feature of
ActionScript 2.0 is a familiar model for creating object-oriented programs. ActionScript 2.0
implements several object-oriented concepts and keywords such as class, interface, and
packages that will be familiar to you if you've programmed with Java.

The OOP model provided by ActionScript 2.0 is a “syntactic formalization” of the prototype
chaining method used in previous versions of Flash to create objects and establish inheritance.
With ActionScript 2.0, you can create custom classes and extend Flash’s built-in classes.

Strict data typing ActionScript 2.0 also lets you explicitly specify data types for variables,
function parameters, and function return types. For example, the following code declares a
variable named userName of type String (a built-in ActionScript data type, or class).

var userName:String = ""

Compiler warnings and errors The previous two features (OOP model and strict data
typing) enable the authoring tool and compiler to provide compiler warnings and error
messages that help you find bugs in your applications faster than was previously possible
in Flash.

When you use ActionScript 2.0, make sure that the publish settings for the FLA file specify
ActionScript 2.0 (the default for Flash CS3 is ActionScript 3.0). Additionally, if you open an
older FLA file that uses ActionScript 1.0 and begin rewriting it in ActionScript 2.0, change
the publish settings of the FLA file to ActionScript 2.0. If you dont, your FLA file will not
compile correctly, and errors won't be generated.

32 About ActionScript

About choosing between ActionScript
1.0 and ActionScript 2.0

When you start a new document or application in Flash, you must decide how to organize its
associated files. You might use classes in some projects, such as when you are building
applications or complex FLA files, but not all documents use classes. For example, many short
examples in the documentation do not use classes. Using classes to store functionality is not
the easiest or best solution for small applications or simple FLA files. It is often more efficient
to put ActionScript inside the document. In this case, try to put all your code on the Timeline
on as few frames as possible, and avoid placing code on or in instances (such as buttons or
movie clips) in a FLA file.

When you build a small project, it is often more work and effort to use classes or external code
files to organize ActionScript instead of adding ActionScript within the FLA file. Sometimes
it is easier to keep all the ActionScript code within the FLA file, rather than placing it within a
class that you import. This does not mean that you should necessarily use ActionScript 1.0.
You might decide to put your code inside the FLA file by using ActionScript 2.0 with its strict
data typing and its new methods and properties. ActionScript 2.0 also offers a syntax that
follows standards in other programming languages. This makes the language easier and more
valuable to learn. For example, you will feel familiar with ActionScript if you have
encountered another language that’s based on the same structure and syntax standards. Or,
you can apply this knowledge to other languages you learn in the future. ActionScript 2.0 lets
you use an object-oriented approach to developing applications by using an additional set of
language elements, which can be advantageous to your application development.

In some cases, you cannot choose which version of ActionScript to use. If you are building a
SWEE file that targets an old version of Flash Player, such as a mobile device application, you
must use ActionScript 1.0, which is compatible with Flash Player for a number of devices.

Remember, regardless of the version of ActionScript, you should follow good practices. Many
of these practices, such as remaining consistent with case sensitivity, using code completion,
enhancing readability, avoiding keywords for instance names, and keeping a consistent
naming convention, apply to both versions.

If you plan to update your application in future versions of Flash, or make it larger and more
complex, you should use ActionScript 2.0 and classes, to make it easier to update and modify
your application.

About choosing between ActionScript 1.0 and ActionScript 2.0 33

Understanding ActionScript and
Flash Player

If you compile a SWF file that contains ActionScript 2.0 with publish settings set to Flash
Player 6 and ActionScript 1.0, your code functions as long as it does not use ActionScript 2.0
classes. No case sensitivity is involved with the code, only Flash Player. Therefore, if you
compile your SWF file with Publish Settings set to Flash Player 7 and later and ActionScript
1.0, Flash enforces case sensitivity.

Data type annotations (strict data types) are enforced at compile time for Flash Player 7 and
later when you have publish settings set to ActionScript 2.0.

ActionScript 2.0 compiles to ActionScript 1.0 bytecode when you publish your applications,
so you can target Flash Player 6 and later while working with ActionScript 2.0.

34 About ActionScript

CHAPTER 3

Data and Data Types

This chapter is the first of several chapters that outline and demonstrate some fundamental
concepts of ActionScript. You'll practice some basic coding techniques to learn how to create
complex applications. In this chapter, you'll also learn about how to work with data in a FLA
file, and what kinds of data you can work with. In the next chapter, Chapter 4, “Syntax and
Language Fundamentals,” you'll discover how to use ActionScript syntax and form
statements. Following this, Chapter 5, “Functions and Methods” demonstrates how to use
functions and methods in the ActionScript language.

For more information about data and data types, see the following sections:

About data 35
About datatypes. e 36
About variables 50
Organizingdatainobjects i 72
ADOUL CaStINg ..ot 74

About data

Data refers to the numbers, strings, and other information that you can manipulate within
Flash. Using data is usually essential when you create applications or websites. You also use
data when you create advanced graphics and script-generated animation, and you might have
to manipulate values that you use to drive your effects.

You can define data in variables within Flash, or you can load data from external files or sites
using XML, web services, built-in ActionScript classes, and so on. You can store data in a
database, and then represent that information in several ways in a SWF file. This can include
displaying the information in text fields or components, or displaying images in movie

clip instances.

35

Some of the most common kinds of data include strings (a sequence of characters, such as
names and passages of text), numbers, objects (such as movie clips), Boolean values (true and
false), and so on. In this chapter, you'll also learn about the data types in Flash and how to

use them.

For information on types of data, see “About data types” on page 36. For information on

variables, see “About variables” on page 50.

About data types

A data type describes a piece of data and the kinds of operations that you can perform on it.
You store data in a variable. You use data types when creating variables, object instances, and
function definitions to assign the type of data you're working with. You use many different
data types when you write ActionScript.

ActionScript 2.0 defines several commonly used data types. Data types describe the kind of
value that a variable or ActionScript element can contain. A variable that is assigned a data
type can only hold a value within that data type’s set of values. For information on variables,
see “About variables” on page 50.

ActionScript has numerous basic data types that you will probably use frequently in your
applications. See the table in “About primitive and complex data types” on page 37 for more
information.

ActionScript also has core classes, such as Array and Date, that are considered complex or
reference data types. For more info on complex and reference data types, see “About primitive
and complex data types” on page 37. In addition, all data types and classes are fully defined in
ActionScript 2.0 Language Reference.

You can also create custom classes for your applications. Any class that you define using the
class declaration is also considered a data type. For more information on core and other built-
in classes, see “About top-level and built-in classes” on page 246. For more information on
creating custom classes, see Chapter 6, “Classes,” on page 187.

In ActionScript 2.0, you can assign data types to variables when you declare them. The data
types you assign can be any of the core types or can represent a custom class that you created.
For more information, see “About assigning data types and strict data typing” on page 45.

When you debug scripts, you might need to determine the data type of an expression or
variable to understand why it is behaving a certain way. You can do this with the instanceof
and typeof operators (see “About determining data type” on page 49).

36 Data and Data Types

You can convert one data type to another at runtime using one of the following conversion
functions: Array (), Boolean(), Number(), Object(), String().

For a sample of the datatypes.fla file, which shows you how to use data types in an
application, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download
and decompress the Samples zip file and navigate to the ActionScript2.0/DataTypes folder to

access the sample.

About primitive and complex data types

You can divide all the different data type values into two main categories: primitive or complex.

A primitive value (or primitive data type) is a value that ActionScript stores at the lowest level
of abstraction, which means that operations on the primitive data types are generally faster
and more efficient than operations carried out on complex data types. The following data
types all define a set of one or more primitive values: Boolean, null, Number, String, and

undefined.

A complex value (or complex data type) is a value that is not a primitive value and that
references the primitive values. Often, these are called reference data types. Complex values
belong to the Object data type or a data type that is based on the Object data type. Data types
that define sets of complex values include Array, Date, Error, Function, and XML. For more
information on these complex data types, see their entries in the ActionScript 2.0 Language
Reference.

Variables that contain primitive data types behave differently in certain situations than those
containing complex types. For more information, see “Using variables in a project”

on page 69.

ActionScript has the following basic data types that you can use in your applications:

Data type Description

Boolean Primitive. The Boolean data type consists of two values: true and false.
No other values are valid for variables of this type. The default value of
Boolean variable that has been declared but not initialized is false. For
more information, see “Boolean data type” on page 38.

MovieClip Complex. The MovieClip data type lets you control movie clip symbols
using the methods of the MovieClip class. For more information, see
“MovieClip data type” on page 40.

About data types 37

http://www.adobe.com/go/learn_fl_samples

Data type

Description

null

Number

Object

String

undefined

Void

Primitive. The null data type contains the value nu11. This value means
no value—that is, a lack of data. You can assign the nul1 value in a
variety of situations to indicate that a property or variable does not have
a value assigned to it. The null data type is the default data type for all
classes that define complex data types. An exception to this rule is the
Object class, which defaults to undefined. For more information, see
“null data type” on page 41.

Primitive. This data type can represent integers, unsigned integers, and
floating point numbers. To store a floating point number, you should
include a decimal point in the number. Without the decimal point, the
number is stored as an integer. The Number data type can store values
from Number .MAX_VALUE (very high) to Number .MIN_VALUE (very low). For
more information, see ActionScript 2.0 Language Reference and
“Number data type” on page 42.

Complex. The Object data type is defined by the Object class. The
Object class serves as the base class for all class definitions in
ActionScript, and it lets you arrange objects inside each other (nested
objects). For more information, see “Object data type” on page 42.

Primitive. The String data type represents a sequence of 16-bit
characters that might include letters, numbers, and punctuation marks.
Strings are stored as Unicode characters, using the UTF-16 format. An
operation on a String value returns a new instance of the string. For
more information, see “String data type” on page 43.

Primitive. The undefined data type contains one value: undefined. Thisis
the default value for instances of the Object class. You can only assign a
value of undefined to variables that belong to the Object class. For more
information, see “undefined data type” on page 44.

Complex. The Void data type contains only one value: void. You use this
data type to designate functions that don’t return a value. Void is a
complex data type that references the primitive Void data type. For
more information, see “Void data type” on page 44.

For a sample of the datatypes.fla file, see the Flash Samples page at www.adobe.com/go/

learn_fl_samples. Download and decompress the Samples zip file and navigate to the

ActionScript2.0/DataTypes folder to access the sample.

Boolean data type

A Boolean value is one that is either true or false. ActionScript also converts the values

true and false to 1 and 0 when appropriate. Boolean values are most often used with logical

operators in ActionScript statements that make comparisons to control the flow of a script.

38 Data and Data Types

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

The following example loads a text file into a SWF file, and displays a message in the Output
panel if the text file does not load correctly, or the parameters if it does load successfully. See
the comments in the code example for more details.

var my_lv:LoadVars = new LoadVars();
//success is a Boolean value
my_lv.onlLoad = function(success:Boolean) {
//if success is true, trace monthNames
if (success) {
trace(my_lv.monthNames);
//if success is false, trace a message
} else {
trace("unable to load text file");
}
b
my_lv.load("http://www.helpexamples.com/flash/params.txt");

The following example checks that users enter values into two TextInput component
instances. Two Boolean variables are created, userNameEntered and isPasswordCorrect,
and if both variables evaluate to true, a welcome message is assigned to the titleMessage
String variable.

// Add two TextInput components, a Label, and a Button component on the
Stage.

// Strict data type the three component instances

var userName_ti:mx.controls.TextInput;

var password_ti:mx.controls.TextInput;

var submit_button:mx.controls.Button;

var welcome_lbl:mx.controls.lLabel;

//Hide the Tabel
welcome_1bl.visible = false;

// Create a listener object, which is used with the Button component.
// When the Button is clicked, checks for a user name and password.
var btnlListener:0bject = new Object();
btnlListener.click = function(evt:0bject) {
// Checks that the user enters at least one character in the TextInput
// instances and returns a Boolean true/false.
var userNameEntered:Boolean = (userName_ti.text.length > 0);
var isPasswordCorrect:Boolean = (password_ti.text == "vertigo");
if (userNameEntered && isPasswordCorrect) {
var titleMessage:String = "Welcome " + userName_ti.text + "!I";
welcome_1bl.text = titleMessage;
//display the label
welcome_1bTl.visible = true;
}
b
submit_button.addEventListener("click", btnlListener);

About data types 39

For more information, see “Using functions in Flash” on page 176 and “About logical
operators” on page 155.

MovieClip data type

Movie clips are symbols that can play animation in a Flash application. They are the only data
type that refers to a graphic element. The MovieClip data type lets you control movie clip
symbols using the methods of the MovieClip class.

You do not use a constructor to call the methods of the MovieClip class. You can create a
movie clip instance on the Stage or create an instance dynamically. Then you simply call the
methods of the MovieClip class using the dot (.) operator.

Working with movie clips on the Stage The following example calls the startDrag() and
getURL(O) methods for different movie clip instances that are on the Stage:

my_mc.startDrag(true);
parent_mc.getURL("http://www.adobe.com/support/" + product);
The second example returns the width of a movie clip called my_mc on the Stage. The targeted
instance must be a movie clip, and the returned value must be a numeric value.
function getMCWidth(target_mc:MovieClip):Number {

return target_mc._width;
}
trace(getMCWidth(my_mc));
Creating movie clips dynamically Using ActionScript to create movie clips dynamically is
useful when you want to avoid manually creating movie clips on the Stage or attaching them
from the library. For example, you might create an image gallery with a large number of
thumbnail images that you want to organize on the Stage. Using
MovieClip.createEmptyMovieClip() lets you create an application entirely using
ActionScript.

To dynamically create a movie clip, use MovieClip.createEmptyMovieClip(), as shown in
the following example:

// Creates a movie clip to hold the container.
this.createEmptyMovieClip("image_mc", 9);

// Loads an image into image_mc.
image_mc.loadMovie("http://www.helpexamples.com/flash/images/imagel.jpg");

40 Data and Data Types

The second example creates a movie clip called square_mc that uses the Drawing API to draw

a rectangle. Event handlers and the startDrag() and stopDrag() methods of the MovieClip

class are added to make the rectangle draggable.

this.createEmptyMovieClip("square_mc", 1);

square_mc.lineStyle(1l, 0x000000, 100);

square_mc.beginFil1(0xFFO000, 100);

square_mc.moveTo(100, 100);

square_mc.1lineTo(200, 100

square_mc.1ineTo(200, 200

square_mc.1lineTo(100, 200

square_mc.1lineTo(100, 100

square_mc.endFil11();

square_mc.onPress = function() {
this.startDrag();

b

square_mc.onRelease = function() ({

this.stopDrag();

b

For more information, see Chapter 10, “Working with Movie Clips,” on page 313 and the

MovieClip entry in the ActionScript 2.0 Language Reference.

null data type

The null data type has only one value, null. This value means 7o value—that is, a lack of data.

You can assign the nul1 value in a variety of situations to indicate that a property or variable

does not yet have a value assigned to it. For example, you can assign the nul1 value in the

following situations:

m To indicate that a variable exists but has not yet received a value

m To indicate that a variable exists but no longer contains a value

m As the return value of a function, to indicate that no value was available to be returned by
the function

m Asa parameter to a function, to indicate that a parameter is being omitted

Several methods and functions return nul1 if no value has been set. The following example

demonstrates how you can use nul1 to test if form fields currently have form focus:

if (Selection.getFocus() == null) {
trace("no selection");
}

About data types 4

Number data type

The Number data type is a double-precision floating-point number. The minimum value of a
number object is approximately 5e-324. The maximum is approximately 1.79E+308.

You can manipulate numbers using the arithmetic operators addition (+), subtraction (-),
multiplication (*), division (/), modulo (%), increment (++), and decrement (- -). For more
information, see “Using numeric operators” on page 149.

You can also use methods of the built-in Math and Number classes to manipulate numbers.
For more information on the methods and properties of these classes, see the Math and
Number entries in ActionScript 2.0 Language Reference.

The following example uses the sqrt () (square root) method of the Math class to return the
square root of the number 100:

Math.sqrt(100);

The following example traces a random integer between 10 and 17 (inclusive):

var bottles:Number = 0;

bottles = 10 + Math.floor(Math.random() * 7);

trace("There are " + bottles + " bottles");

The following example finds the percent of the intro_mc movie clip that is loaded and
represents it as an integer:

var percentloaded:Number = Math.round((intro_mc.getByteslLoaded() /
intro_mc.getBytesTotal()) * 100);

Object data type

An object is a collection of properties. A property is an attribute that describes the object. For
example, the transparency of an object (such as a movie clip) is an attribute that describes its
appearance. Therefore, _alpha (transparency) is a property. Each property has a name and a
value. The value of a property can be any Flash data type—even the Object data type.

This lets you arrange objects inside each other, or nest them.

To specify objects and their properties, you use the dot (.) operator. For example, in the
following code, hoursWorked is a property of weeklyStats, which is a property of
employee:

employee.weeklyStats.hoursWorked

The ActionScript MovieClip object has methods that let you control movie clip symbol
instances on the Stage. This example uses the play () and nextFrame () methods:

mcInstanceName.play();
mc2InstanceName.nextFrame();

42 Data and Data Types

You can also create custom objects to organize information in your Flash application. To add
interactivity to an application with ActionScript, you need many pieces of information: for
example, you might need a user’s name, age, and phone number; the speed of a ball; the
names of items in a shopping cart; the number of frames loaded; or the key that the user
pressed last. Creating custom objects lets you organize this information into groups, simplify
your scripting, and reuse your scripts.

The following ActionScript code shows an example of using custom objects to organize
information. It creates a new object called user and creates three properties, name, age, and
phone, which are String and Numeric data types.

var user:0bject = new Object();
user.name = "Irving";

user.age = 32;

user.phone = "555-1234";

For more information, see “Example: Writing custom classes” on page 223.

String data type

A string is a sequence of characters such as letters, numbers, and punctuation marks. You
enter strings in an ActionScript statement by enclosing them in single (') or double (")
quotation marks.

A common way that you use the string type is to assign a string to a variable. For example, in
the following statement, "L7" is a string assigned to the variable favoriteBand_str:

var favoriteBand_str:String = "L7";

You can use the addition (+) operator to concatenate, or join, two strings. ActionScript treats
spaces at the beginning or end of a string as a literal part of the string. The following

expression includes a space after the comma:

var greeting_str:String = "Welcome, " + firstName;

To include a quotation mark in a string, precede it with a backslash character (\). This is called
escaping a character. There are other characters that cannot be represented in ActionScript
except by special escape sequences. The following table lists all the ActionScript escape
characters:

Escape sequence Character

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Line-feed character (ASCII 10)

\r Carriage return character (ASCII 13)

About data types 43

Escape sequence Character

\t Tab character (ASCII 9)

\" Double quotation mark

\! Single quotation mark

\\ Backslash

\000 - \377 A byte specified in octal

\X00 - \xFF A byte specified in hexadecimal

\u0000 - \uFFFF A 16-bit Unicode character specified in hexadecimal

Strings in ActionScript are immutable, just as they are in Java. Any operation that modifies a

string returns a new string.

The String class is a built-in ActionScript class. For information on the methods and
properties of the String class, see the String entry in the ActionScript 2.0 Language Reference.

undefined data type

The undefined data type has one value, undefined, and is automatically assigned to a variable
to which a value hasn’t been assigned, either by your code or user interaction.

The value undefined is automatically assigned; unlike nu11, you don’t assign undefined to a
variable or property. You use the undefined data type to check if a variable is set or defined.
This data type lets you write code that executes only when the application is running, as
shown in the following example:
if (init == undefined) f{

trace("initializing app");

init = true;
}
If your application has multiple frames, the code does not execute a second time because the
init variable is no longer undefined.

Void data type
The Void data type has one value, void, and is used in a function definition to indicate that
the function does not return a value, as shown in the following example:

//Creates a function with a return type Void
function displayFromURL(url:String):Void {}

44 Data and Data Types

About assigning data types and strict data typing

You use variables in Flash to hold values in your code. You can explicitly declare the object
type of a variable when you create the variable, which is called szrict data typing.

If you do not explicitly define an item as holding either a number, a string, or another data
type, at runtime Flash Player will try to determine the data type of an item when it is assigned.
If you assign a value to a variable, as shown in the following example, Flash Player evaluates at
runtime the element on the right side of the operator and determines that it is of the Number
data type:

var x = 3;

Because x was not declared using strict data typing, the compiler cannot determine the type;
to the compiler, the variable x can have a value of any type. (See “Assigning a data type”

on page 46.) A later assignment might change the type of x; for example, the statement

x = "hello" changes the type of x to String.

ActionScript always converts primitive data types (such as Boolean, Number, String, null, or
undefined) automatically when an expression requires the conversion and the variables aren’t
strictly typed.

Strict data typing offers several benefits at compile time. Declaring data types (strict data
typing) can help prevent or diagnose errors in your code at compile time. To declare a variable
using strict data typing, use the following format:

var variableName:datatype;

Strict data typing is sometimes called strong typing a variable.

310N

Because data type mismatches trigger compiler errors, strict data typing helps you find bugs in
your code at compile time and prevents you from assigning the wrong type of data to an
existing variable. During authoring, strict data typing activates code hinting in the
ActionScript editor (but you should still use instance name suffixes for visual elements).

Using strict data typing helps ensure that you don’t inadvertently assign an incorrect type of
value to a variable. Flash checks for typing mismatch errors at compile time, and displays an
error message if you use the wrong type of value. Therefore, using strict typing also helps to
ensure that you do not attempt to access properties or methods that are not part of an object’s
type. Strict data typing means the ActionScript editor automatically shows code hints

for objects.

About data types 45

For more information on creating variables, see “About variables” on page 50. For
information on naming variables, see “About naming variables” on page 55. For more
information on assigning data types, and the types you can assign, see “Assigning a data type”

on page 46.

For a sample of the datatypes.fla file, which shows you how to use data types in an
application, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download
and decompress the Samples zip file and navigate to the ActionScript2.0/DataTypes folder to
access the sample.

Assigning a data type

You need to assign data types whenever you define a variable, whether you declare a variable
using the var keyword, create a function argument, set function return type, or define a
variable to use within a for or for..1in loop. To assign a data type, you use post-colon syntax,
which means you follow the variable name with a colon and then the data type:

var my_mc:MovieClip;

There are many possibilities for data types, ranging from the native data types such as
Number, String, Boolean, or built-in classes that are included in Flash Player 8, such as
BitmapData, FileReference, or even custom classes that you or other developers have written.
The most common types of data types you might need to specify are the built-in data types
such as Number, String, Boolean, Array, or Object, which are shown in the following

code examples.

To assign a specific data type to an item, specify its type using the var keyword and post-
colon syntax, as shown in the following example:

// Strict typing of variable or object
var myNum:Number = 7;
var birthday:Date = new Date();

// Strict typing of parameters
function welcome(firstName:String, age:Number) {
}

// Strict typing of parameter and return value
function square(myNum:Number):Number {

var squared:Number = myNum * myNum;

return squared;
}

46 Data and Data Types

http://www.adobe.com/go/learn_fl_samples

You can declare the data type of objects based on built-in classes (Button, Date, and so on) as
well as classes and interfaces that you create. In the following example, if you have a file
named Student.as in which you define the Student class, you can specify that objects you
create are of type Student:

var myStudent:Student = new Student();

For this example, suppose you type the following code:

// in the Student.as class file
class Student {

public var status:Boolean; // property of Student objects
}

// in the FLA file

var studentMarylago:Student = new Student();

studentMarylago.status = "enrolled"; /* Type mismatch in assignment
statement: found String where Boolean is required. */

When Flash compiles this script, a type mismatch error is generated because the SWF file

expects a Boolean value.

If you write a function that doesn’t have a return type, you can specify a return type of Void
for that function. Or if you create a shortcut to a function, you can assign a data type of
Function to the new variable. To specify that objects are of type Function or Void, see the
following example:
function sayHello(name_str:String):Void {

trace("Hello, " + name_str);
}
sayHello("world"); // Hello, world
var greeting:Function = sayHello;
greeting("Augustus"); // Hello, Augustus
Another advantage of strict data typing is that Flash automatically shows code hints for built-
in objects when they are strictly typed. For more information, see “About assigning data types
and strict data typing” on page 45.

Files published using ActionScript 1.0 do not respect strict data typing assignments at compile
time, so assigning the wrong type of value to a variable that you have strictly typed doesn’t
generate a compiler error.

var myNum:String = "abc";

myNum = 12;

/* No error in ActionScript 1.0, but type mismatch error in ActionScript 2.0
*/

About data types 47

The reason for this is that when you publish a file for ActionScript 1.0, Flash interprets a
statement such as var myNum:String = "abc" as slash syntax rather than as strict typing.
(ActionScript 2.0 doesn’t support slash syntax.) This behavior can result in an object that is
assigned to a variable of the wrong type, causing the compiler to let illegal method calls and
undefined property references pass through unreported.

Files published using ActionScript 2.0 can optionally use data typing. Therefore, if you
implement strict data typing in your code, make sure you set your publish settings to
ActionScript 2.0. You can specify the publish settings and define which version of
ActionScript you want to publish your files as by modifying the publish settings from the
main menu (File > Publish Settings) or by clicking the Settings button in the Property
inspector (make sure no instances are selected). To use a specific version of ActionScript or the
Flash Player, select the Flash tab in the Publish Settings dialog box, and make a selection from
the ActionScript version pop-up menu.

For information on type checking, see “About type checking” on page 48.

About type checking

Type checking refers to verifying that the type of a variable and an expression are compatible.
Therefore, Flash checks that the type you specify for a variable matches the value(s) that you
assign to it. For more information on strict data types and assigning data types, see “About
assigning data types and strict data typing” on page 45 and “Assigning a data type”

on page 46.

Type checking can occur at either compile time or runtime. If you use strict data typing, type
checking occurs at compile time. Because ActionScript is a dynamically typed language,
ActionScript can also type checking at runtime.

For example, the following code does not specify the data type of the parameter xParam. At
runtime, you use the parameter to hold a value of type Number and then a value of type
String. The dynamicTest () function then uses the typeof operator to test whether the
parameter is of type String or Number.

function dynamicTest(xParam) {

if (typeof(xParam) == "string") {
var myStr:String = xParam;
trace("String: " + myStr);

} else if (typeof(xParam) == "number") f{
var myNum:Number = xParam;
trace("Number: " + myNum);

}

}
dynamicTest(100);
dynamicTest("one hundred");

48 Data and Data Types

You do not need to explicitly add data type information in your ActionScript. The
ActionScript compiler lets you use properties and invoke methods that do not exist at compile
time. This lets you create properties or assign dynamically methods at runtime.

An example of the flexibility afforded by dynamic type checking involves the use of properties
and methods that are not known at compile time. Because the code is less restrictive, it can
lead to benefits in some coding situations. For example, the following code creates a function
named runtimeTest() that invokes a method and returns a property, neither of which is
known to the compiler. The code will not generate a compile-time error, but if the property or
method is not accessible at runtime, then a runtime error will occur.
function runtimeTest(myParam) {

myParam.someMethod();

return myParam.someProperty;
}

About determining data type

While testing and debugging your programs, you might discover problems that seem to be
related to the data types of different items. Or if you use variables that are not explicitly
associated with a data type, you might find it useful to know the data type of a given variable.
Using ActionScript, you can determine an item’s data type. You can use the typeof operator
to return information about data.

Use the typeof operator to get the data types, but remember that typeof does not return
information about the class to which an instance belongs.

The following example shows how you can use the typeof operator to return the kind of
object that you trace:

// Create a new instance of LoadVars class.
var my_lv:LoadVars = new LoadVars();

/* typeof operator doesn't specify class, only specifies that my_lv is an
object */

var typeResult:String = typeof(my_1v);

trace(typeResult); // object

In this example, you create a new String variable named myName, and then convert it into a
Number data type:

var myName:String = new String("17");

trace(myName instanceof String); // true

var myNumber:Number = new Number(myName);
trace(myNumber instanceof Number); // true

About data types 49

For more information about these operators, see typeof operator and instanceof
operator in the ActionScript 2.0 Language Reference. For more information on testing and
debugging, see Using Flash. For more information on inheritance and interfaces, see Chapter
7, “Inheritance,” on page 263. For more information on classes, see Chapter 6, “Classes,” on
page 187.

About variables

A variable is a container that holds information. The following ActionScript shows what a
variable looks like in ActionScript:

var myVariable:Number = 10;

This variable holds a numerical value. The use of :Number in the previous code assigns the
type of value that variable holds, called data typing. For more information on data typing, see
“About assigning data types and strict data typing” on page 45 and “Assigning a data type”
on page 46.

The container (represented by the variable name) is always the same throughout your
ActionScript, but the contents (the value) can change. You can change the value of a variable
in a script as many times as you want. When you change the value of a variable while the SWF
file plays, you can record and save information about what the user has done, record values
that change as the SWF file plays, or evaluate whether a condition is true or false. You
might need the variable to continually update while the SWF file plays, such as when a
player’s score changes in a Flash game. Variables are essential when you create and handle user
interaction in a SWF file.

It’s a good idea to assign a value to a variable the first time you declare the variable. Assigning
an initial value is called initializing the variable, and it’s often done on Frame 1 of the
Timeline or from within a class that loads when the SWF file begins to play. There are
different kinds of variables, which are affected by scope. For more information on different
kinds of variables and scope, see “About variables and scope” on page 60.

Initializing a variable helps you track and compare the variable’s value as the SWF file
plays.

Flash Player 7 and later evaluate uninitialized variables differently than Flash Player 6
and earlier. If you have written scripts for Flash Player 6 and plan to write or port scripts
for Flash Player 7 or later, you should be understand these differences to avoid
unexpected behavior.

aton| | au

50 Data and Data Types

Variables can hold different types of data; for more information, see “About data types”
on page 36. The type of data that a variable contains affects how the variable’s value changes
when you assign that value in a script.

Typical types of information that you can store in a variable include a URL (String type), a
user’s name (String type), the result of a mathematical operation (Number type), the number
of times an event occurred (Number type), or whether a user has clicked a particular button
(Boolean type). Each SWF file and object instance (such as a movie clip) has a set of variables,
with each variable having a value independent of variables in other SWF files or movie clips.

To view the value of a variable, use the trace() statement to send the value to the Output
panel. Then, the value displays in the Output panel when you test the SWF file in the test
environment. For example, trace(hoursWorked) sends the value of the variable
hoursWorked to the Output panel in the test environment. You can also check and set the
variable values in the Debugger in the test environment.

For more information on variables, see the following topics:

m “About declaring variables” on page 51

m “About assigning values” on page 52

m “About naming variables” on page 55

m “Using variables in an application” on page 56

m “About variables and scope” on page 60

m “About default values” on page 52

m “About operators and variables” on page 54

m “About loading variables” on page 64

m “Using variables in a project” on page 69

About declaring variables

You can declare variables on a frame in the timeline, directly on an object, or within an
external class file.

Define variables using the var keyword and follow the variable naming conventions. You can
declare a variable called firstName, as shown in the following example:

var firstName:String;

When you declare a variable, you assign a data type to the variable. In this case, you assign the
String data type to the firstName variable. For more information on assigning data types, see
“About assigning data types and strict data typing” on page 45.

About variables 51

About default values

A default value is the value that a variable contains before you set its value. You initialize a
variable when you set its value for the first time. If you declare a variable, but do not set its
value, that variable is uninitialized. The value of an uninitialized variable defaults to the value
undefined. For more information on creating and using variables, see “About variables”

on page 50.

About assigning values

You can define a value as the current contents of a variable. The value can be a strings,
numbers, arrays, objects, XML, dates, or even custom classes that you create. Remember, you
declare a variable in Flash using the var keyword. When you declare the variable, you also
assign a data type to the variable. You can also assign a value to a variable, as long as the value
matches the data type you assign to the variable.

The following example shows how you might create a variable called catName:
var catName:String;

After you declare the variable, you can assign a value to it. You might follow the previous line
of ActionScript with this line:

catName = "Pirate Eye";
g Because Pirate Eye is a string, the value needs to be enclosed in straight quotes
r_l|1 (quotation marks).

This example assigns the value of Pirate Eye to the catName variable. When you declare the
variable, you can also assign a value to it instead of assigning it afterwards (as in the previous
examples). You could set the catName variable when you declare it, as shown in the
following example:

var catName:String = "Pirate Eye";

If you want to display the value of the catName variable in the test environment, you can use
the trace() statement. This statement sends the value to the Output panel. You can trace the
value of the catName variable and see that the actual value doesn’t include the quotation
marks by using the following ActionScript:

var catName:String = "Pirate Eye";
trace(catName); // Pirate Eye

52 Data and Data Types

Remember that the value you assign must match the data type that you assign to it (in this

case, String). If you later try to assign a number to the catName variable, such as catName =

10, you will see the following error in the Output panel when you test the SWF file:

Type mismatch in assignment statement: found Number where String is
required.

This error tells you that you attempted to set the wrong data type to a specified variable.

When you assign a numeric value to a variable, the quotation marks aren’t necessary, as shown
in the following code:

var numWrinkles:Number = 55;

If you want to change the value of numiirinkles later in your code, you can assign a new
value using the following ActionScript:

numWrinkles = 60;

When you reassign a value to an existing variable, you don’t need to use the var keyword or
define the variable’s data type (in this case, : Number).

If the value is numeric or Boolean (true or false), the value doesnt use straight quotes
(quotation marks). Examples of numeric and Boolean values are shown in the
following snippet:

var age:Number = 38;

var married:Boolean = true;

var hasChildren:Boolean = false;

In the previous example, the variable age contains an integer (nondecimal) value, although
you could also use a decimal or floating-point value such as 38.4. Boolean variables (such as
married or hasChildren) have only two possible values, true or false.

If you want to create an array and assign values to it, the format is slightly different, as shown
in the following code:

var childrenArr:Array = new Array("Pylon "Smithers", "Gil");

There is an alternative (shorthand) syntax for creating an array using array access operators,
which use the bracket ([1) punctuators. You can rewrite the previous example as follows:

var childrenArr:Array = ["Pylon", "Smithers", "Gil"];

For more information on creating arrays and the array access operators, see “About arrays”
on page 125 and “About using dot syntax to target an instance” on page 82.

About variables 53

Similarly, you can create a new object called my0bj. You can use either of the following ways

to create a new object. The first (and longer) way to code an array is as follows:

var myObj:0bject = new Object();

myObj.firstName = "Steve";

myObj.age = 50;

myObj.childrenArr = new Array("Mike", "Robbie", "Chip");

The second, shorthand way you can code the myQbj array is as follows:

var myObj:0bject = {firstName:"Steve", age:50, childrenArr:["Mike",
"Robbie", "Chip"J};

As you see in this example, using the shorthand method can save a lot of typing and time,

especially when you define instances of objects. It is important to be familiar with this

alternate syntax because you will encounter it if you work in teams or when you work with

third-party ActionScript code that you find, for example, on the Internet or in books.

Not all variables need to be explicitly defined. Some variables are created by Flash
automatically for you. For example, to find the dimensions of the Stage, you could use
the values of the following two predefined values: Stage.width and Stage.height.

310N

About operators and variables

You might wonder about the mathematical symbols in your code. These symbols are called
operators in ActionScript. Operators calculate a new value from one or more values, and you
use an operator to assign a value to a variable in your code. You use the equality (=) operator
to assign a value to a variable:

var username:String = "Gus";

Another example is the addition (+) operator, which you use to add two or more numeric
values to produce a new value. If you use the + operator on two or more string values, the
strings will be concatenated. The values that operators manipulate are called gperands.
When you assign a value, you use an operator to define a value to a variable. For example, the
following script uses the assignment operator to assign a value of 7 to the variable
numChildren:

var numChildren:Number = 7;

If you want to change the value of the numChildren variable, use the following code:

numChildren = 8;

You don’t need to use var because the variable has previously been defined.

310N

54 Data and Data Types

For more information on using operators in your ActionScript, see “About operators”
on page 137.

About naming variables

Be careful when you start naming variables, because although they can have nearly any name,
there are some rules. A variable’s name must follow these rules:

m A variable must be an identifier.

An identifier is the name of a variable, property, object, function, or method. The first
character of an indentifier must be a letter, underscore (_), or dollar sign ($). Each
subsequent character can be a number, letter, underscore, or dollar sign.

310N

m A variable cannot be a keyword or an ActionScript literal such as true, false, null, or
undefined. For more information on literals, see “About literals” on page 94.

m A variable must be unique within its scope (see “About variables and scope” on page 60).
m A variable should not be any element in the ActionScript language, such as a class name.

If you don’t follow the rules when you name a variable, you might experience syntax errors or
unexpected results. In the following example, if you name a variable new and then test your

document, Flash will generate a compiler error:

// This code works as expected.

var helloStr:String = new String();

trace(helloStr.length); // 0

// But if you give a variable the same name as a built-in class...

var new:String = "hello"; //error: Identifier expected

var helloStr:String = new String();

trace(helloStr.length); // undefined

The ActionScript editor supports code hints for built-in classes and for variables that are based
on these classes. If you want Flash to provide code hints for a particular object type that you
assign to a variable, you can strictly type the variable. Code hints provide tooltip-style syntax

hints and a pop-up menu that helps you write your code quickly.
For example, type the following code:

var members:Array = new Array();
members.

As soon as you type the period (.) in the Actions panel, Flash displays a list of methods and
properties available for Array objects.

For recommended coding conventions for naming variables, see “Naming variables”

on page 670.

About variables 55

Using variables in an application

In this section, you use variables in short code snippets of ActionScript. You need to declare
and initialize a variable in a script before you can use it in an expression. Expressions are
combinations of operands and operators that represent a value. For example, in the expression
i+2, 1 and 2 are operands, and + is an operator.

If you do not initialize a variable before you use it in an expression, the variable is undefined
and may cause unexpected results. For more information on writing expressions, see Chapter
4, “Syntax and Language Fundamentals,” on page 77.

If you use an undefined variable, as shown in the following example, the variable’s value in
Flash Player 7 and later will be NaN, and your script might produce unintended results:

var squared:Number = myNum * myNum;
trace(squared); // NaN
var myNum:Number = 6;

In the following example, the statement that declares and initializes the variable myNum comes
first, so squared can be replaced with a value:

var myNum:Number = 6;
var squared:Number = myNum * myNum;
trace(squared); // 36

Similar behavior occurs when you pass an undefined variable to a method or function, as

shown next.

To compare undefined and defined variables being passed to a function:

1. Drag a Button component to the Stage from the Components panel.
2. Open the Property inspector and type bad_button into the Instance Name text box.
3. Type the following code on Frame 1 of the Timeline.

// Does not work

function badClicklListener(evt:0bject):Void {
getURL(targetUrl);
var targetUrl:String = "http://www.adobe.com";

}

bad_button.addEventListener("click", badClickListener);

4. Select Control > Test Movie, and notice that the button does not work (it doesn’t open the
web page).
5. Drag another Button component onto the Stage. Select the button.

6. Open the Property inspector, and type good_button into the Instance Name text box.

56 Data and Data Types

7.

Add the following ActionScript to Frame 1 of the Timeline (following the previous
ActionScript you added):
// Works
function goodClickListener(evt:0bject):Void {
var targetUrl:String = "http://www.adobe.com";
getURL(targetUrl);

}
good_button.addEventListener("click", goodClickListener);

Select Control > Test Movie and click the second button you added to the Stage.

This button properly opens the web page.

The type of data that a variable contains affects how and when the variable’s value changes.

Primitive data types, such as strings and numbers, are passed by value, which means the current

value of the variable is used rather than a reference to that value. Examples of complex data

types include the Array and Object data types.

In the following example, you set myNum to 15 and copy the value into otherNum. When you

change myNum to 30 (in line 3 of the code), the value of otherNum remains 15 because

otherNum doesn’t look to myNum for its value. The otherNum variable contains the value of

myNum that it receives (in line 2 of the code).

To use variables in your ActionScript:

1.

2.

3.

Create a new Flash document, and save it as var_example.fla.

Select Frame 1 of the Timeline, and type the following code into the Actions panel:

var myNum:Number = 15;

var otherNum:Number = myNum;

myNum = 30;

trace(myNum); // 30

trace(otherNum); // 15

When you change myNum to 30 (in line 3 of the code), the value of otherNum remains 15
because otherNum doesn’t look to myNum for its value. The otherNum variable contains the

value of myNum that it receives (in line 2 of the code).

Select Control > Test Movie to see the values display in the Output panel.

About variables 57

4. Now add the following ActionScript after the code you added in step 2:

function sqgr(myNum:Number):Number {
myNum *= myNum;
return myNum;
}
var inValue:Number = 3;
var outValue:Number = sqr(inValue);
trace(inValue); // 3
trace(outValue); // 9
In the this code, the variable inValue contains a primitive value, 3, so the value passes to
the sqr () function, and the returned value is 9. The value of the variable inValue does

not change, although the value of myNum in the function changes.
5. Select Control > Test Movie to see the values display in the Output panel.

The Object data type can contain such a large amount of complex information that a variable
with this type doesn’t hold an actual value; it holds a reference to a value. This reference is
similar to an alias that points to the contents of the variable. When the variable needs to know
its value, the reference asks for the contents and returns the answer without transferring the
value to the variable.

For information on passing a variable by reference, see “Passing a variable by reference”
on page 58.

Passing a variable by reference

Because the Array and Object data types hold a reference to a value instead of containing its
actual value, you need be careful when you work with arrays and objects.

The following example shows how to pass an object by reference. When you create a copy of
the array, you actually create only a copy of the reference (or alias) to the array’s contents.
When you edit the contents in the second array, you modify both the contents of the first and
second array because they both point to the same value.

To pass an object by reference:
1. Select File > New and then select Flash Document to create a new FLA file, and save it as
copybyref.fla.

2. Select Frame 1 of the Timeline, and type the following code into the Actions panel:

var myArray:Array = new Array("tom", "josie");
var newArray:Array = myArray;

myArray[1] = "jack";

trace(myArray); // tom,jack

trace(newArray); // tom,jack

58 Data and Data Types

3. Select Control > Test Movie to test the ActionScript.

This ActionScript creates an Array object called myArray that has two elements. You
create the variable newArray and pass a reference to myArray. When you change the
second element of myArray to jack, it affects every variable with a reference to it. The
trace() statement sends tom, jack to the Output panel.

Flash uses a zero-based index, which means that O is the first item in the array, 1is
the second, and so on.

310N

In the following example, myArray contains an Array object, so you pass the array to function

zeroArray () by reference. The function zeroArray() accepts an Array object as a

parameter and sets all the elements of that array to 0. It can modify the array because the array

is passed by reference.

To pass an array by reference:

1.

Select File > New and then select Flash Document to create a new FLA file, and save it as
arraybyref.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:

function zeroArray (theArr:Array):Void {
var 1:Number;
for (i = 0; i
theArr[i] =

}

< theArr.length; i++) {
0;
}

var myArr:Array = new Array();

myArr[0] = 1;
myArr[1] = 2;
myArr[2] = 3;

trace(myArr); // 1,2,3
zeroArray(myArr) ;
trace(myArr); // 0,0,0

Select Control > Test Movie to test your ActionScript.

The first trace() statement in this ActionScript displays the original contents of the
myArray array (1,2,3). After you call the zeroArray () function and pass a reference to
the myArray array, each of the array’s values are overwritten and set to zero. The
subsequent trace() statement displays the new contents of the myArray array (0,0, 0).
Because you pass the array by reference and not by value, you don’t need to return the
updated contents of the array from within the zeroArray () function.

For more information on arrays, see “About arrays” on page 125.

About variables 59

About variables and scope

A variables scope refers to the area in which the variable is known (defined) and can be
referenced. The area in which the variable is known might be within a certain timeline or
inside a function, or it might be globally known throughout the entire application.For more
information about scope, see “About scope and targeting” on page 87.

Understanding variable scope is important when you develop Flash applications with
ActionScript. Scope indicates not only when and where you can refer to variables but also for
how long a particular variable exists in an application. When you define variables in the body
of a function, they cease to exist as soon as the specified function ends. If you try to refer to
objects in the wrong scope or to variables that have expired, you get errors in your Flash
documents, which lead to unexpected behavior or broken functionality.

There are three types of variable scopes in ActionScript:

m Global variables and functions are visible to every timeline and scope in your document.
Therefore, a global variable is defined in all areas of your code.

m Timeline variables are available to any script on that timeline.

m Local variables are available within the function body in which they are declared
(delineated by curly braces). Therefore, local variables are only defined in a part of

your code.

For guidelines on using scope and variables, see Chapter 4, “About scope and targeting,” on

page 87.
g ActionScript 2.0 classes that you create support public, private, and static variable
H scopes. For more information, see “About class members” on page 211 and “Controlling
member access in your classes” on page 233.

You cannot strict type global variables. For information and a workaround, see “Global
variables” on page 60.

Global variables

Global variables and functions are visible to every timeline and scope in your document. To
declare (or create) a variable with global scope, use the _global identifier before the variable
name and do not use the var = syntax. For example, the following code creates the global
variable myName:

var _global.myName = "George"; // Incorrect syntax for global variable
_global.myName = "George"; // Correct syntax for global variable

60 Data and Data Types

However, if you initialize a local variable with the same name as a global variable, you don’t
have access to the global variable while you are in the scope of the local variable, as shown in

the following example:

_global.counter = 100; // Declares global variable
trace(counter); // Accesses the global variable and displays 100
function count():Void {
for (var counter:Number = 0; counter <= 2; counter++) { // Local variable
trace(counter); // Accesses local variable and displays 0 through 2
}
}
count();
trace(counter); // Accesses global variable and displays 100
This example simply shows that the global variable is not accessed in the scope of the count ()
function. However, you could access the global-scoped variable if you prefix it with _global.
For example, you could access it if you prefix the counter with _global as shown in the
following code:

trace(_global.counter);
You cannot assign strict data types to variables that you create in the _global scope, because
you have to use the var keyword when you assign a data type. For example, you couldn't do:

_global.foo:String = "foo"; //syntax error
var _global.foo:String = "foo"; //syntax error

The Flash Player version 7 and later security sandbox enforces restrictions when accessing
global variables from SWF files loaded from separate security domains. For more information,
see Chapter 16, “Understanding Security,” on page 631.

Timeline variables

Timeline variables are available to any script on that particular timeline. To declare timeline
variables, use the var statement and initialize them in any frame in the timeline. The variable
is available to that frame and all following frames, as shown in the following example.

To use timeline variables in a document:
1. Create a new Flash document, and name it timelinevar.fla.
2. Add the following ActionScript to Frame 1 of the Timeline:

var myNum:Number = 15; /* initialized in Frame 1, so it's available to
all frames */

3. Select Frame 20 of the Timeline.
4. Select Insert > Timeline > Blank Keyframe.
5. With the new keyframe selected, type the following ActionScript into the Actions panel:

trace(myNum) ;

About variables 61

6. Select Control > Test Movie to test the new document.

The value 15 appears in the Output panel after approximately a second. Because Flash
documents loop by default, the value 15 continually traces in the Output panel every time
the playhead reaches Frame 20 in the Timeline. To stop the looping action, add stop () ;
after the trace() statement.

You must declare a timeline variable before trying to access it in a script. For example, if you
put the code var myNum:Number = 15; in Frame 20, any scripts attached to a frame before
Frame 20 cannot access myNum and are undefined instead of containing the value 15.

Local variables

When you use the var statement inside a function block, you declare local variables. When
you declare a local variable within a function block (also called function definition), it is
defined within the scope of the function block, and expires at the end of the function block.
Therefore, the local variable only exists within that function.

For example, if you declare a variable named myStr within a function named TocalScope,
that variable will not be available outside of the function.

function localScope():Void {

var myStr:String = "local";
;oca18cope():
trace(myStr); // Undefined, because myStr is not defined globally
If the variable name you use for your local variable is already declared as a timeline variable,
the local definition takes precedence over the timeline definition while the local variable is in
scope. The timeline variable will still exist outside of the function. For example, the following
code creates a timeline string variable named str1, and then creates a local variable of the
same name inside the scopeTest () function. The trace statement inside the function
generates the local definition of the variable, but the trace statement outside the function
generates the timeline definition of the variable.

var strl:String = "Timeline";
function scopeTest():Void {
var strl:String = "Local";

trace(strl); // Local
}
scopeTest();
trace(strl); // Timeline
In the next example, you can see how certain variables live only for the life of a specific
function and can generate errors if you try to refer to the variable outside the scope of

that function.

62 Data and Data Types

To use local variables in an application:

1. Create a new Flash document.

2. Open the Actions panel (Window > Actions) and add the following ActionScript to Frame
1 of the Timeline:

function sayHello(nameStr:String):Void {
var greetingStr:String = "Hello, " + nameStr;
trace(greetingStr);
}
sayHello("world"); // Hello, world
trace(nameStr); // undefined
trace(greetingStr); // undefined

3. Select Control > Test Movie to test the document.

Flash displays the string “Hello, world” in the Output panel and displays undefined for
the values of nameStr and greetingStr because the variables are no longer available in
the current scope. You can only reference nameStr and greetingStr in the execution of
the sayHel1o function. When the function exits, the variables cease to exist.

The variables i and j are often used as loop counters. In the following example, you use i as a

local variable; it exists only inside the initArray() function:

var myArr:Array = new Array();
function initArray(arraylLength:Number):Void {
var i:Number;
for(i = 0; i < arraylLength; i++) {
myArr[i] = 1 + 1;
}
}
trace(myArr); // <blank>
initArray(3);
trace(myArr); // 1,2,3
trace(i); // undefined

It’s also common to see the following syntax fora for loop: for (var i:Number = 0;
i < arraylength; i++) {...}

310N

This example displays undefined in the Flash test environment because the variable 1 isn't
defined in the main timeline. It exists only in the initArray() function.

You can use local variables to help prevent name conflicts, which can cause unexpected results
in your application. For example, if you use age as a local variable, you could use it to store a
person’s age in one context and the age of a person’s child in another context. There is no

conflict in this situation because you are using these variables in separate scopes.

About variables 63

It’s good practice to use local variables in the body of a function so the function can act as an
independent piece of code. You can change a local variable only within its own block of code.
If an expression in a function uses a global variable, code or events outside the function can

change its value, which changes the function.
You can assign a data type to a local variable when you declare it, which helps prevent

assigning the wrong type of data to an existing variable. For more information, see “About
assigning data types and strict data typing” on page 45.

About loading variables

In the following sections, you load variables from the server in different ways or into a
document from a URL string or FlashVars (you can use FlashVars to pass variables into Flash)
in your HTML code. These practices demonstrate that there are several ways to use variables
outside a SWF file.

You can find more information on loading variables (such as name/value pairs) in Chapter 15,
“Working with External Data,” on page 589.

You can use variables in different ways in a SWF file, depending on what you need the
variables for. For more information, see the following topics:

m “Using variables from the URL” on page 64

m “Using FlashVars in an application” on page 67

m “Loading variables from a server” on page 68

Using variables from the URL

When you develop an application or simple example in Flash, you might want to pass values
from an HTML page into your Flash document. The passed values are sometimes known as
the guery string, or URL-encoded variables. URL variables are useful if you want to create a
menu in Flash, for example. You can initialize the menu to show the correct navigation by
default. Or you can build an image viewer in Flash and define a default image to show on
the website.

To use URL variables in a document:

1. Create a Flash document, and name it urlvariables.fla.
2. Select File > Save As, and save the document on your desktop.

3. Select Frame 1 of the Timeline, and add the following code in the Actions panel:

this.createTextField("myTxt", 100, 0, 0, 100, 20);
myTxt.autoSize = "left";
myTxt.text = _levelO.myURL;

64 Data and Data Types

4. Select Control > Test Movie to test the SWF file in Flash Player.

The text field displays undefined. If you want to make sure the variables are properly
defined before you proceed, you need to check for the existence of the variables in Flash.
You can do this by checking to see if they are undefined.

5. To check to see if the variable is defined, modify the ActionScript you added to the Actions
panel in step 3 to match the following code. Add the code that appears in bold:

this.createTextField("myTxt", 100, 0, 0, 100, 20);
myTxt.autoSize = "left";
if (_levelO.myURL == undefined) {
myTxt.text = "myURL is not defined";
} else {
myTxt.text = _levelO.myURL;
}

When you publish your Flash document, an HTML document is created by default in the
same directory as the SWF file. If an HTML file was not created, select File > Publish
settings, and make sure you select HTML in the Formats tab. Then publish your

document again.

The following code demonstrates the HTML in the document that is responsible for
embedding a Flash document in an HTML page. You need to look at this HTML to
understand how URL variables work in the following step (where you add additional code
for URL variables).

<object classid="clsid:d27cdbbe-aebd-11cf-96b8-444553540000"
codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cabffversion=8,0,0,0" width="550" height="400"
id="urlvariables" align="middle">

<param name="allowScriptAccess" value="sameDomain" />

<param name="movie" value="urlvariables.swf" />

<param name="quality" value="high" />

<param name="bgcolor" value="#ffffff" />

<embed src="urlvariables.swf" quality="high" bgcolor="#ffffff"
width="550" height="400" name="urlvariables" align="middle"
allowScriptAccess="sameDomain" type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer" />

</object>

6. To pass variables from the generated HTML document to your Flash document, you can
pass variables after the path and filename (urlvariables.swf). Add the bold text to the
HTML file that was generated on your desktop.

<object classid="clsid:d27cdbbe-aebd-11cf-96b8-444553540000"
codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cabffversion=8,0,0,0" width="550" height="400"
id="urlvariables" align="middle">

About variables 65

<param name="allowScriptAccess" value="sameDomain" />

<param name="movie" value="urlvariables.swf?myURL=http://
weblogs.macromedia.com" />

<param name="quality" value="high" />

<{param name="bgcolor" value="#ffffff" />

<embed src="urlvariables.swf?myURL=http://weblogs.macromedia.com"
quality="high" bgcolor="#ffffff" width="550" height="400"
name="urlvariables" align="middle" allowScriptAccess="sameDomain"
type="application/x-shockwave-flash" pluginspage="http://
www.adobe.com/go/getflashplayer" />

</object>

7. Ifyou want to pass multiple variables to Flash, you need to separate the name/values pairs
with an ampersand (&). Find the following code from step 6:
?myURL=http://weblogs.macromedia.com
Replace it with the following text:
myURL=http://weblogs.macromedia.com&myTitle=adobe+News+Aggregator
Remember, you need to make the same changes to both the object tag and the embed tag
to maintain consistency between all browsers. You might notice that the words are
separated by + punctuators. The words are separated this way because the values are URL-
encoded and the + punctuator represents a single blank space.

Z | |For a list of common URL-encoded special characters, see the Flash TechNote,

o))])

H URL Encoding: Reading special characters from a text file.
Because the ampersand (&) serves as a delimiter for different name/value pairs, if the values
you are passing contain ampersands, unexpected results might occur. Given the nature of
name/value pairs and parsing, if you had the following values being passed to Flash:
my.swf?name=PB+&+J&fTavor=strawberry+rhubarb
Flash would build the following variables (and values) into the root scope:

'name': 'PB ' (note space at end of value)

"'J': "' (note space at beginning of variable name and an empty value)
'flavor': 'strawberry rhubarb'
To avoid this, you need to escape the ampersand (&) character in the name/value pair with
its URL-encoded equivalent (%26).

8. Open the urlvariables.html document, and find the following code:
?myURL=http://weblogs.macromedia.com&myTitle=Adobe+News+Aggregator
Replace it with the following code:

?myURL=PB+%26+J&flavor=strawberry+rhubarb

66 Data and Data Types

http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_14143

. Save the revised HTML, and test your Flash document again.

You see that Flash created the following name/value pairs.
'name': 'PB & J'

'flavor': 'strawberry rhubarb'

g All browsers will support string sizes as large as 64K (65535 bytes) in length.

r_||1 FlashVars must be assigned in both the object and embed tags in order to work on
all browsers.

Using FlashVars in an application

Using FlashVars to pass variables into Flash is similar to passing variables along the URL in
the HTML code. With FlashVars, instead of passing variables after the filename, variables are

passed in a separate param tag as well as in the embed tag.

To use FlashVars in a document:

1.

2.

Create a new Flash document, and name it myflashvars.fla.

Select File > Publish Settings and make sure that HTML is selected, and then click OK to
close the dialog box.

Add the following ActionScript to Frame 1 of the main Timeline:

this.createTextField("myTxt", 100, 0, 0, 100, 20);
myTxt.autoSize = "left";
if (_level0.myURL == undefined) {
myTxt.text = "myURL is not defined";
}oelse |
myTxt.text = _levelO.myURL;
}

I By default, HTML code publishes to the same location as myflashvars.fla.

310N

Select File > Publish to publish the SWF and HTML files.

Open the directory containing the published files (where you saved myflashvars.fla on your
hard drive) and open the HTML document (myflashvars.html by default) in an HTML
editor such as Dreamweaver or Notepad.

Add the code that appears in bold below, so your HTML document matches the following:

<object classid="clsid:d27cdbbe-aebd-11cf-96b8-444553540000"
codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cabsversion=8,0,0,0" width="550" height="400" id="myflashvars"
align="middle">

About variables 67

<param name="allowScriptAccess" value="sameDomain" />

<param name="movie" value="myflashvars.swf" />

<param name="FlashVars" value="myURL=http://weblogs.adobe.com/">

<param name="quality" value="high" />

{param name="bgcolor" value="#ffffff" />

<embed src="myflashvars.swf" FlashVars="myURL=http://weblogs.adobe.com/"
quality="high" bgcolor="#ffffff" width="550" height="400"
name="myflashvars" align="middle" allowScriptAccess="sameDomain"
type="application/x-shockwave-flash" pluginspage="http://
www.adobe.com/go/getflashplayer" />

</object>

This code passes a single variable called myURL, which contains the string
http://weblogs.macromedia.com. When the SWF file loads, a property named myURL
is created in the _levelO scope. One of the advantages of using FlashVars or passing
variables along the URL is that the variables are immediately available in Flash when the
SWE file loads. This means you don’t have to write any functions to check if the variables
have finished loading, which you would need to do if you loaded variables using LoadVars
or XML.

Save your changes to the HTML document, and then close it.

Double click myflashvars.html to test the application.

The text http://weblogs.macromedia.com, a variable in the HTML file, appears in the
SWE file.

All browsers will support string sizes as large as 64K (65,535 bytes) in length.
FlashVars must be assigned in both the object and embed tags in order to work on
all browsers.

310N

Loading variables from a server

There are several ways to load variables into Flash from external sources (such as text files,

XML documents, and so on). You can find much more information on loading variables,

including name/value pairs, in Chapter 15, “Working with External Data,” on page 589.

In Flash, you can easily load variables using the LoadVars class, as shown in the next example.

68

Data and Data Types

To load variables from a server:

1.

Create a new Flash document.

2. Select Frame 1 of the Timeline, and add the following ActionScript in the Actions panel:

var my_lv:LoadVars = new LoadVars();
my_lv.onlLoad = function(success:Boolean):Void {
if (success) {
trace(this.dayNames); // Sunday,Monday,Tuesday,...
b oelse {
trace("Error");
}
}
my_lv.load("http://www.helpexamples.com/flash/params.txt");

This code loads a text file from a remote server and parses its name/value pairs.

—| |Download or view the text file (http://www.helpexamples.com/flash/params.txt) in a
T) :
browser if you want to know how the variables are formatted.

Select Control > Test Movie to test the document.

If the file successfully loads, the complete event is called and the Output panel displays
the value of dayNames. If the text file cannot be downloaded, the success argument is set
to false and the Output panel displays the text Error.

Using variables in a project

When you build animations or applications with Flash, there are very few situations in which
you don’t need to use any kind of variable in your project. For example, if you build a login

system, you might need variables to determine whether the user name and password are valid,

or whether they are filled in at all.

You can find more information on loading variables (such as name/value pairs) in Chapter 15,

“Working with External Data,” on page 589.

In the following example, you use variables to store the path of an image you are loading with

the Loader class, a variable for the instance of the Loader class, and a couple of functions that

are called depending on whether the file is successfully loaded or not.

About variables 69

http://www.helpexamples.com/flash/params.txt

To use variables in a project:

1. Create a new Flash document, and save it as imgloader.fla.
2. Select Frame 1 of the Timeline, and add the following ActionScript to the Actions panel:
/* Specify default image in case there wasn't a value passed using
FlashVars. */
var imgUrl:String = "http://www.helpexamples.com/flash/images/
imagel.jpg";
if (_levelO.imgURL != undefined) {
// 1f image was specified, overwrite default value.
imgUrl = _Tevel0O.imgURL;
}
this.createEmptyMovieClip("img_mc", 10);
var mclListener:0bject = new Object();
mcllistener.onlLoadInit = function(target_mc:MovieClip):Void {
target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;
}
mcllistener.onlLoadError = function(target_mc:MovieClip):Void {
target_mc.createTextField("error_txt", 1, 0, 0, 100, 20);
target_mc.error_txt.autoSize = "left";
target_mc.error_txt.text = "Error downloading specified image;\n\t" +
target_mc._url;
}
var myMCL:MovieCliplLoader = new MovieClipLoader();
myMCL.addListener(mclListener);
myMCL.ToadClip(imgUrl, img_mc);
The first line of code specifies the image that you want to dynamically load into your
Flash document. Next, you check whether a new value for imgURL was specified using
FlashVars or URL-encoded variables. If a new value was specified, the default image URL
is overwritten with the new value. For information on using URL variables, see “Using
variables from the URL” on page 64. For information on FlashVars, see “Using FlashVars
in an application” on page 67.
The next couple of lines of code define the MovieClip instance, and a Listener object for
the future MovieClipLoader instance. The MovieClipLoader’s Listener object defines two
event handlers, onLoadInit and onLoadError. The handlers are invoked when the image
successfully loads and initializes on the Stage, or if the image fails to load. Then you create
a MovieClipLoader instance, and use the addListener () method to add the previously
defined listener object to the MovieClipLoader. Finally, the image is downloaded and
triggered when you call the MovieClipLoader.ToadC1ip() method, which specifies the
image file to load and the target movie clip to load the image into.
70 Data and Data Types

. Select Control > Test Movie to test the document.

Because you're testing the Flash document in the authoring tool, no value for imgur1 will
be passed by FlashVars or along the URL, and therefore the default image displays.

. Save the Flash document and select File > Publish to publish the file as a SWF and HTML

document.

Make sure that Flash and HTML are both selected in the Publish Settings dialog box.
Select File > Publish Settings and then click the Formats tab. Then, select both
options.

310N

. If you test your document in the Flash tool (select Control > Test Movie) or in a local
browser (File > Publish Preview > HTML), you will see that the image centers itself both
vertically and horizontally on the Stage.

. Edit the generated HTML document in an editor (such as Dreamweaver or Notepad), and
modify the default HTML to match the following text:

<object classid="clsid:d27cdbbe-aebd-11cf-96b8-444553540000"
codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cabffversion=8,0,0,0" width="550" height="400" id="imgloader"
align="middle">

<param name="allowScriptAccess" value="sameDomain" />

<param name="movie" value="imgloader.swf" />

<param name="FlashVars" value="imgURL=http://www.helpexamples.com/flash/
images/image2.jpg">

<param name="quality" value="high" />

{param name="bgcolor" value="#ffffff" />

<embed src="imgloader.swf" quality="high" FlashVars="imgURL=http://
www.helpexamples.com/flash/images/image2.jpg" bgcolor="#ffffff"
width="550" height="400" name="1imgloader" align="middle"
allowScriptAccess="sameDomain" type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer" />

</object>

. Test the HTML document to see the changes. An image that you specify in the HTML
code appears in the SWF file.

To modify this example to use your own images, you would modify the FlashVars value
(the string inside the double quotes).

About variables 4l

Organizing data in objects

You might already be used to objects that you place on the Stage. For example, you might
have a MovieClip object on the Stage, and this object contains other movie clips inside it. Text
fields, movie clips, and buttons are often called objects when you place them on the Stage.

Objects, in ActionScript, are collections of properties and methods. Each object has its own
name, and it is an instance of a particular class. Built-in objects are from classes that are
predefined in ActionScript. For example, the built-in Date class provides information from
the system clock on the user’s computer. You can use the built-in LoadVars class to load
variables into your SWF file.

You can also create objects and classes using ActionScript. You might create an object to hold
a collection of data, such as a person’s name, address. and telephone number. You might create
an object to hold color information for an image. Organizing data in objects can help keep
your Flash documents more organized. For general information on creating a custom class to
hold a collection of methods and properties, see “Writing custom class files” on page 196. For
detailed information on both built-in and custom classes, see Chapter 6, “Classes,” on

page 187.

There are several ways to create an object in ActionScript. The next example creates simple

objects in two different ways, and then loops over the contents of those objects.

To create simple objects in Flash:

1. Create a new Flash document, and save it as simpleObjects.fla.
2. Select Frame 1 of the Timeline, and type the following ActionScript into the Actions panel:

// The first way

var firstObj:0bject = new Object();

firstObj.firstVar = "hello world";

firstObj.secondVar = 28;

firstObj.thirdVar = new Date(1980, 0, 1); // January 1, 1980

This code, which is one way to create a simple object, creates a new object instance and

defines a few properties within the object.
3. Now enter the following ActionScript after the code you entered in step 2.

// The second way

var secondObj:0bject = {firstVar:"hello world", secondVar:28,
thirdVar:new Date(1980, 0, 1)};

This is another way of creating an object. Both objects are equivalent. This code above

creates a new object and initializes some properties using the object shorthand notation.

72 Data and Data Types

4. To loop over each of the previous objects and display the contents of objects, add the
following ActionScript on Frame 1 of the Timeline (after the code you've already entered):
var i:String;
for (i in second0bj) f{

trace(i + ": " + second0Objl[il);
}

5. Select Control > Test Movie, and the following text appears in the Output panel:

firstVar: hello world
secondVar: 28
thirdVar: Tue Jan 1 00:00:00 GMT-0800 1980

The variables might not necessarily appear in this order in the Output panel. You
cannot guarantee the ordering when you use a for..in loop; the player returns the
contents of an object in an unpredictable order.

310N

You can also use arrays to create objects. Instead of having a series of variables such as
firstnamel, firstname2, and firstname3 to represent a collection of variables, you can
make an array of objects to represent the same data. This technique is demonstrated next.

To use an array to create an object:

1. Create a new Flash document, and save it as arrayObject.fla.

2. Select Frame 1 of the Timeline, and type the following ActionScript into the Actions panel:

var usersArr:Array = new Array();
usersArr.push({firstname:"George"});
usersArr.push({firstname:"John"});
usersArr.push({firstname:"Thomas"});

The benefit of organizing variables into arrays and objects is that it becomes much easier
to loop over the variables and see the values, as shown in the following step.
3. Type the following code after the ActionScript you added in step 2.

var i:Number;

for (i = 0; i < usersArr.length; i++) {
trace(usersArr[i].firstname); // George, John, Thomas

}

4. Select Control > Test Movie, and the following text appears in the Output panel:

George
John
Thomas

Organizing data in objects 73

The following example presents another way to loop over objects. In this example, an object is
created and looped over using a for. . in loop, and each property appears in the Output
panel:

var myObj:0bject = {varl:"One", var2:"Two", var3:18, var4:1987};
var i:String;
for (i in myObj) {
trace(i + ": " + myObjlil);
}
//outputs the following:

/*
varl: One
var2: Two
var3: 18
vard: 1987
*/

For information on creating for loops, see Chapter 4, “Using for loops,” on page 119. For
information on for..in loops, see “Using for..in loops” on page 120. For more information on
objects, see Chapter 6, “Classes,” on page 187.

About casting

ActionScript 2.0 lets you cast one data type to another. Casting an object to a different type
means you convert the value that the object or variable holds to a different type.

The results of a type cast vary depending on the data types involved. To cast an object to a
different type, you wrap the object name in parentheses (()) and precede it with the name of
the new type. For example, the following code takes a Boolean value and casts it to an integer.

var myBoolean:Boolean = true;
var myNumber:Number = Number(myBoolean);

For more information on casting, see the following topics:

m “About casting objects” on page 75

74 Data and Data Types

About casting objects

The syntax for casting is type (item), where you want the compiler to behave as if the data
type of the item is type. Casting is essentially a function call, and the function call returns
null if the cast fails at runtime (this occurs in files published for Flash Player 7 or later; files
published for Flash Player 6 do not have runtime support for failed casts). If the cast succeeds,
the function call returns the original object. However, the compiler cannot determine whether

a cast will fail at runtime and won’t generate compile-time errors in those cases.

The following code shows an example:

// Both the Cat and Dog classes are subclasses of the Animal class
function bark(myAnimal:Animal) {
var foo:Dog = Dog(myAnimal);
foo.bark();
}
var curAnimal:Animal = new Dog();
bark(curAnimal); // Will work
curAnimal = new Cat();
bark(curAnimal); // Won't work

In this example, you asserted to the compiler that foo is a Dog object, and therefore the
compiler assumes that foo.bark(); is a legal statement. However, the compiler doesnt know
that the cast will fail (that is, that you tried to cast a Cat object to an Animal type), so no
compile-time error occurs. However, if you include a check in your script to make sure that

the cast succeeds, you can find casting errors at runtime, as shown in the following example.

function bark(myAnimal:Animal) {
var foo:Dog = Dog(myAnimal);
if (foo) {
foo.bark();
}
}

You can cast an expression to an interface. If the expression is an object that implements the
interface or has a base class that implements the interface, the cast succeeds. If not, the cast

fails.

Casting to null or undefined returns undefined.

310N

You can't override primitive data types that have a corresponding global conversion function
with a cast operator of the same name. This is because the global conversion functions have
precedence over the cast operators. For example, you can’t cast to Array because the Array ()
conversion function takes precedence over the cast operator.

About casting 75

This example defines two string variables (firstNum and secondNum), which are added
together. The initial result is that the numbers are concatenated instead of added because they
are a String data type. The second trace statement converts both numbers to a Number data
type before performing the addition that yields the proper result. Data conversion is
important when working with data loaded using XML or FlashVars, as shown in the following
example:

var firstNum:String = "17";

var secondNum:String = "29";

trace(firstNum + secondNum); // 1729

trace(Number(firstNum) + Number(secondNum)); // 46

For more information on data conversion functions, see the entry for each conversion
function in ActionScript 2.0 Language Reference: Array function, Boolean function,
Number function, Object function,and String function.

76 Data and Data Types

CHAPTER 4

Syntax and Language

Fundamentals

Learning ActionScript syntax and statements is like learning how to put together words to
make sentences, which you can then put together into paragraphs. ActionScript can be as
simple. For example, in English, a period ends a sentence; in ActionScript, a semicolon ends a
statement. In the ActionScript language, you can type a stop () action to stop the playhead of
a movie clip instance or a SWF file from looping. Or you can write thousands of lines of code
to power an interactive banking application. As you can see, ActionScript can do very simple
or very complex things.

In Chapter 3, “Data and Data Types,” you learned how the ActionScript language uses data,
and how you can format it in your code. This chapter demonstrates how you can form
statements in ActionScript using syntax. It contains many short code snippets and some
examples to demonstrate fundamental language concepts. Upcoming chapters contain longer
and increasingly involved code examples that combine and facilitate the fundamentals you
learn in this chapter.

The general rules described in this section apply to all ActionScript. Most ActionScript terms
also have individual requirements; for the rules for a specific term, see its entry in the
ActionScript 2.0 Language Reference.

Applying the basics of ActionScript in a way that creates elegant programs can be a challenge
for users who are new to ActionScript. For more information on how to apply the rules
described in this section, see Chapter 17, “Best Practices and Coding Conventions for
ActionScript 2.0,” on page 665.

You add ActionScript directly to a frame on the Timeline within this chapter. In later
chapters, you use classes to separate your ActionScript from the FLA file.

310N

For more information on working with ActionScript syntax and language fundamentals, see
the following topics:

About syntax, statements, and expressions. i 78
About dotsyntaxandtargetpaths 82
About language punctuators 88
About constants and keywords. i 99
About statements. e 103
ADOUL ArTays ... ot 125
ADOUt OPEIatOrS ... e 137

About syntax, statements, and
expressions

The ActionScript language is made up of the built-in classes that make up the ActionScript
language. You need to use correct ActionScript synzax to form statements so the code compiles
and runs correctly in Flash. In this case, syntax refers to the grammar and spelling of a
language that you program with. The compiler cannot understand incorrect syntax, so you see
errors or warnings displayed in the Output panel when you try to test the document in the
test environment. Therefore, syntax is a collection of rules and guidelines that help you form
correct ActionScript.

A statement is an instruction you give the FLA file to do something, such as to perform a
particular action. For example, you can use a conditional statement to determine whether
something is true or exists. Then you might execute actions that you specify, such as functions
or expressions, based on whether the condition is true or not. The i f statement is a
conditional statement and evaluates a condition to determine the next action that should

occur in your code.
// if statement
if (condition) {

// statements;
}

For more information on statements, see “About statements” on page 103.

78 Syntax and Language Fundamentals

Expressions, different from statements, are any legal combination of ActionScript symbols that
represent a value. Expressions have values, while values and properties have zypes. An
expression can consist of operators and operands, values, functions, and procedures. The
expression follows ActionScript rules of precedence and of association. Typically, Flash Player
interprets the expression and then returns a value that you can use in your application.

For example, the following code is an expression:
x + 2

In the previous expression, x and 2 are operands and + is an operator. For more information
on operators and operands, see “About operators” on page 137. For more information on
objects and properties, see “Object data type” on page 42.

The way you format your ActionScript also determines how maintainable your code is. For
example, its difficult to read the logic of a FLA file that doesn’t contain indents or comments,
or contains inconsistent formatting and naming conventions. When you indent blocks of
ActionScript (such as loops and i f statements), the code is easier to read and debug if you
encounter problems. For more information about formatting ActionScript, see “Formatting
ActionScript syntax” on page 697. You can also see proper formatting of ActionScript in
these sections.

For more information on syntax and language fundamentals, see the following topics:
m “Differences between ActionScript and JavaScript”

m “About case sensitivity”

Differences between ActionScript and JavaScript

ActionScript is similar to the core JavaScript programming language. You don’t need to know
JavaScript to use and learn ActionScript; however, if you know JavaScript, ActionScript will

seem familiar.

This manual does not attempt to teach general programming. There are many resources that
provide more information about general programming concepts and the JavaScript language.

m The ECMAScript (ECMA-262) edition 3 language specification is derived from
JavaScript and serves as the international standard for the JavaScript language.
ActionScript is based on this specification. For more information, see www.ecma-
international.org/publications/standards/Ecma-262.htm.

m The Java Technology site has tutorials on object-oriented programming (http://
java.sun.com/docs/books/tutorial/java/index.html) that are targeted for the Java language
but are useful for understanding concepts that you can apply to ActionScript.

About syntax, statements, and expressions 79

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://java.sun.com/docs/books/tutorial/java/index.html
http://java.sun.com/docs/books/tutorial/java/index.html

Some of the differences between ActionScript and JavaScript are described in the
following list:

m ActionScript does not support browser-specific objects such as Document, Window,
and Anchor.

m ActionScript does not completely support all the JavaScript built-in objects.
m ActionScript does not support some JavaScript syntax constructs, such as statement labels.
m In ActionScript, the eval () function can perform only variable references.

m ActionScript 2.0 supports several features that are not in the ECMA-262 specification,
such as classes and strong typing. Many of these features are modeled after the
ECMAScript (ECMA-262) edition 3 language specification (see www.ecma-
international.org/publications/standards/Ecma-262.htm).

m ActionScript does not support regular expressions using the RegExp object. However,
Adobe Central does support the RegExp object. For more information on Adobe Central,

see www.adobe.com/products/central.

About case sensitivity

When you write ActionScript for Flash Player 7 and later, your code is case-sensitive. This
means that variables with slightly different capitalization are considered different from each
other. The following ActionScript code shows this:

// use mixed capitalization

var firstName:String = "Jimmy";
// use all lower case
trace(firstname); // undefined

Or you could write the following:

// In file targeting Flash Player 8

// and either ActionScript 1.0 or ActionScript 2.0
//

// Sets properties of two different objects
cat.hilite = true;

CAT.hilite = true;

// Creates three different variables
var myVar:Number = 10;
var myvar:Number = 10;
var mYvAr:Number = 10;

It is not a good practice to differentiate between variables, or any identifier, using
different case. For more information on naming variables, see Chapter 17, “Best
Practices and Coding Conventions for ActionScript 2.0,” on page 665.

310N

80 Syntax and Language Fundamentals

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.adobe.com/software/central/

When you publish for versions of Flash Player (Flash Player 6 and earlier), Flash traces the
string Jimmy in the Output panel. Because Flash Player 7 and later versions are case-sensitive,
firstName and firstname are two separate variables (when you use either ActionScript 1.0
or ActionScript 2.0). This is an important concept to understand. If you created FLA files for
Flash Player 6 or earlier with nonmatching capitalization in your variables, your functionality
and files might break during conversion of the file or application that targets a newer version
of the Flash Player.

Therefore, it’s good practice to follow consistent capitalization conventions, such as those
used in this manual. Doing so also makes it easier to differentiate between variables, classes,
and function names. Do not use case to make two identifiers differ. Change the instance,
variable, or class name—not just the case. For more information on coding conventions, see
Chapter 17, “Best Practices and Coding Conventions for ActionScript 2.0,” on page 665.

Case sensitivity can have a large impact when you work with a web service that uses its own
rules for variable naming and for the case that variables are in when they are returned to the
SWE file from the server. For example, if you use a ColdFusion web service, property names
from a structure or object might be all uppercase, such as FIRSTNAME. Unless you use the same
case in Flash, you might experience unexpected results.

Case sensitivity also affects external variables that you load into a SWF file, such as
those loaded with LoadVars.load().

310N

Case sensitivity is implemented for external scripts, such as ActionScript 2.0 class files, scripts
that you import using the #include command, and scripts in a FLA file. If you encounter
runtime errors and are exporting to more than one version of Flash Player, you should review
both external script files and scripts in FLA files to confirm that you used consistent
capitalization.

Case sensitivity is implemented on a per-SWF file basis. If a strict (case-sensitive) Flash Player
8 application calls a nonstrict Flash Player 6 SWF file, ActionScript executed in the Player 6
SWE file is nonstrict. For example, if you use ToadMovie() to load a Flash Player 6 SWF file
into a Flash Player 8 SWF file, the version 6 SWF file remains case-insensitive, while the

version 8 SWF file is treated as case-sensitive.

When syntax coloring is enabled, language elements written with correct capitalization are
blue by default. For more information, see “About reserved words” on page 103.

About syntax, statements, and expressions 81

About dot syntax and target paths

In ActionScript, you use a dot (.) operator (dot syntax) to access properties or methods that
belong to an object or instance on the Stage. You also use the dot operator to identify the

target path to an instance (such as a movie clip), variable, function, or object.

A dot syntax expression begins with the name of the object or movie clip, followed by a dot,
and it ends with the element you want to specify. The following sections demonstrate how to

write dot syntax expressions.

To control a movie clip, loaded SWF file, or button, you must specify a target path. Target
paths are hierarchical addresses of movie clip instance names, variables, and objects in a SWF
file. In order to specify a target path for a movie clip or button, you must assign an instance
name to the movie clip or button. You name a movie clip instance by selecting the instance
and typing the instance name in the Property inspector. Or you can specify the instance name
with code if you create the instance using ActionScript. You can use the target path to assign

an action to a movie clip or to get or set the value of a variable or property.

For more information on assigning an instance name and using dot syntax to target an
instance, see the following topics:

m “About using dot syntax to target an instance” on page 82.

m “About scope and targeting” on page 87

m “Using the Target Path button” on page 88

m “About slash syntax” on page 88

For more information on objects and properties, see “Object data type” on page 42.

About using dot syntax to target an instance

To write ActionScript that controls an instance such as a movie clip or manipulates assets in a
loaded SWF file, you must specify its name and its address in code. This is called a targer path.
To target (or address) objects in a SWF file, you use dot syntax (also called dor notation). For
example, you need to target a movie clip or button instance before you can apply an action to
it. Dot syntax helps you create a path to the instance you need to target. The path to the
instance that you target is sometimes called the target path.

A FLA file has a particular hierarchy. You can create instances on the Stage or you can use
ActionScript. You can even create instances that are inside other instances. Or you might have
instances that nest within several other instances. You can manipulate any instance as long as

you name it.

82 Syntax and Language Fundamentals

You name instances using an instance name, which you can specify in two different ways (both
demonstrated below):

m Manually by selecting an instance and typing an instance name in the Property inspector
(when an instance is on the Stage).
m Dynamically by using ActionScript. You create an instance using ActionScript and assign

it an instance name when you create it.

To assign the instance an instance name in the Property inspector, type a name into the
Instance Name text box.

You can also give an instance name to an object you create using ActionScript. It can be as
simple as the following code:

this.createEmptyMovieClip("pic_mc", this.getNextHighestDepth());
pic_mc.loadMovie("http://www.helpexamples.com/flash/images/imagel.jpg");
This code creates a new movie clip and assigns it the instance name pic_mc. Then, you can
manipulate the pic_mc instance using code, such as loading an image into it as demonstrated

in the previous code.

For more information on working with scope, see “About scope and targeting” on page 87
and “About variables and scope” on page 60.

Targeting an instance

If you want something to work in your SWF file, you need to target that instance and then
tell it to do something, such as assigning it an action or changing its properties. You usually
need to define where that instance is in the SWF file (for example, what timeline it’s on or
what instance it’s nested within) by creating the target path. Remember that you have given
many of the instances in your FLA file instance names, and then you added code to the FLA
file that uses those instance names. When you do this, you target that particular instance and
then tell it to do something (such as move the playhead or open a web page). For more
information on objects and properties, see “Object data type” on page 42.

To target an instance:

1. Select File > New and select Flash Document.
2. Select File > Save As and name the file target.fla.
3. Use the Oval tool to draw a shape on the Stage. Draw an oval of any size and color.

4. Use the Selection tool to select the oval on the Stage.

% Remember to select the stroke and fill if necessary.

About dot syntax and target paths 83

. Select Modify > Convert to Symbol, select the Movie Clip option, and then click OK to

create the symbol.

Select the movie clip on the Stage and give it the instance name myClip in the

Property inspector.

Insert a new layer and rename the layer actions.

Add the following ActionScript to Frame 1 of the actions layer:

myClip._xscale = 50;

This line of code targets the myC11ip instance on the Stage. The ActionScript scales the
instance to half its original width. Because the ActionScript is on the same timeline as the
movie clip symbol, you only need to target the instance using the instance name. If the

instance was on a different timeline or nested within another instance, you would need to

modify the target path accordingly.

Targeting a nested instance

You can also target instances that are nested inside other instances. Perhaps you want to place

a second movie clip instance inside of the myClip instance from the exercise in “Targeting an

instance” on page 83. You can also target that nested instance using ActionScript. Before you

proceed with the following exercise, you need to complete the exercise in “Targeting an

instance” on page 83, and then follow these steps to target a nested instance.

To target a nested instance:

o o p N

® N

Open target.fla from the procedure on targeting an instance, and rename it target2.fla.
Double-click the myClip instance on the Stage.

Select the Oval tool and draw another oval inside of the myClip instance.

Select the new shape, and then select Modify > Convert to Symbol.

Select the Movie Clip option and click OK.

Select the new instance, and type myOtherClip in the Instance Name text box of the
Property inspector.

Click Scene 1 in the edit bar to return to the main Timeline.

Add the following ActionScript to Frame 1 of the actions layer:
myClip.myOtherClip._xscale = 50;

This ActionScript resizes the myOtherClip instance to 50% of its current width. Because
the target.fla file modified the myClip instances _xscale property, and the myOtherClip

is a nested symbol, you'll notice that myOtherClip will be 25 percent of the
original width.

84

Syntax and Language Fundamentals

If you work with nested movie clips that have their own timelines, you can manipulate the
playhead in a nested instance’s timeline using code similar to the following snippet:
myClip.nestedClip.gotoAndPlay(15);
myClip.someOtherClip.gotoAndStop("tweenln");

Notice that the clip that you manipulate (such as nestedC11p) appears right before the
action. You'll notice this trend in upcoming sections.

You aren’t limited to accessing predefined methods and properties of instances on the Stage, as
demonstrated in the previous examples. You can also set a variable within a movie clip, as seen

in the following code, which sets a variable in the starClip movie clip:

starClip.speed = 1.1;

starClip.gravity = 0.8;

If either the speed or gravity variables existed previously in the starClip movie clip instance,
the previous values would have been overwritten as soon as the new values were set. You are
able to add new properties to the starClip movie clip, because the MovieClip class was defined
with the dynamic keyword. The dynamic keyword specifies that objects based on the
specified class (in this case MovieClip) can add and access dynamic properties at runtime. For
more information about the dynamic statement, see dynamic statement in the AczionScripr
2.0 Language Reference.

Targeting dynamic instances and loaded content

You can also create an object using ActionScript and target it using a target path afterwards.
For example, you can use the following ActionScript to create a movie clip. Then you can
change the rotation of that movie clip using ActionScript, as shown in the next example:

To target a dynamically created movie clip instance:

1. Create a new Flash document and save the file as targetClip.fla.
2. Insert a new layer and rename the layer actions.

3. Add the following ActionScript to Frame 1 of the actions layer:

this.createEmptyMovieClip("rotateClip", this.getNextHighestDepth());
trace(rotateClip);
rotateClip._rotation = 50;

4. Select Control > Test Movie to test your document.

You can tell that you created a movie clip because of the trace statement, but you cannot
see anything on the Stage. Even though you added code that creates a movie clip instance,
you won't see anything on the Stage unless you add something to the movie clip. For
example, you might load an image into the movie clip.

5. Return to the authoring environment, and open the Actions panel.

About dot syntax and target paths 85

6. Type the following ActionScript after the code you added in step 3:
rotateClip.loadMovie("http://www.helpexamples.com/flash/images/
imagel.jpg");
This code loads an image into the rotateClip movie clip that you created with code. You're
targeting the rotateClip instance with ActionScript.
7. Select Control > Test Movie to test your document.

Now you should see an image on the Stage that rotates 50° clockwise.

You can also target or identify parts of SWF files that you load into a base SWF file.
To identify a loaded SWF file:

m Use _levelX, where X is the level number specified in the ToadMovie() function that

loaded the SWF file.

For example, a SWF file loaded into level 99 has the target path _1eve199. In the
following example, you load a SWF file into level 99 and set its visibility to false:

//Load the SWF onto level 99.

loadMovieNum("contents.swf", 99);

//Set the visibility of Tevel 99 to false.

loaderClip.onEnterFrame = function(){
_level99._visible = false;

by

= | |It's generally a good idea to avoid using levels if you can load content into movie clips
T |at different depths instead. Using the MovieClip.getNextHighestDepth() method
enables you to create new movie clip instances on the Stage dynamically without
having to check whether there is already an instance at a particular depth.

Setting variables using a path

You can set variables for instances that you nest inside of other instances. For example, if you
want to set a variable for a form that’s inside another form, you can use the following code.
The instance submitBtn is inside of formC11ip on the main timeline:

this.formClip.submitBtn.mouseOver = true;
You can express a method or property of a particular object (such as a movie clip or text field)
using this pattern. For example, the property of an object would be

myClip._alpha = 50;

86 Syntax and Language Fundamentals

About scope and targeting

When you nest instances, the movie clip that nests a second movie clip is known as the parent
to the nested instance. The nested instance is known as the child instance. The main Stage
and main timeline are essentially a movie clip themselves, and can therefore be targeted as
such. For more information on scope, see “About variables and scope” on page 60.

You can target parent instances and parent timelines using ActionScript. When you want to
target the current timeline, you use the this keyword. For example, when you target a movie
clip called myClip that's on the current main timeline, you would use

this.myClip.

Optionally, you can drop the this keyword, and just use

myClip

You might choose to add the this keyword for readability and consistency. For more
information on recommended coding practices, see Chapter 17, “Best Practices and Coding
Conventions for ActionScript 2.0,” on page 665.

If you trace the movie clip, for either snippet above you see _Tevel0.myClip in the Output
panel. However, if you have ActionScript that’s inside the myClip movie clip but you want to
target the main timeline, target the parent of the movie clip (which is the main Stage).
Double-click a movie clip, and place the following ActionScript on the movie clip’s timeline:
trace("me: " + this);

trace("my parent: " + this._parent);

Test the SWF file, and you'll see the following message in the Output panel:

me: _TevelO.myClip

my parent: _levelO

This indicates you targeted the main timeline. You can use parent to create a relative path to
an object. For example, if the movie clip dogC11p is nested inside the animating movie

clip animalClip, the following statement on the instance dogClip tells animalClip to

stop animating:

this._parent.stop();

If you're familiar with Flash and ActionScript, you've probably noticed people using the
_root scope. The _root scope generally refers to the main timeline of the current Flash
document. You should avoid using the _root scope unless it’s absolutely necessary. You can
use relative target paths instead of _root.

If you use _root in your code, you can encounter errors if you load the SWF file into another
Flash document. When the SWF file loads into a different SWF file, _root in the loaded file
might point to the root scope of the SWF file it loads into, instead of referring to its own root
as you intend it to. This can lead to unpredictable results, or break functionality altogether.

About dot syntax and target paths 87

Using the Target Path button

Sometimes it takes some time to figure out what a given target path is, or what target path you
need for a piece of code. If you target an instance you have on the Stage, you can use the
Target Path button to determine what the path is to that instance.

To use the Target Path button:

1. Open the Actions panel (Window > Actions) and click the Insert Target Path button. The
movie clips in your current document appear in a dialog box.

2. Select one of the instances from the list in the dialog box.

3. Click OK.

4. The target path for the selected instance appears in the Script pane.

About slash syntax

Slash syntax was used in Flash 3 and 4 to indicate the target path of a movie clip or variable.
This syntax is supported by ActionScript 1.0 in Flash Player 7 and earlier, but it’s not
supported in ActionScript 2.0 and Flash Player 7 or Flash Player 8.

Using slash syntax is not recommended unless you do not have another option, such as when
you create content intended specifically for Flash Player 4 or Flash Lite 1.1 (and earlier)
where you must use slash syntax. For more information on Flash Lite, see the Flash Lite
product page.

About language punctuators

There are several language punctuators in Flash. The most common type of punctuators are
semicolons (;), colons (:), parentheses [()] and braces ({ }). Each of these punctuators has a
special meaning in the Flash language and helps define data types, terminate statements or
structure ActionScript. The following sections discuss how to use the punctuators in

your code.

For more information on language punctuators, see the following topics:

m “Semicolons and colons” on page 89

m “Curly braces” on page 90

m “Parentheses” on page 93

m “About literals” on page 94

m “About comments” on page 95

88 Syntax and Language Fundamentals

http://www.adobe.com/software/flashlite/
http://www.adobe.com/software/flashlite/

For more information on the dot (.) operator and array access ([1) operators, see “Using dot
and array access operators” on page 145. For information on white space and code formatting,

see “Formatting ActionScript syntax” on page 697.

Semicolons and colons

ActionScript statements terminate with a semicolon (;) character, as demonstrated in the
following two lines of code:

var myNum:Number = 50;

myClip._alpha = myNum;

You can omit the semicolon character and the ActionScript compiler assumes that each line of
code represents a single statement. However, it is good scripting practice to use semicolons
because it makes your code more readable. When you click the Auto Format button in the
Actions panel or Script window, trailing semicolons are appended to the end of your
statements by default.

Using a semicolon to terminate a statement allows you to place more than one statement
on a single line, but doing so usually makes your code more difficult to read.

310N

Another place you use semicolons is in for loops. You use the semicolon to separate
parameters, as shown in the following example. The example loops from 0 to 9 and then
displays each number in the Output panel:

var 1:Number;

for (i = 0; i < 10; i++) {
trace(i); // 0,1,....,9

}

You use colons (:) in your code to assign data types to your variables. To assign a specific data
type to an item, specify its type using the var keyword and post-colon syntax, as shown in the
following example:

// strict typing of variable or object
var myNum:Number = 7;
var myDate:Date = new Date();
// strict typing of parameters
function welcome(firstName:String, myAge:Number) {
}
// strict typing of parameter and return value
function square(num:Number):Number {
var squared:Number = num * num;
return squared;

About language punctuators 89

You can declare the data type of objects based on built-in classes (Button, Date, MovieClip,
and so on) and on classes and interfaces that you create. In the following snippet, you create a

new object of the custom type Student:

var firstStudent:Student = new Student();

You can also specify that objects are of the Function or the Void data type. For more
information on assigning data types, see Chapter 3, “Data and Data Types,” on page 35.

Curly braces

You group ActionScript events, class definitions, and functions into blocks using curly brace
(1)) punctuators. You put the opening brace on the same line as the declaration.

You can also put the opening brace on the line that follows the declaration. Coding
conventions recommend that you put the opening brace on the same line for
consistency. For information on braces and code conventions, see Chapter 17, “Best
Practices and Coding Conventions for ActionScript 2.0,” on page 665.

310N

Place braces around each statement when it is part of a control structure (such as if..else or
for), even if it contains only a single statement. This good practice helps you avoid errors in
your ActionScript when you forget to add braces to your code. The following example shows
code that is written using poor form:

var numUsers:Number;
if (numUsers == 0)
trace("no users found.");
Although this code validates, it is considered poor form because it lacks braces around
the statements.

| |Braces are added to this statement if you click the Auto Format button.
T

In this case, if you add a second statement after the trace statement, the second statement
executes regardless of whether the numUsers variable equals 0, which can lead to unexpected
results. For this reason, add braces so the code looks like the following example:

var numUsers:Number;

if (numUsers == 0) {

trace("no users found");
}

90 Syntax and Language Fundamentals

In the following example, you create both an event listener object and a MovieClipLoader
instance.

var imgUrl:String = "http://www.helpexamples.com/flash/images/imagel.jpg";

this.createEmptyMovieClip("img_mc", 100);

var mclListener:0bject = new Object();

mcllListener.onLoadStart = function() f{
trace("starting");

by

mcllistener.onlLoadInit = function(target_mc:MovieClip):Void {
trace("success");

bs

mcllistener.onlLoadError = function(target_mc:MovieClip):Void {
trace("failure");

by

var myClipl:MovieCliplLoader = new MovieCliplLoader();

myClipl.addListener(mclListener);

myClipl.loadClip(imgUrl, img_mc);

The next example displays a simple class file that could be used to create a Student object. You

learn more about class files in Chapter 6, “Classes,” on page 187.

To use curly braces in an ActionScript file:
1. Select File > New and then select ActionScript File.

2. Select File > Save As and save the new document as Student.as.

3. Add the following ActionScript to the AS file.

// Student.as

class Student {
private var _id:String;
private var _firstName:String;
private var _middleName:String;
private var _lastName:String;

public function Student(id:String, firstName:String,
middleName:String, TastName:String) {
this._id = id;
this._firstName = firstName;
this._middleName = middleName;
this._lastName = lastName;
}
public function get firstName():String {
return this._firstName;
}
public function set firstName(value:String):Void {
this._firstName = value;
}
//

About language punctuators

91

N o gk

8.
9.

Save the class file.

Select File > New and click Flash Document to create a new FLA file.
Save the new FLA file as student_test.fla.

Type the following ActionScript on Frame 1 of the main Timeline:

// student_test.fla

import Student;

var firstStudent:Student = new Student("cst94121", "John", "H.", "Doe");
trace(firstStudent.firstName); // John

firstStudent.firstName = "Craig";

trace(firstStudent.firstName); // Craig

Select File > Save to save the changes to student_test.fla.

Select Control > Test Movie to test the FLA and AS files.

The next example demonstrates how cutrly braces are used when you work with functions.

To use curly braces with functions:

1.

2
3.
a4

a

Select File > New and select Flash Document to create a new FLA file.

. Select File > Save As and name the new file checkform.fla.

Drag an instance of the Label component from the Components panel onto the Stage.

. Open the Property inspector (Window > Properties > Properties) and with the Label

component instance selected, type an instance name of status_Ibl into the Instance Name
text box.

Type 200 into the W (width) text box to resize the component to 200 pixels wide.

Drag an instance of the TextInput component onto the Stage and give it an instance name
of firstName_ti.

Drag an instance of the Button component onto the Stage and give it an instance name of
submit_button.

Select Frame 1 of the Timeline, and add the following ActionScript into the Actions panel:

function checkForm():Boolean f{
status_TbTl.text = "";
if (firstName_ti.text.length == 0) {
status_1bl.text = "Please enter a first name.";
return false;
}
return true;
}
function clickListener(evt_obj:0bject):Void {
var success:Boolean = checkForm();
bs
submit_button.addEventlListener("click", clickListener);

92

Syntax and Language Fundamentals

9. Select File > Save to save the Flash document.
10. Select Control > Test Movie to test the code in the authoring environment.

In the SWF file, an error message is displayed if you click the Button instance on the Stage
when you do not have text in the firstName_ti TextInput component. This error
appears in the Label component and informs users that they need to enter a first name.

The next example using curly braces shows how to create and define properties within an
object. In this example, properties are defined in the object by specifying the variable names
within the curly brace ({ }) punctuators:

var myObject:0bject = {id:"cst94121", firstName:"John", middleName:"H.",
lastName: "Doe"};
var i:String;
for (i in myObject) {
trace(i + ": " + myObject[i]);
e
id: cst94121
firstName: John
middleName: H.
lastName: Doe
*/

You can also use empty curly braces as a syntax shortcut for the new Object() function. For
example, the following code creates an empty Object instance:

var myObject:0bject = {};

= | | Remember to make sure each opening curly brace has a matching closing brace.
T

Parentheses

When you define a function in ActionScript, you place parameters inside parentheses [()]
punctuators, as shown in the following lines of code:

function myFunction(myName:String, myAge:Number, happy:Boolean):Void {
// Your code goes here.
}
When you call a function, you also include any of the parameters you pass to the function in

parentheses, as shown in the following example:
myFunction("Carl", 78, true);
You can use parentheses to override the ActionScript order of precedence or to make your

ActionScript statements easier to read. This means you can change the order in which values
are computed by placing brackets around certain values, as seen in the following example:

var computedValue:Number = (circleClip._x + 20) * 0.8;

About language punctuators 93

Because of order of precedence, if you didn’t use parentheses or use two separate statements,
the multiplication would be computed first, meaning that the first operation would be 20 *
0.8. The result, 16, would then be added to the current value of circleClip._x and finally
assigned to the computedValue variable.

If you don’t use parentheses, you must add a statement to evaluate the expression, as shown in
the following example:

var tempValue:Number = circleClip._x + 20;

var computedValue:Number = tempValue * 0.8;

As with brackets and braces, you need to make sure each opening parentheses has a closing

parentheses.

About literals

A literal is a value that appears directly in your code. Literals are constant (unchanging) values
within your Flash documents. Examples of a literal include true, false, 0, 1, 52, or even the
string “foo”.

The following examples are all literals:

17
"hello"
-3

9.4

null
undefined
true
false

Literals can also be grouped to form compound literals. Array literals are enclosed in bracket
punctuators ([1) and use the comma punctuator (,) to separate array elements. An array
literal can be used to initialize an array. The following examples show two arrays that are
initialized using array literals. You can use the new statement and pass the compound literal as
a parameter to the Array class constructor, but you can also assign literal values directly when
instantiating instances of any built-in ActionScript class.

// using new statement
var myStrings:Array = new Array("alpha", "beta", "gamma");
var myNums:Array = new Array(l, 2, 3, 5, 8);

// assigning literal directly
var myStrings:Array = ["alpha", "beta", "gamma"];
var myNums:Array = [1, 2, 3, 5, 8];

94 Syntax and Language Fundamentals

Literals can also be used to initialize a generic object. A generic object is an instance of the
Object class. Object literals are enclosed in curly braces ({ }) and use the comma punctuator
(.) to separate object properties. Each property is declared with the colon punctuator (:),
which separates the name of the property from the value of the property.

You can create a generic object using the new statement and pass the object literal as a
parameter to the Object class constructor, or you can assign the object literal directly to the
instance you are declaring. The following example creates a new generic object and initializes
the object with three properties, propA, propB, and propC, each with values set to 1, 2, and 3,
respectively.

// using new statement
var myObject:0bject = new Object({propA:1, propB:2, propC:3});

// assigning literal directly

var myObject:0bject = {propA:1, propB:2, propC:3};

Do not confuse a string literal with a String object. In the following example, the first line of
code creates the string literal firstStr, and the second line of code creates the String object
secondStr:

var firstStr:String = "foo"

var secondStr:String = new String("foo")

Use string literals unless you specifically need to use a String object for better performance.
For more information on strings, see “About strings and the String class” on page 411.

About comments

Comments are a way of annotating your code with plain-English descriptions that do not get
evaluated by the compiler. You can use comments within your code to describe what the code
is doing or to describe which data returns to the document. Using comments can help you
remember important coding decisions, and it can be helpful to anyone else who reads your
code. Comments must clearly explain the intent of the code and not just translate the code. If
something is not readily obvious in the code, you should add comments to it.

Using comments to add notes to scripts is highly recommended. Comments document the

decisions you make in the code, answering both how and why. They make ActionScript easier
to understand. For example, you might describe a work-around in comments. Therefore, you
or another developer can easily find sections of code to update or fix. O, if the issue is fixed or
improved in a future version of Flash or Flash Player, you could improve the ActionScript by

removing the work-around.

About language punctuators 95

Avoid using cluttered comments. An example of cluttered comments is a line of equal signs
(=) or asterisks (*) used to create a block or separation around your comments. Instead, use
white space to separate your comments from the ActionScript. If you format your
ActionScript using the Auto Format button in the Actions panel or Script window, this
removes the white space. Remember to add white space back into your code, or use single
comment lines (//) to maintain spacing; these lines are easier to remove after you format your
code than trying to determine where white space once was.

Before you deploy your project, remove any superfluous comments from the code, such as
“define the x and y variables” or other comments that are immediately obvious to other
developers. If you find that you have many extra comments in the ActionScript, consider
whether you need to rewrite some of the code. If you need to include many comments about

how the code works, it is usually a sign that the ActionScript is inelegant and not intuitive.

When you enable syntax coloring, comments are gray by default. Comments can be any
length without affecting the size of the exported file, and they do not need to follow rules for
ActionScript syntax or keywords.

Using comments is most important in ActionScript that is intended to teach an audience.
Add comments to your code if you are creating sample applications for the purpose of
teaching Flash or if you are writing articles or tutorials on ActionScript.

310N

Single-line comments

You use single-line comments to add a comment to a single line in your code. You might
comment out a single line of code, or add a short description of what a piece of code
accomplishes. To indicate that a line or portion of a line is a comment, precede the comment

with two forward slashes (//), as shown in the following code:

// The following sets a local variable for age.

var myAge:Number = 26;

Single-line comments are typically used to explain a small code snippet. You can use single-
line comments for any short comments that fit on a single line. The following example
includes a single-line comment:

while (condition) {
// handle condition with statements

96 Syntax and Language Fundamentals

Multiline comments

Use multiline comments, also called block comments, for comments that are several lines in
length. Developers commonly use multiline comments to describe files, data structures,
methods, and descriptions of files. They are usually placed at the beginning of a file and
before or within a method.

To create a comment block, place /* at the beginning of the commented lines and */ at the
end of the comment block. This technique lets you create lengthy comments without adding
/1 at the beginning of each line. Using // for numerous sequential lines can lead to some
problems when you modify the comments.

The format for a multiline comment is as follows.
/ *
The following ActionScript initializes variables used in the main and

sub-menu systems. Variables are used to track what options are clicked.
*/

= | If you place the comment characters (/* and */) on separate lines at the beginning and
T))

end of the comment, you can easily comment them out by placing double slash
characters (//) in front of them (for example, ///* and //*/). These let you quickly and
easily comment and uncomment your code.

By placing large chunks of script in a comment block, called commenting out a portion of your
script, you can test specific parts of a script. For example, when the following script runs,
none of the code in the comment block executes:

// The following code runs.
var x:Number = 15;
var y:Number = 20;

// The following code is commented out and will not run.
/~k

// create new Date object

var myDate:Date = new Date();

var currentMonth:Number = myDate.getMonth();

// convert month number to month name

var monthName:String = calcMonth(currentMonth);

var year:Number = myDate.getFullYear();

var currentDate:Number = myDate.getDate();

*/

// The code below runs.
var namePrefix:String = "My name is";
var age:Number = 20;

% It’s good practice to place a blank line before a block comment.

About language punctuators 97

Trailing comments

You use trailing comments to add a comment on the same line as your code. These comments
appear on the same line as your ActionScript code. Developers commonly use trailing
comments to indicate what a variable contains or to describe or note the value that returns
from a line of ActionScript. Format trailing comments as follows:

var myAge:Number = 26; // variable for my age

trace(myAge); // 26

Space the comments to the right so readers can distinguish them from the code. Try to have
the comments line up with each other, if possible, as shown in the following code.

var myAge:Number = 28; // my age
var myCountry:String = "Canada"; // my country
var myCoffee:String = "Hortons"; // my coffee preference

If you use autoformatting (click the Auto Format button in the Actions panel), trailing
comments move to the next line. Add these comments after you format your code, or you
must modify their placement after using the Auto Format button.

Comments inside classes

You use comments in your classes and interfaces to document them to help developers
understand the contents of your class. You might start all your class files with a comment that
provides the class name, its version number, the date, and your copyright. For example, you
might create documentation for your class that is similar to the following comment:
/ **

Pelican class

version 1.2

10/10/2005

copyright Adobe Systems Incorporated
*/
Use block comments to describe files, data structures, methods, and descriptions of files. They
are usually placed at the beginning of a file and before or within a method.

There are two kinds of comments in a typical class or interface file: documentation comments
and implementation comments. Documentation comments are used to describe the code’s

specifications and do not describe the implementation. You use documentation comments to
describe interfaces, classes, methods, and constructors. Implementation comments are used to

comment out code or to comment on the implementation of particular sections of code.

98 Syntax and Language Fundamentals

Include one documentation comment per class, interface, or member, and place it directly
before the declaration. If you have additional information to document that does not fit into
the documentation comments, use implementation comments (in the format of block
comments or single-line comments). Implementation comments directly follow the
declaration.

The two kinds of comments use slightly different delimiters. Documentation comments are
delimited with /** and */, and implementation comments are delimited with /* and */.

= | |Don’t include comments that do not directly relate to the class being read. For example,
T)))
do not include comments that describe the corresponding package.

You can also use single-line comments, block comments, and trailing comments in class files.
For more information on these kinds of comments, see the following sections:

m “Single-line comments” on page 96

m “Multiline comments” on page 97

m “Trailing comments” on page 98

About constants and keywords

Constants and keywords are the backbone of ActionScript syntax. Constants are properties
with a fixed value that cannot be altered, so they are values that don’t change throughout

an application.

Flash includes several predefined constants, which can help simplify application development.
An example of constants can be found in the Key class, which includes many properties, such
as Key .ENTER or Key . PGDN. If you rely on constants, you never have to remember that the key
code values for the Enter and Page Down keys are 13 and 34. Using constant values not only
makes development and debugging easier, but it also makes your code easier to read by your
fellow developers.

Keywords in ActionScript are used to perform specific kinds of actions. They are also reserved
words because of this, so you can’t use them as identifiers (such as variable, function, or label
names). Examples of some reserved keywords are if, else, this, function, and return.
For more information on constants and keywords, see the following topics:

m “Using constants” on page 100

m “About keywords” on page 102

m “About reserved words” on page 103

About constants and keywords 99

For more information on objects and properties, see “Object data type” on page 42. For a list
of constants in the language (such as false and NaN), see the ActionScript Language Elements
> Constants category in the ActionScript 2.0 Language Reference.

Using constants

Constants are properties with a fixed value that cannot be altered; in other words, they are
values that don’t change throughout an application. The ActionScript language contains many
predefined constants. For example, the constants BACKSPACE, ENTER, SPACE, and TAB are
properties of the Key class and refer to keyboard keys. The constant Key . TAB always has the
same meaning: it indicates the Tab key on a keyboard. Constants are useful for comparing
values and for using values in your application that do not change.

To test whether the user is pressing the Enter key, you could use the following statement:

var keylListener:0bject = new Object();
keyListener.onKeyDown = function() {

if (Key.getCode() == Key.ENTER) {

trace("Are you ready to play?");

}
by
Key.addListener(keylListener);
For the previous ActionScript to work, it may be necessary to disable keyboard shortcuts in
the authoring environment. Select Control > Test Movie from the main menu, then while
previewing the SWF file in the player, select Control > Disable Keyboard Shortcuts from the

SWE file’s preview window.

In Flash there is no way to create your own constant values except when you create your own
custom classes with private member variables. You cannot create a “read-only” variable
within Flash.

Variables should be lowercase or mixed-case letters; however, constants (variables that do not
change) should be uppercase. Separate words with underscores, as the following ActionScript

shows:
var BASE_URL:String = "http://www.adobe.com"; //constant
var MAX_WIDTH:Number = 10; //constant

Write static constants in uppercase, and separate words with an underscore. Do not directly
code numerical constants unless the constant is 1, 0, or -1, which you might use in a for loop

as a counter value.

You can use constants for situations in which you need to refer to a property whose value
never changes. This helps you find typographical mistakes in your code that you might not
find if you use literals. It also lets you change the value in a single place. For more information
on literals, see “About literals” on page 94.

100 Syntax and Language Fundamentals

For example, the class definition in the next example creates three constants that follow the
naming convention used by ActionScript 2.0.

To use constants in an application:
1. Select File > New and then select ActionScript File to create an AS file.

2. Name the new file ConstExample.as.

3. Type the following code into the Script window:

class ConstExample ({
public static var EXAMPLE_STATIC:String = "Global access";
public var EXAMPLE_PUBLIC:String = "Public access";
private var EXAMPLE_PRIVATE:String = "Class access";

}

The EXAMPLE_STATIC property is a static property, which means that the property applies
to the class as a whole instead of to a particular instance of the class. You must access a
static property of a class using the name of the class instead of the name of an instance.
You cannot access a static property through a class instance.

4. Create a new Flash document and save it as const.fla.

5. Open the Actions panel, and type the following code on Frame 1 of the Timeline:
trace(ConstExample.EXAMPLE_STATIC); // output: Global access
When you declare the EXAMPLE_STATIC property as static, you use this code to access the
value of the property.

6. Select Control > Test Movie to test your document.
You will see Global access in the Output panel.

7. In the Actions panel, type this code following the code you added in step 5.

trace(ConstExample.EXAMPLE_PUBLIC); // error
trace(ConstExample.EXAMPLE_PRIVATE); // error

8. Select Control > Test Movie to test your document.
The EXAMPLE_PUBLIC and EXAMPLE_PRIVATE properties are not static properties. When
you try to access the values through the class, you see the error message:
The property being referenced does not have the static attribute.
To access a property that is not static, you must access the value through an instance of the

class. Because the EXAMPLE_PUBLIC property is a public property, it is available to code
outside of the class definition.

9. In the Actions panel, delete the trace statements that you added in steps 5 and 7.

About constants and keywords 101

10. Type the following code into the Actions panel:

var myExample:ConstExample = new ConstExample();
trace(myExample.EXAMPLE_PUBLIC); // output: Public access

This code instantiates the myExample instance and accesses the EXAMPLE_PUBLIC
property.

1. Select Control > Test Movie to test your document.
You see Public access in the Output panel.

12. In the Actions panel, delete the trace statement that you added in step 10.

13. Type the following code into the Actions panel.
trace(myExample.EXAMPLE_PRIVATE); // error
The EXAMPLE_PRIVATE property is a private property, so it is available only within the
class definition.

14. Select Control > Test Movie to test your document.
You see The member is private and cannot be accessed in the Output panel.

For more information on built-in classes and creating custom classes, see Chapter 6,

“Classes,” on page 187.

About keywords

Keywords are words in ActionScript that do one specific thing. For example, you use the var
keyword to declare a variable. The var keyword is shown in the following line of code:

var myAge:Number = 26;

A keyword is a reserved word that has a specific meaning: for example, you use the class
keyword to define new a new ActionScript class; and you use the var keyword to declare local
variables. Other examples of reserved keywords are: i f, else, this, function, and return.

Keywords cannot be used as identifiers (such as variable, function, or label names), and you
should not use them elsewhere in your FLA files for other things (such as instance names).
You have already used the var keyword a lot, particularly if you read Chapter 3, “Data and
Data Types,” on page 35. ActionScript reserves words in the language for specific use.
Therefore, you can’t use keywords as identifiers (such as variable, function, or label names).
You can find a list of these keywords in “About reserved words” on page 103.

102 Syntax and Language Fundamentals

About reserved words

Reserved words are words that you cannot use as identifiers in your code because the words are
reserved for use by ActionScript. Reserved words include keywords, which are ActionScript
statements, and words that are reserved for future use. That means you should not use them
for naming your variables, instances, custom classes, and so on; doing so can lead to technical
problems in your work.

Several words, although they are not reserved words, should not be used as identifiers (such as
variable or instance names) in your ActionScript code. These are words that are used by the
built-in classes that make up the ActionScript language, which are called language constructs.
Therefore, do not use the names of properties, methods, classes, interfaces, component class
names, and interface names as identifiers in your code (such as when you name variables,
classes, or instances).

For more information about reserved keywords that can cause errors in your scripts and
protected keywords for future use by ActionScript or the ECMAScript (ECMA-262) edition
4 draft language specifications see Avoiding reserved words and language constructs

on page 668.

To learn the names of language constructs, refer to the ActionScript 2.0 Language Reference.

About statements

A statement is an instruction you give the FLA file to do something, such as to perform a
particular action. For example, you can use a conditional statement to determine whether
something is true or exists. Then your code might execute actions that you specify, such as

functions or expressions, based on whether the condition is true or not.

For example, the if statement is a conditional statement and evaluates a condition to

determine the next action that should occur in your code.

// if statement
if (condition) {
// statements;
}
Another example is the return statement, which returns a result as a value of the function in

which it executes.

There are many different ways for you to format or write ActionScript. You might differ from
someone else who writes ActionScript in the way you form syntax, such as the way you space
out your statements or where you put curly braces ({}) in your code. Even though there are
several different ways you can form statements without breaking your code, there are some
general guidelines you can follow to write well-formed ActionScript.

About statements 103

Place only one statement on a line to increase the readability of your ActionScript. The

following example shows the recommended and not recommended statement usage:

theNum++; // recommended
theOtherNum++; // recommended
aNum++; anOtherNum++; // not recommended

Assign variables as separate statements. Consider the following ActionScript example:
var myNum:Number = (a = b + c) + d;

This ActionScript embeds an assignment within the code, which is difficult to read. If you
assign variables as separate statements, it improves readability, as the following example shows:

var a:Number = b + c;
var myNum:Number = a + d;

The following sections show you how to form specific statements in ActionScript. For
information on writing and formatting events, see Chapter 9, “Handling Events,” on
page 291.

For more information on each statement, see the following topics:

m “About compound statements” on page 104

m “About conditions” on page 105

m “Repeating actions using loops” on page 115

About compound statements

A compound statement contains numerous statements that you enclose within curly brace
(1}) punctuators. The statements inside a compound statement can be any kind of
ActionScript statement. A typical compound statement is shown below.

The statements within the curly brace punctuators are indented from the compound
statement, as the following ActionScript shows:

var a:Number = 10;

var b:Number = 10;

if (a == b) {
// This code is indented.
trace("a == b");
trace(a);
trace(b);

}

This compound statement contains several statements, but acts like a single statement in your
ActionScript code. The opening brace is placed at the end of the compound statement. The
closing brace begins a line, and aligns with the beginning of the compound statement.

For more information on using braces, see “Curly braces” on page 90.

104 Syntax and Language Fundamentals

About conditions

You use conditions to determine whether something is true or exists, and then you can
optionally repeat an action (using loops), or execute actions that you specify, such as functions
or expressions, based on whether the condition is true or not. For example, you can determine
whether a certain variable is defined or has a certain value and execute a block of code based
on the result. Also, you could change the graphics within your Flash document based on what

time the user's system clock is set to or on the weather in the user’s current location.

To perform an action depending on whether a condition exists, or to repeat an action (create
loop statements), youcanuse if,else,else if, for,while, do while, for..in,or switch
statements.

For more information on conditions that you can use, and how to write them, see the
following topics:

m “About writing conditions” on page 105

m “Using the if statement” on page 106

m “Using the if..else statement” on page 107

m “Using the if..else if statement” on page 108

m “Using a switch statement” on page 109

m “Using try..catch and try..catch..finally statements” on page 111

m “About the conditional operator and alternative syntax” on page 114

About writing conditions

Statements that check whether a condition is true or false begin with the term i f. If the
condition evaluates to true, ActionScript executes the next statement. If the condition
evaluates to false, ActionScript skips to the next statement outside the block of code.

= | | To optimize your code’s performance, check for the most likely conditions first.

T

The following statements test three conditions. The term else i f specifies alternative tests to
perform if previous conditions are false.

if ((passwordTxt.text.length == 0) || (emailTxt.text.length == 0))
gotoAndStop("invalidlLogin");
} else if (passwordTxt.text == userID){

gotoAndPlay("startProgram");
}

About statements 105

In this code snippet, if the length of the password Txt or email Txt text fields is 0 (for example,
the user hasn’t entered a value), the Flash document redirects to the invalidLogin frame
label. If both the passwordTxt and emailTxt text fields contain values and the password Txt
text field’s contents match the user1D variable, the SWTF file redirects to the startProgram
frame label.

If you want to check for one of several conditions, you can use the switch statement rather
than multiple e1se if statements. For more information on swi tch statements, see “Using a
switch statement” on page 109.

Refer to the following sections to learn how to write different kinds of conditions in your
ActionScript applications.

Using the if statement

Use the i f statement when you want to execute a series of statements based on a whether a

certain condition is true.

// if statement
if (condition) {

// statements;
}
There are several times when you'll use i f statements when you work on a Flash project. For
example, if you are building a Flash site that requires users to log in before they can access
certain sections of a website, you can use an i statement to validate that the user enters some
text in the username and password fields.

If you need to validate user names and passwords using an external database, you probably
want to verify that the username/password combination a user submits matches a record in
the database. You also want to check whether the user has permission to access the specified
part of the site.

If you script animations in Flash, you might want to use the i f statement to test whether an
instance on the Stage is still within the boundaries of the Stage. For example, if a ball moves
downward along the y-axis, you might need to detect when the ball collides with the bottom
edge of the Stage, so you can change the direction so that the ball appears to bounce upwards.

To use an if statement:

1. Select File > New and then select Flash Document.

106 Syntax and Language Fundamentals

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:

// create a string to hold AM and PM
var amPm:String = "AM";
// no parameters pass to Date, so returns current date/time
var current_date:Date = new Date();
// if current hour is greater than/equal to 12, sets amPm string to "PM".
if (current_date.getHours() >= 12) {
amPm = "PM";
}
trace(amPm);

3. Select Control > Test Movie to test the ActionScript.

In this code, you create a string that holds AM or PM based on the current time of day. If the
current hour is greater than or equal to 12 the amPM string sets to PM. Finally, you trace the
amPm string, and if the hour is greater than or equal to 12, PM is displayed. Otherwise,
you'll see AM.

Using the if..else statement

The if..else conditional statement lets you test a condition and then execute a block of
code if that condition exists or execute an alternative block of code if the condition does
not exist.

For example, the following code tests whether the value of x exceeds 20, generates a trace()
statement if it does, or generates a different trace () statement if it does not:

if (x > 20) {
trace("x is > 20");
}oelse |

trace("x is <= 20");
}
If you do not want to execute an alternative block of code, you can use the i f statement

without the e1se statement.

The if..else statement in Flash is similar to the i f statement. For example, if you use the
if statement to validate that a user’s supplied user name and password matches a value stored
in a database, then you might want to redirect the user based on whether the user name and
password are correct. If the login is valid, you can redirect the user to a welcome page using
the 1 f block. However, if the login was invalid, you can redirect the user to the login form and
display an error message using the else block.

To use an if..else statement in a document:

1. Select File > New and then select Flash Document to create a new FLA file.

About statements 107

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:

// create a string that holds AM/PM based on the time of day.

var amPm:String;

// no parameters pass to Date, so returns current date/time.

var current_date:Date = new Date();

// if current hour is greater than/equal to 12, sets amPm string to "PM".
if (current_date.getHours() >= 12) {

amPm = "PM";
}oelse |
amPm = "AM";

}
trace(amPm);

3. Select Control > Test Movie to test the ActionScript.

In this code, you create a string that holds AM or PM based on the current time of day. If the
current hour is greater than or equal to 12, the amPM string sets to PM. Finally, you trace the
amPm string, and if the hour is greater than or equal to 12, PM is displayed. Otherwise,
you'll see AM in the Output panel.

Using the if..else if statement

You can test for more than one condition using the if..else if conditional statement. You
use the following syntax in an if..else if statement:
// else-if statement
if (condition) {
// statements;
} else if (condition) {
// statements;
} else {
// statements;
}

You want to usean if..else if block in your Flash projects when you need to check a series
of conditions. For example, if you want to display a different image on the screen based on the
time of the day the user is visiting, you can create a series of i f statements that determine if it’s
early morning, afternoon, evening, or night time. Then you can display an appropriate
graphic.

The following code not only tests whether the value of x exceeds 20 but also tests whether the
value of x is negative:

if (x > 20) {
trace("x is > 20");
boelse if (x < 0) {
trace("x is negative");
}

108 Syntax and Language Fundamentals

To use an if..else if statement in a document:

1. Select File > New and then select Flash Document.

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var now_date:Date = new Date();
var currentHour:Number = now_date.getHours();
// if the current hour is less than 11AM...
if (currentHour < 11) {
trace("Good morning");
// else..if the current hour is less than 3PM...
} else if (currentHour < 15) f{
trace("Good afternoon");
// else..if the current hour is less than 8PM...
} else if (currentHour < 20) f{
trace("Good evening");
// else the current hour is between 8PM and 11:59PM
} else {
trace("Good night");
}

3. Select Control > Test Movie to test the ActionScript.

In this code, you create a string called currentHour that holds the current hour number
(for example, if it’s 6:19 pm, currentHour holds the number 18). You use the

getHours () method of the Date class to get the current hour. Then you can use the
if..else if statement to trace information to the Output panel, based on the number

that returns. For more information, see the comments in the previous code snippet.

Using a switch statement

The switch statement creates a branching structure for ActionScript statements. Similar to
the if statement, the switch statement tests a condition and executes statements if the
condition returns a value of true.

When you use a switch statement, the break statement instructs Flash to skip the rest of the
statements in that case block and jump to the first statement that follows the enclosing
switch statement. If a case block doesn’t contain a break statement, a condition called “fall
through” occurs. In this situation, the following case statement also executes until a break
statement is encountered or the switch statement ends. This behavior is demonstrated in the
following example, where the first case statement doesn’t contain a break statement and
therefore both of the code blocks for the first two cases (A and B) execute.

About statements 109

All switch statements should include a default case. The default case should always be the
last case on a switch statement and should also include a break statement to prevent a fall-
through error if another case is added. For example, if the condition in the following example
evaluates to A, both the statements for case A and B execute, because case A lacks a break
statement. When a case falls through, it does not have a break statement, but includes a
comment in the break statement’s place, which you can see in the following example after
case A. Use the following format when you write switch statements:

switch (condition) {
case A :
// statements
// falls through
case B
// statements
break;
case Z
// statements
break;
default
// statements
break;
}

To use a switch statement in a document:
1. Select File > New and then select Flash Document.

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:

var listenerObj:0bject = new Object();
TistenerObj.onKeyDown = function() {
// Use the String.fromCharCode() method to return a string.
switch (String.fromCharCode(Key.getAscii())) {
case "A"
trace("you pressed A");
break;
case "a"
trace("you pressed a");
break;
case "E"
case "e"
/* E doesn't have a break statement, so this block executes if you
press e or E. */
trace("you pressed E or e");
break;
case "I"
case "i"
trace("you pressed I or i");
break;

10 Syntax and Language Fundamentals

default
/* If the key pressed isn’t caught by any of the above cases,
execute the default case here. */
trace("you pressed some other key");
}
by
Key.addListener(listener0bj);

3. Select Control > Test Movie to test the ActionScript.

Type letters using the keyboard, including the a, e, or i key. When you type those three
keys, you'll see the trace statements in the preceding ActionScript. The line of code
creates a new object that you use as a listener for the Key class. You use this object to
notify the onKeyDown () event when the user presses a key. The Key.getAscii() method
returns the ASCII code of the last key that the user presses or releases, so you need to use
the String.fromCharCode() method to return a string that contains the characters
represented by the ASCII values in the parameters. Because “E” doesn’t have a break
statement, the block executes if the user presses the ¢ or E key. If the user presses a key that
isn’t caught by any of the first three cases, the default case executes.

Using try..catch and try..catch..finally statements

Using try..catch..finally blocks lets you add error handling to your Flash applications.
The try..catch..finally keywords let you enclose a block of code where an error can
occur and respond to that error. If any code within the try code block throws an error (using
the throw statement), control passes to the catch block, if one exists. Then control passes to
the finally code block, if one exists. The optional final1ly block always executes, regardless

of whether an error was thrown.

If code within the try block doesn’t throw an error (that is, the try block completes
normally), the code in the finally block still executes.

The finally block executes even if the try block exits using a return statement

310N

You write try..catchand try..catch..finally statements using the following format:

// try-catch

try {
// statements

} catch (myError) f{
// statements

}

// try-catch-finally
try {
// statements

About statements m

} catch (myError) f{
// statements

b finally f
// statements

}

Any time your code throws an error, you can write custom handlers to handle the error

gracefully and take appropriate actions. You might need to try loading external data from a

web service or text file or to display an error message to the end user. You can even use the

catch block to try to connect to a web service that alerts an administrator that a particular

error occurred, so he or she can make sure the application works properly.

To use the try..catch..finally block for data validation before dividing some

numbers:
1. Select File > New and then select Flash Document.
2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var nl:Number = 7;
var n2:Number = 0;
try {
if (n2 == 0) {
throw new Error("Unable to divide by zero");
}
trace(nl/n2);
} catch (err:Error) f{
trace("ERROR! " + err.toString());
b finally |
delete nl;
delete n2;
}
3. Select Control > Test Movie to test the document.
4. The Output panel displays Unable to divide by zero.
5. Return to the authoring environment and change the following line of code:
var n2:Number = 0;
to
var n2:Number = 2;
6. Select Control > Enter to test the document again.
If the value of n2 equals zero, an error is thrown and is caught by the catch block, which
displays a message in the Output panel. If the value of y is not equal to zero, the Output
panel displays the result of n1 divided by n2. The finally block executes regardless of
whether an error occurs and deletes the values of the n1 and n?2 variables from the
Flash document.
12 Syntax and Language Fundamentals

You aren’t limited to throwing new instances of the Error class when an error occurs. You
could also extend the Error class to create your own custom errors, as demonstrated in the

following example.

To create a custom error:

1. Select File > New and create a new ActionScript file.
2. Select File > Save As and name the file DivideByZeroException.as.
3. Type the following ActionScript into the Script pane:

// In DivideByZeroException.as:
class DivideByZeroException extends Error ({

var message:String = "Divide By Zero error";
}

4. Save the ActionScript file.

5. Create a new Flash document named exception_test.fla in the same directory as the
ActionScript file, and then save the file.

6. Type the following ActionScript into the Actions panel in Frame 1 of the main Timeline:

var nl:Number = 7;

var n2:Number = 0;
try {
if (n2 == 0) {

throw new DivideByZeroException();
} else if (n2 < 0) {
throw new Error("n2 cannot be less than zero");
}oelse |
trace(nl/n2);
}
} catch (err:DivideByZeroException) {
trace(err.toString());
} catch (err:Error) {
trace("An unknown error occurred; " 4+ err.toString());
}

7. Save the Flash document and select Control > Test Movie to test the file in the test

environment.

Because the value of n2 equals 0, Flash throws your custom DivideByZeroException error
class and displays Divide By Zero error in the Output panel. If you change the value of
n2 in line two from 0 to -1, and retest the Flash document, you would see An unknown
error occurred; n2 cannot be less than zero in the Output panel. Setting the
value of n2 to any number greater than 0 causes the result of the division to appear in the
Output panel. For more information on creating custom classes, see Chapter 6, “Classes,”
on page 187.

About statements 13

About the conditional operator and alternative syntax

If you like shortcuts, you can use the conditional (?:) operator, also called conditional
expressions. The conditional operator lets you convert simple i f. .else statements into a
single line of code. The operator helps decrease the amount of code you write while
accomplishing the same thing, but it also tends to make your ActionScript more difficult
to read.

The following condition is written in long hand, and checks whether the variable numTwo is
greater than zero, and returns the result of numOne/numTwo or a string of carrot:

var numOne:Number = 8;
var numTwo:Number 5;
if (numTwo > 0) {
trace(numOne / numTwo); // 1.6
} else |
trace("carrot");
}

Using a conditional expression, you would write the same code using this format:

var numOne:Number = 8;

var numTwo:Number = 0;

trace((numTwo > 0) ? numOne/numTwo : "carrot");

As you can see, the shortened syntax reduces readability, and so it is not preferable. If you
must use conditional operators, place the leading condition (before the question mark [?])
inside parentheses. This helps improve the readability of your ActionScript. The following
code is an example of ActionScript with improved readability:

var numOne:Number;

(numOne >= 5) ? numOne : -numOne;

You can write a conditional statement that returns a Boolean value, as the following

example shows:

if (cartArr.length > 0) {
return true;
b else f
return false;
}
However, compared with the previous code, the ActionScript in the following example

is preferable:

return (cartArr.length > 0);

The second snippet is shorter and has fewer expressions to evaluate. It’s easier to read
and understand.

14 Syntax and Language Fundamentals

When you write complex conditions, it is good form to use parentheses [()] to group
conditions. If you do not use parentheses, you (or others working with your ActionScript)
might run into operator precedence errors. For more information on operator precedence, see

“About operator precedence and associativity” on page 140.

For example, the following code does not use parentheses around the condition:

if (fruit == "apple" && veggie == "leek") {}

The following code uses good form by adding parentheses around conditions:

if ((fruit == "apple") && (veggie == "leek")) {}

Repeating actions using loops

ActionScript can repeat an action a specified number of times or while a specific condition
exists. Loops let you repeat a series of statements when a particular condition is true. There
are four types of loops in ActionScript: for loops, for. . in loops, while loops, and
do..while loops. Each type of loop behaves somewhat differently, and each one is useful for
different purposes.

Most loops use some kind of counter to control how many times the loop executes. Each
execution of a loop is called an izeration. You can declare a variable and write a statement that
increases or decreases the variable each time the loop executes. In the for action, the counter
and the statement that increments the counter are part of the action.

Loop Description

for loops Repeat an action using a built-in counter.

for..inloops Iterate over the children of a movie clip or object.

while loops Repeat an action while a condition exists.

do..while loops Similar to while loops, except the expression evaluates at the bottom of

the code block, so the loop always runs at least once.

About statements 15

The most common type of loop is the for loop, which loops over a block of code a predefined
number of times. For example, if you have an array of items, and you want to perform a series
of statements on each item in the array, you would use a for loop and loop from 0 to the
number of items in the array. Another type of loop is the for. . in loop, which can be very
useful when you want to loop over each name/value pair within an object and then perform
some type of action. This can be very useful when you are debugging your Flash projects and
want to display the values that load from external sources, such as web services or external
text/XML files. The final two types of loops (while and do..while) are useful when you
want to loop over a series of statements but you don’t necessarily know how many times you
need to loop. In this case you can use a while loop that loops as long as a certain condition

is true.

ActionScript can repeat an action a specified number of times or while a specific condition
exists. Use the while, do..while, for, and for..in actions to create loops. This section
contains general information on these loops. See the following procedures for more
information on each of these loops.

To repeat an action while a condition exists:
m Use the while statement.

A while loop evaluates an expression and executes the code in the body of the loop if the
expression is true. After each statement in the body is executed, the expression is
evaluated again. In the following example, the loop executes four times:

var 1:Number = 4;

while (i > 0) {
myClip.duplicateMovieClip("newMC" + i, i, {_x:1*20, _y:i*20});
i--3

}

You can use the do. .while statement to create the same kind of loop as a while loop. In
ado..while loop, the expression is evaluated at the bottom of the code block so that the
loop always runs at least once.

This is shown in the following example:

var i:Number = 4;

do {
myClip.duplicateMovieClip("newMC" + i, i, {_x:1*20, _y:i*20});
i

b while (i > 0);

For more information on the while statement, see “Using while loops” on page 122.

16 Syntax and Language Fundamentals

To repeat an action using a built-in counter:

Use the for statement.

Most loops use some kind of counter to control how many times the loop executes. Each

execution of a loop is called an izeration. You can declare a variable and write a statement

that increases or decreases the variable each time the loop executes. In the for action, the

counter and the statement that increments the counter are part of the action.

In the following example, the first expression (var i:Number = 4) is the initial expression

that is evaluated before the first iteration. The second expression (i > 0) is the condition
that is checked each time before the loop runs. The third expression (i - -) is called the posz

expression and is evaluated each time after the loop runs.

for (var i:Number = 4; 1 > 0; i--) |
myClip.duplicateMovieClip("newMC" + i, i, {_x:1*20, _y:i*20});

}

For more information on the for statement, see “Using for loops” on page 119.

To loop through the children of a movie clip or an object:

Use the for. .in statement.

Children include other movie clips, functions, objects, and variables. The following
example uses the trace statement to print its results in the Output panel:

var myObject:0bject = {name:'Joe', age:25, city:'San Francisco'};
var propertyName:String;
for (propertyName in myObject) ({
trace("myObject has the property: " + propertyName + ", with the
value: " + myObject[propertyName]);
}

This example produces the following results in the Output panel:

myObject has the property: name, with the value: Joe
myObject has the property: age, with the value: 25
myObject has the property: city, with the value: San Francisco

You might want your script to iterate over a particular type of child—for example, over

only movie clip children. You can do this using for. . in with the typeof operator. In the

following example, a child movie clip instance (called instance?2) is inside a movie clip

instance on the Stage. Add the following ActionScript to Frame 1 of the Timeline:

for (var myName in this) {
if (typeof (this[myNamel) == "movieclip") {
trace("I have a movie clip child named " + myName);
}

About statements

17

For more information on the for. . in statement, see “Using for..in loops” on page 120.

= | |lterations in Flash execute very quickly in the Flash Player, but loops depend heavily
; on the processor. The more iterations a loop has and the more statements executed
Z | |within each block, the more processor resources will be consumed. Poorly written
GZ, loops can cause performance problems and stability issues.

For more information on each statement, see the individual sections that follow in this
chapter, such as “Using while loops” on page 122, and their respective entries in the
ActionScript 2.0 Language Reference.

About creating and ending loops

The following example shows a simple array of month names. A for loop iterates from 0 to
the number of items in the array and displays each item in the Output panel.
var monthArr:Array = new Array("Jdan", "Feb", "Mar", "Apr", "May", "Jun",
“Jul", "Aug", "Sep", "Oct", "Nov", "Dec");:
var i:Number;
for (i = 0; i < monthArr.length; i++) {
trace(monthArr[il);
}
When you work with arrays, whether they’re simple or complex, you need to be aware of a
condition called an infinite loop. An infinite loop, as its name suggests, is a loop with no end
condition. This causes real problems—crashing your Flash application, causing your Flash
document to stop responding in a web browser, or causing very inconsistent behavior of your

Flash document. The following code is an example of an infinite loop:

// BAD CODE- creates an infinite loop
// USE AT OWN RISK!
var i:Number;
for (i =0; i < 10; i--) {

trace(i);
}
The value of i is initialized to 0 and the end condition is met when i is greater than or equal
to 10 and after each iteration the value of i is decremented. You can probably see the obvious
error immediately: if the value of i decreases after each loop iteration, the end condition is
never met. The results vary on each computer you run it on, and the speed at which the code
fails depends on the speed of the CPU and other factors. For example, the loop executes about
142,620 times before displaying an error message on a given computer.

The following error message is displayed in a dialog box:

A script in this movie is causing Flash Player to run slowly. If it
continues to run, your computer may become unresponsive. Do you want to
abort the script?

18 Syntax and Language Fundamentals

When you work with loops (and especially while and do..whiTe loops), always make sure
that the loop can exit properly and does not end up in an infinite loop.

For more information on controlling loops, see “Using a switch statement” on page 109.

Using for loops

The for loop lets you iterate over a variable for a specific range of values. A for loop is useful
when you know exactly how many times you need to repeat a series of ActionScript
statements. This can be useful if you want to duplicate a movie clip on the Stage a certain
number of times or to loop over an array and perform a task on each item in that array. A for
loop repeats an action using a built-in counter. In a for statement, the counter and the
statement that increments the counter are all part of the for statement. You write the for
statement using the following basic format:
for (init; condition; update) {

// statements;
}
You must supply three expressions to a for statement: a variable that is set to an initial value,
a conditional statement that determines when the looping ends, and an expression that
changes the value of the variable with each loop. For example, the following code loops five
times. The value of the variable i starts at 0 and ends at 4, and the output are the numbers 0
through 4, each on its own line.

var i:Number;
for (i =0; i < 5; i++) |

trace(i);
}
In the next example, the first expression (i = 0) is the initial expression that evaluates before
the first iteration. The second expression (i < 5) is the condition that you check each time
before the loop runs. The third expression (i++) is called the post expression and is evaluated
each time after the loop runs.

To create a for loop:

1. Select File > New and then select Flash Document.
2. Create a movie clip on the Stage.

3. Right-click the movie clip symbol in the Library panel and select Linkage from the

context menu.

4. Select the Export for ActionScript check box, and type libraryLinkageClassName in the
Class text input field. Click OK.

About statements 19

5. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:

var 1:Number;

for (i = 0; i < 5; i++) {
this.attachMovie("librarylLinkageClassName", "clip" + i + "_mc", i,
{_x:(i * 100)});

}

6. Select Control > Test Movie to test the code in Flash Player.

Notice how five movie clips duplicate across the top of the Stage. This ActionScript
duplicates the movie clip symbol in the library and repositions the clips on the Stage at x
coordinates of 0, 100, 200, 300 and 400 pixels. The loop executes five times, with the

variable i assigned a value of 0 through 4. On the last iteration of the loop, the value of i

increments to 4 and the second expression (i < 5) is no longer true, which causes the

loop to exit.

Remember to include a space following each expression in a for statement. For more
information, see the for statement in the ActionScript 2.0 Language Reference.

Using for..in loops

Use the for. . in statement to loop through (or izerate through) the children of a movie clip,

properties of an object, or elements of an array. Children, referenced previously, include other

movie clips, functions, objects, and variables. Common uses of the for. . in loop include

looping over instances on a timeline or looping over the key/value pairs within an object.

Looping over objects can be an effective way to debug applications because it lets you see what

data returns from web services or external documents such as text or XML files.

For example, you can use a for. . . in loop to iterate through the properties of a generic object

(object properties are not kept in any particular order, so properties appear in an
unpredictable order):
var myObj:0bject = {x:20, y:30};
for (var i:String in myObj) f{
trace(i + ": " + my0bjl[il);
}

This code outputs the following in the Output panel:
x: 20
y: 30
You can also iterate through the elements of an array:

var myArray:Array = ["one", "two", "three"];

for (var i:String in myArray) {
trace(myArray[il);

}

120 Syntax and Language Fundamentals

This code outputs the following in the Output panel:

three
two
one

For more information on objects and properties, see “Object data type” on page 42.

You cannot iterate through the properties of an object if it is an instance of a custom
class, unless the class is a dynamic class. Even with instances of dynamic classes, you
are able to iterate only through properties that are added dynamically.

The curly braces ({}) used to enclose the block of statements to be executed by the
for..in statement are not necessary if only one statement executes.

'31on| | 3loN|

The following example uses for. . in to iterate over the properties of an object:

To create a for loop:
1. Select File > New and then select Flash Document.

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:

var myObj:0bject
var i:String;
for (i in myObj) {

trace("myObj."
}

{name:"Tara", age:27, city:"San Francisco"};

+

i+ "=+ myObi[il):

3. Select Control > Test Movie to test the code in Flash Player.

When you test the SWF file, you should see the following text in the Output panel:

myObj.name = Tara

myObj.age = 27

myObj.city = San Francisco
If you write a for. . in loop in a class file (an external ActionScript file), instance members are
not available within the loop, but static members are. However, if you write a for. . in loop in
a FLA file for an instance of the class, instance members are available but static members are
not. For more information on writing class files, see Chapter 6, “Classes,” on page 187. For
more information, see the for..in statement in the ActionScript 2.0 Language Reference.

About statements 121

Using while loops

Use the while statement to repeat an action while a condition exists, similar to an i f
statement that repeats as long as the condition is true.

A while loop evaluates an expression and executes the code in the body of the loop if the

expression is true. If the condition evaluates to true, a statement or series of statements runs
before looping back to evaluate the condition again. When the condition evaluates to false,
the statement or series of statements is skipped and the loop ends. Using whi1e loops can be
very useful when you aren’t sure of how many times you'll need to loop over a block of code.

For example, the following code traces numbers to the Output panel:
var 1:Number = 0;
while (i < 5) {

trace(i);

i+

}

You see the following numbers traced to the Output panel:

B~ owmn— o

One disadvantage of using a while loop instead of a for loop is that infinite loops are easier
to write with while loops. The for loop example code does not compile if you omit the
expression that increments the counter variable, but the while loop example does compile if
you omit that step. Without the expression that increments 1, the loop becomes an

infinite loop.

To create and use a while loop in a FLA file, follow this example.

To create a while loop:

1. Select File > New and then select Flash Document.
2. Open the Components panel and drag a DataSet component onto the Stage.

3. Open the Property inspector (Window > Properties > Properties) and type the instance
name users_ds.

122 Syntax and Language Fundamentals

4. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:

var users_ds:mx.data.components.DataSet;

//

users_ds.addItem({name:"Irving", age:34});

users_ds.addItem({name:"Christopher", age:48});

users_ds.addItem({name:"Walter", age:23});

//

users_ds.first();

while (users_ds.hasNext()) {
trace("name:" + users_ds.currentltem["name"] + ", age:" +
users_ds.currentItem["age"]);
users_ds.next();

}

5. Select Control > Test Movie to test the document.

The following information is displayed in the Output panel:

name:Irving, age:34
name:Christopher, age:48
name:Walter, age:23

For more information, see the while statement in the ActionScript 2.0 Language Reference.

About do..while loops

You can use the do. .while statement to create the same kind of loop as a while loop.
However, the expression is evaluated at the bottom of the code block in a do. .whiTe loop (it’s
checked after the code block executes), so the loop always runs at least one time. The
statements execute only if the condition evaluates to true.

The following code shows a simple example of a do. .whiTe loop that generates output even
though the condition is not met.

var i:Number = 5;

do {

trace(i);

i+t
} while (i < 5);
// Output: b5

When you use loops, you need to avoid writing infinite loops. If the condition in a
do..while loop continuously evaluates to true, you create an infinite loop that displays a
warning or crashes Flash Player. Use a for loop instead if you know how many times you
want to loop. For more information on and examples of do. .while statement, see the
ActionScript 2.0 Language Reference.

About statements 123

Using nested loops in your ActionScript

The following example demonstrates how to make an array of objects and display each of the

values in the nested structure. This example shows you how to use the for loop to loop

through each item in the array and how to use the for. . in loop to iterate through each key/

value pair in the nested objects.

Nesting a loop within another loop:

1. Create a new Flash document.
2. Select File > Save As and name the document loops.fla.
3. Add the following code to Frame 1 of the Timeline:
var myArr:Array = new Array();
myArr[0] = {name:"One", value:1l};
myArr[1] = {name:"Two", value:2};
//
var 1:Number;
var item:String;
for (i = 0; i < myArr.length; i++) {
trace(i);
for (item in myArr[i]) {
trace(item + ": " + myArr[il[litem]);
}
trace("");
}
4. Select Control > Test Movie to test your code.
The following is displayed in the Output panel.
0
name: One
value: 1
1
name: Two
value: 2
You know how many items are in the array, so you can loop over each item using a simple
for loop. Because each object in the array can have different name/value pairs, you can
use a for..1in loop to iterate over each value and display the results in the Output panel.
124 Syntax and Language Fundamentals

About arrays

An array is an object whose properties are identified by numbers representing their positions
in the structure. Essentially, an array is a list of items. It’s important to remember that each
element in an array doesn’t have to be the same data type. You can mix numbers, dates,
strings, and objects and even add a nested array at each array index.

The following example is a simple array of month names.

var myArr:Array = new Array();
myArr[0] = "January";

myArr[1] = "February";
myArr[2] = "March";
myArr[3] = "April";

The previous array of month names can also be rewritten as follows:

var myArr:Array = new Array("Jdanuary", "February", "March", "April");

Or, you can use shorthand syntax, as follows:

var myArr:Array = ["Jdanuary", "February", "March", "April"];

An array is like a structure for data. An array is like an office building, where each floor

contains a different piece of data (such as accounting on floor 3, and engineering on floor 5). As
such, you can store different kinds of data in a single array, including other arrays. Each floor
of this building can contain multiple kinds of content (executives and accounting might share

floor 3).

An array contains elements, which are equivalent to each floor of the building. Each element
has a numeric position (the index), which is how you refer to each element's position in the
array. This is similar to how each floor in a building has a floor number. Each element can
either hold a piece of data (which could be a number, string, Boolean value, or even an array
or object) or be empty.

You can also control and modify the array itself. For example, you might want to move the
engineering department to the basement of the building. Arrays let you move values around,
and they let you change the size of the array (say, renovate the building and add more floors or
remove floors). As such, you can add or remove elements and move values to different

elements.

Therefore, the building (the array) contains floors (the elements), which are numbered floors
(the index), and each floor contains one or more departments (the values).

About arrays 125

For more information on modifying arrays, see “About modifying arrays” on page 127. For
information on using arrays and about indexes, see “Using arrays” on page 126. For

information on adding and removing elements, see “About adding and removing elements”
on page 129. For information on the array access operator, see “Using dot and array access

operators” on page 145.

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List

components.

Using arrays

There are several different ways you can use arrays in your work. You can use them to store
lists of objects, such as a bunch of returned items. If you load data from remote web servers,
you might even receive data as an array of nested objects. Often, arrays contain data in a
similar format. For example, if you build an audio application in Flash, you might have a
user’s playlist stored as an array of song information, stored in objects. Each object contains
the song name, artist name, song duration, location of a sound file (such as an MP3), or any
other information that you might need to associate with a particular file.

The location of an item in an array is called the index. All arrays are zero-based, which means

that the first element in the array is [0], the second element is [1], and so on.

There are different kinds of arrays, which you'll discover in the following sections. The most
common arrays use a numerical index to look up a particular item in an indexed array. The
second kind of array is called an associative array and uses a text index instead of a numerical
index to look up information. For more information on common arrays, see “About arrays”
on page 125. For more information on associative arrays, see “Creating associative arrays”
on page 134. For more information on multidimensional arrays, see “Creating
multidimensional arrays” on page 131. For information on the array access operator, see

“Using dot and array access operators” on page 145.

The built-in Array class lets you access and manipulate arrays. To create an Array object, you
use the constructor new Array() or the array access operator ([1). To access the elements of

an array, you also use the array access ([1) operator. The next example uses an indexed array.

To use arrays in your code:

1. Create a new Flash document, and save it as basicArrays.fla.

126 Syntax and Language Fundamentals

http://www.adobe.com/go/learn_fl_samples

2. Add the following ActionScript to Frame 1 of the Timeline:

// define a new array
var myArr:Array = new Array();
// define values at two indexes
myArr[1] = "valuel";
myArr[0] = "valueQO";
// iterate over the items in the array
var i:String;
for (i in myArr) {
// trace the key/value pairs
trace("key: " + 1 + ", value: " + myArr[i]);
}
In the first line of ActionScript, you define a new array to hold the values. Then, you
define data (value0 and valuel) at two indexes of the array. You use a for. . in loop to
iterate over each of the items in that array and display the key/value pairs in the Output

panel using a trace statement.
3. Select Control > Test Movie to test your code.

The following text is displayed in the Output panel:

key: 0, value: value0
key: 1, value: valuel

For more information on for. . in loops, see “Using for..in loops” on page 120.
For information on how to create different kinds of arrays, see the following sections:
m “Creating indexed arrays” on page 130
m “Creating multidimensional arrays” on page 131
m “Creating associative arrays” on page 134
For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_{l_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.

The code in the sample creates an array and sorts, adds, and removes items of two List

components.

About modifying arrays

You can also control and modify the array using ActionScript. You can move values around an
array, or you can change the size of the array. For example, if you want to exchange data at two
indexes in an array, you can use the following code:

var buildingArr:Array = new Array();

buildingArr[2] = "Accounting";

buildingArr[4] = "Engineering";

trace(buildingArr); // undefined,undefined,Accounting,undefined,Engineering

About arrays 127

http://www.adobe.com/go/learn_fl_samples

var temp_item:String = buildingArr([2];

buildingArr[2] = buildingArr[4];

buildingArr[4] = temp_item;

trace(buildingArr); // undefined,undefined,Engineering,undefined,Accounting

You might wonder why you need to create a temporary variable in the previous example. If

you copied the contents of array index 4 into array index 2 and vice versa, the original

contents of array index 2 would be lost. When you copy the value from one of the array

indexes into a temporary variable, you can save the value and safely copy it back later in your

code. For example, if you use the following code instead, you can see that the value of array

index 2 (Accounting) has been lost. Now you have two engineering teams but no accountants.

// wrong way (no temporary variable)

buildingArr[2] = buildingArr[4];

buildingArr[4] = buildingArr[2];

trace(buildingArr); //
undefined,undefined,Engineering,undefined,Engineering

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see

the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress

the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.

The code in the sample creates an array and sorts, adds, and removes items of two List

components.

About referencing and finding length

When you work with arrays, you often need to know how many items exist in the array. This
can be very useful when writing for loops that iterate through every element in the array and

execute a series of statements. You can see an example in the following snippet:

var monthArr:Array = new Array("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec");

trace(monthArr); // Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,0ct,Nov,Dec

trace(monthArr.length); // 12

var 1:Number;

for (i = 0; i < monthArr.length; i++) {
monthArr[i] = monthArr[i].toUpperCase();

}

trace(monthArr); // JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,O0CT,NOV,DEC

In the previous example, you create an array and populate it with month names. The contents
are displayed, and also the array’s length. A for loop iterates over each item in the array and
converts the value to uppercase, and the array contents are displayed again.

128 Syntax and Language Fundamentals

http://www.adobe.com/go/learn_fl_samples

In the following ActionScript, if you create an element at array index 5 in an array, the length
of the array returns 6 (because the array is zero based), and not the actual number of items in
the array as you might expect:

var myArr:Array = new Array();

myArr[5] = "five";

trace(myArr.length); // 6

trace(myArr); // undefined,undefined,undefined,undefined,undefined,five
For more information on for loops, see “Using for loops” on page 119. For information on

the array access operator, see “Using dot and array access operators” on page 145.

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List

components.

About adding and removing elements

An array contains elements and each element has a numeric position (the index), which is
how you refer to each element's position in the array. Each element can either hold a piece of
data or be empty. An element can hold the following data: a number, string, Boolean, or even

an array or object.

When you create elements in an array, you should create the indexes sequentially whenever
possible. This helps you when you debug your applications. In “About referencing and finding
length” on page 128, you saw that if you assign a single value in an array at index 5, the array
length returns as 6. This causes five undefined values to be inserted into the array.

The following example demonstrates how to create a new array, delete an item at a particular
index, and add and replace data at an index in an array:

var monthArr:Array = new Array("Jan", "Feb", "Mar", "Apr", "May", "Jdun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec");

delete monthArr[5];

trace(monthArr); // Jan,Feb,Mar,Apr,May,undefined,Jul,Aug,Sep,0ct,Nov,Dec

trace(monthArr.length); // 12

monthArr[5] = "JUN";

trace(monthArr); // Jan,Feb,Mar,Apr,May,JUN,Jul,Aug,Sep,0ct,Nov,Dec

Even though you deleted the item at array index 5, the array length is still 12, and the item at
array index 5 changed to a blank string instead of disappearing completely.

About arrays 129

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_{l_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List

components.

Creating indexed arrays

Indexed arrays store a series of one or more values. You can look up items by their position in
the array, which you might have done in earlier sections. The first index is always the number
0, and the index increments by one for each subsequent element that you add to the array.
You can create an indexed array by calling the Array class constructor or by initializing the
array with an array literal. You create arrays using the Array constructor and an array literal in

the next example.

To create an indexed array:

1. Create a new Flash document, and save it as indexArray.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:

var myArray:Array =
myArray.push("one");
myArray.push("two");
myArray.push("three");

trace(myArray); // one,two,three

new Array();

In the first line of ActionScript, you define a new array to hold the values.
3. Select Control > Test Movie to test your code.

The following text is displayed in the Output panel:

one,two,three
4. Return to the authoring tool, and delete the code in the Actions panel.
5. Add the following ActionScript to Frame 1 of the Timeline:

var myArray:Array = ["one", "two", "three"];

trace(myArray); // one,two,three

In this code you use the array literal to define a new array for your code. This code is the
equivalent of the ActionScript you wrote in step 2. When you test the code, you see the
same output appear in the Output panel.

130 Syntax and Language Fundamentals

http://www.adobe.com/go/learn_fl_samples

Creating multidimensional arrays

In ActionScript, you can implement arrays as nested arrays that are essentially arrays of arrays.
Nested arrays, also known as multidimensional arrays, can be thought of as matrices or grids.
Therefore, when you are programming, you might use multidimensional arrays to model
these kinds of structures. For example, a chess board is a grid of eight columns and rows; you
could model the chess board as an array that contains eight elements, each of which is also an

array that contains eight elements.
For example, consider a list of tasks that is stored as an indexed array of strings:
var tasks:Array = ["wash dishes", "take out trash"];

If you want to store a separate list of tasks for each day of the week, you can create a
multidimensional array with one element for each day of the week. Each element contains an

indexed array that stores the list of tasks.

When you use the array access operator, the ActionScript compiler cannot check
whether the accessed element is a valid property of the object.

NOILNVD

To create a basic multidimensional array and retrieve elements from the array:
1. Create a new Flash document, and save it as multiArray].fla.
2. Add the following ActionScript to Frame 1 of the Timeline:

var twoDArray:Array = new Array(new Array("one","two"), new
Array("three", "four"));
trace(twoDArray);

This array, twoDArray, consists of two array elements. These elements are themselves
arrays consisting of two elements. In this case, twoDArray is the main array that contains
two nested arrays.

3. Select Control > Test Movie to test the code. You see the following display in the
Output panel.
one,two,three,four

4. Return to the authoring tool and open the Actions panel. Comment out the trace
statement, as shown below:

// trace(twoDArray);

About arrays 131

5. Add the following ActionScript at the end of your code on Frame 1 of the Timeline:

trace(twoDArray[01[01); // one

trace(twoDArray[1]1[11); // four

To retrieve elements of a multidimensional array, you use multiple array access ([1)
operators after the name of the top-level array. The first [] refers to the index of the top-

level array. Subsequent array access operators refer to elements of nested arrays.

6. Select Control > Test Movie to test the code. You see the following display in the
Output panel.
one
four
You can use nested for loops to create multidimensional arrays. The next example shows
you how.

To create a multidimensional array using a for loop:

1. Create a new Flash document, and save it as multiArray2.fla.
2. Add the following ActionScript to Frame 1 of the Timeline:

var gridSize:Number = 3;

var mainArr:Array = new Array(gridSize);

var i:Number;

var j:Number;

for (i = 0; i < gridSize; i++) {
mainArr[i] = new Array(gridSize);
for (j = 0; J < gridSize; j++) {

mainArr[i1[j] = "[" + 1 + "J[" + J + "1";

}

}

trace(mainArr)

This ActionScript creates a 3 x 3 array and sets the value of each array node to its index.
Then you trace the array (mainArr).

3. Select Control > Test Movie to test the code.
You see the following display in the Output panel:
(ojcol,rolcil,roices,cricod, i1, r11ces, t21cod, telril, r21cel

You can also use nested for loops to iterate through the elements of a multidimensional array,
as shown in the next example.

To use a for loop to iterate a multidimensional array:

1. Create a new Flash document, and save it as multiArray3.fla.

132 Syntax and Language Fundamentals

2. Add the following ActionScript to Frame 1 of the Timeline:

// from previous example

var gridSize:Number = 3;

var mainArr:Array = new Array(gridSize);

var 1:Number;

var j:Number;

for (i = 0; i < gridSize; i++) {
mainArr[i] = new Array(gridSize);
for (j = 0; J < gridSize; j++) {

mainArr[i1[j] = "[" + 1 + "J[" + J + "1";

}

}

In this code, seen in the previous example, the outer loop iterates through each element
of mainArray. The inner loop iterates through each nested array and outputs each
array node.

3. Add the following ActionScript to Frame 1 of the Timeline, following the code you entered
in step 2:

// iterate through elements

var outerArraylLength:Number = mainArr.length;

for (i = 0; i < outerArraylLength; i++) {
var innerArraylLength:Number = mainArr[i].length;
for (j = 0; j < innerArraylLength; j++) {

trace(mainArr[i1[j]);

}

}

This ActionScript iterates through the elements of the array. You use the Tength property
of each array as the loop condition.

4. Select Control > Test Movie to view the elements that are displayed in the Output panel.
You will see the following in the Output panel:

£oJco]
[01[1]
tojce]
(110o]
(11011
(1ice]
[2]100]
(21011
[2]1re]

For information on using arrays, see “Using arrays” on page 126. For information on array
elements, see “About adding and removing elements” on page 129. For information on the

« 7ot »
array access operator, see “Using dot and array access operators” on page 145.

About arrays 133

Creating associative arrays

An associative array, which is like an object, is made of unordered 4eys and values. Associative
arrays use keys instead of a numeric index to organize stored values. Each key is a unique
string, and it is associated with and used to access one value. That value can be a data type
such as Number, Array, Object, and so on. When you create code to find a value thats
associated with a key, you are indexing or performing a lookup. This is what you will probably

use associative arrays for most often.

The association between a key and value is commonly referred to as its binding; the key and
value are mapped to each other. For example, a contact book might be considered an

associative array, where the names are the keys and email addresses are the values

Associative arrays are unordered collections of key and value pairs. Your code should
not expect the keys of an associative array to be in a specific order.

310N

When you use associative arrays, you can call the array element you need using a string rather
than a number, which is often easier to remember. The downside is that these arrays aren't as
useful in a loop because they do not use numbers as the index value. They are useful when you
need to look up by key values frequently. For example, if you had an array of names and ages

that you needed to refer to a lot, you might use an associative array.

The following example demonstrates how to create an object and define a series of properties

in an associative array.

To create a simple associative array:

1. Create a new Flash document.
2. Type the following ActionScript on Frame 1 of the Timeline:

// Define the object to use as an associative array.
var someObj:0bject = new Object();

// Define a series of properties.

someObj.myShape = "Rectangle";

someObj.myW = 480;

someObj.myH = 360;

someObj.myX 100;

someObj.myY = 200;

someObj.myAlpha = 72;

someObj.myColor = OxDFDFDF;

// Display a property using dot operator and array access syntax.
trace(someObj.myAlpha); // 72
trace(someObj["myAlpha"1); // 72

134 Syntax and Language Fundamentals

The first line of ActionScript defines a new object (some0Obj) that you use as the
associative array. Following this, you define a series of properties in someObj. Finally, you
display a property that you select using both dot operator and array access syntax.

You can access variables in an associative array using two different methods: dot
syntax (some0Obj.myColor)and array syntax (some0Obj[‘myColor’1).

310N

3. Select Control > Test Movie to test your ActionScript.

The Output panel displays the number 72 twice, which represents both of the alpha levels
that you traced.

There are two ways to create associative arrays in ActionScript 2.0:
m Use an Object constructor
m Use an Array constructor (or the constructor of any dynamic class)

You can use an instance of any dynamic class to create an associative array, but it is common
practice to use an instance of the Object class because you won’t have any added class member
properties or methods.

Both of these ways are demonstrated in upcoming examples.

The previous example used an Object constructor to create an associative array.

310N

If you use the Object constructor to create an associative array, you can take advantage of
initializing your array with an object literal. An instance of the Object class, also called a
generic object, is functionally identical to an associative array. In fact, Object instances are
essentially associative arrays. You might use associative arrays for dictionary-like functionality,
when it's more convenient to have string keys rather than numerical indices. Each property
name of the generic object serves as the key that provides access to a stored value. For more
information on literals, see “About literals” on page 94. For more information on classes, see

Chapter 6, “Classes,” on page 187.

To create an associative array using an Object constructor:
1. Create a new Flash document, and save it as assocArray.fla.
2. Add the following ActionScript to Frame 1 of the Timeline:

var monitorInfo:0bject = {type:"Flat Panel", resolution:"1600 x 1200"};
trace(monitorinfol["type"] + ", " + monitorInfol["resolution"]);

About arrays 135

This code creates an associative array called monitorInfo, and uses an object literal to
initialize the array with two key/value pairs.

If you do not need to initialize the array at declaration time, you can use the Object
constructor to create the array:

310N

var monitorInfo:0bject = new Object();
Select Control > Test Movie.

The Output panel displays the following text:
Flat Panel, 1600 x 1200

Add the following ActionScript to Frame 1 of the Timeline, following the code you entered
previously:
monitorInfol"aspectRatio"] = "16:10";

monitorInfo.colors = "16.7 million";

trace(monitorInfol["aspectRatio"] + ", " + monitorInfo.colors);

After you use using either an object literal or the Object class constructor to create the
array, you can add new values to the array using either the bracket operator ([1) or the dot
operator (.), as demonstrated in this code. The code you just typed adds two new values
to monitorInfo array.

. Select Control > Test Movie.

The Output panel displays the following text:
16:10, 16.7 million

Note that a key can contain a space character. This is possible with the bracket operator,
but generates an error if you attempt this with the dot operator. Using spaces in your key
names is not recommended. For more information on bracket operators and dot
operators, see “About operators” on page 137. For more information on well-formatted

code, see “Formatting ActionScript syntax” on page 697.

The second way to create an associative array is to use the Array constructor and then use

either the bracket operator ([1) or the dot operator (.) to add key and value pairs to the array.

If you declare your associative array to be of type Array, you cannot use an object literal to

initialize the array.

310N

There is no advantage to using the Array constructor to create an associative array. The
Array constructor is best for creating indexed arrays.

The next example demonstrates how to use the Array constructor to create an

associative array.

136

Syntax and Language Fundamentals

To create an associative array using the Array constructor:
1. Create a new Flash document, and save it as assocArray?2.fla.
2. Add the following ActionScript to Frame 1 of the Timeline:

var monitorInfo:Array = new Array();

monitorInfol["type"] = "Flat Panel";

monitorInfol"resolution"] = "1600 x 1200";

trace(monitorinfol["type"] + ", " + monitorInfo["resolution"]);

This code creates an associative array named monitorInfo using the Array constructor
and adds a key called type and a key called resolution, along with their values.

3. Select Control > Test Movie.

The Output panel displays the following text:
Flat Panel, 1600 x 1200

There is no advantage to using the Array constructor to create an associative array.
The Array constructor is best for creating indexed arrays.

310N

Associative arrays are essentially instances of the Object class, and there is no advantage of
creating associative arrays using the Array constructor. Even though you create an associative
array using the new Array () constructor, you cannot use any of the Array class’s methods and
properties (such as sort () or Tength) when using an associative array. If you want to use key/
value pairs instead of a numeric index, you should use the Object class instead of an

associative array.

About operators

This section describes general rules about common types of operators, operator precedence,
and operator associativity.

Operators are characters that specify how to combine, compare, or change values in an
expression. An expression is any statement that Flash can evaluate and that returns a value.
You can create an expression by combining operators and values or by calling a function. For

more information on expressions, see “About syntax, statements, and expressions” on page 78.

For example, a mathematical expression uses numerical operators to manipulate the values
you use. Examples of operator characters are +, <, *, and =. An expression consists of operators
and operands, and they are any legal combination of ActionScript symbols that represent a
value. An operand is the part of your code that the operator performs actions on. For example,
in the expression x + 2, x and 2 are operands and + is an operator.

About operators 137

You use expressions and operators frequently throughout your code. You can combine

operators and values to create an expression, or you can call a function.

310N

This section describes how to use each type of operator; however, there isn't space to
cover each one. For information on every operator, including special operators that don’t
fall into the following categories, see the ActionScript 2.0 Language Reference.

The parts of your code that the operator performs actions on are called operands. For example,

you can use the addition (+) operator to add values of a numeric literal. You could do this to

add the value of a variable called myNum.

myNum + 3;

In this example, myNum and 3 are operands.

This section describes general rules about common types of operators, operator precedence,

and operator associativity:

m “Using operators to manipulate values” on page 139
m “About operator precedence and associativity” on page 140
m “About using operators with strings” on page 143

m “Using dot and array access operators” on page 145
m “About postfix operators” on page 147

m “About unary operators” on page 147

m “About multiplicative operators” on page 148

m “About additive operators” on page 148

m “Using numeric operators” on page 149

m “About relational operators” on page 150

m “About equality operators” on page 150

m “Using relational and equality operators” on page 151
m “About assignment operators” on page 154

m “Using assignment operators” on page 155

m “About logical operators” on page 155

m “Using logical operators” on page 156

m “About bitwise shift operators” on page 157

m “About bitwise logical operators” on page 158

m “Using bitwise operators” on page 158

m “About the conditional operator” on page 160

m “Using operators in a document” on page 160

138 Syntax and Language Fundamentals

For information on operators, that do not fall into these categories, see the AczionScripr 2.0
Language Reference, which contains information about all the operators you can use.

The following sections show you some common uses for operators. For more information on
using many operators in a single code sample, see “Using operators in a document”
on page 160.

Using operators to manipulate values

Operators are commonly used to manipulate values in Flash. For example, you might want to
create a game in Flash where the score changes depending on the user’s interaction with
instances on the Stage. You can use a variable to hold the value and operators to manipulate
the value of the variable.

For example, you might want to increase the value of a variable called myScore. The following
example demonstrates how to use the + (addition) and += (addition assignment) operators to

add and increment values in your code.

To manipulate values using operators:

1. Create a new Flash document.

2. Open the Actions panel (Window > Actions) and type the following code into the
Script pane:
// example one
var myScore:Number = 0;

myScore = myScore + 1;
trace("Example one: " + myScore); // 1

// example two
var secondScore:Number = 1;
secondScore += 3;

trace("Example two:

+ secondScore); // 4
3. Select Control > Test Movie.

The Output panel displays the following text:

Example one: 1

Example two: 4

The addition operator is fairly straightforward, because it adds two values together. In the
first code example, it adds the current value of myScore and the number 1, and then stores
the result into the variable myScore.

About operators 139

The second code example uses the addition assignment operator to add and assign a new
value in a single step. You can rewrite the line myScore = myScore + 1 (from the previous
exercise) as myScore++ or even myScore += 1. The increment operator (++) is a simplified
way of saying myScore = myScore + 1, because it handles an increment and assignment
simultaneously. You can see an example of the increment operator in the following

ActionScript:

var myNum:Number = 0;
myNum++;
trace(myNum); // 1
myNum++;

trace(myNum); // 2

Notice that the previous code snippet doesn’t have assignment operators. It relies on the
increment operator instead.

You can manipulate the value of a variable using operators while a condition is true. For
example, you can use the increment operator (++) to increment the variable i while the
condition is true. In the following code, the condition is true while 1 is less than the value of
10. While that is true, you increment i one number higher using i++.

var i:Number;
for (i = 1; 1 < 10; i++) {

trace(i);
}
The Output panel displays the numbers 1 through 9, which is i incrementing in value until it
reaches the end condition (i is equal to 10), when it stops. The last value displayed is 9.
Therefore, the value of 1 is 1 when the SWF file starts playing, and 9 after the trace completes.

For more information on conditions and loops, see “About statements” on page 103.

About operator precedence and associativity

When you use two or more operators in a statement, some operators take precedence over
other operators. Operator precedence and associativity determine the order in which
operators are processed. ActionScript has a hierarchy that determines which operators execute

before others. There is a table that outlines this hierarchy at the end of this section.

Although it may seem natural to those familiar with arithmetic or basic programming that the
compiler processes the multiplication (*) operator before the addition (+) operator, the
compiler needs explicit instructions about which operators to process first. Such instructions

are collectively referred to as operator precedence.

140 Syntax and Language Fundamentals

You can see an example of operator precedence when you work with the multiplication and

addition operators:

var mySum:Number;

mySum = 2 + 4 * 3;

trace(mySum); // 14

You see the output of this statement is 14, because multiplication has a higher operator
precedence. Therefore, 4 * 3 is evaluated first and the result is added to 2.

You can control what happens by enclosing expressions in parentheses. ActionScript defines a
default operator precedence that you can alter using the parentheses (()) operator. When you
put parentheses around the addition expression, ActionScript performs the addition first:

var mySum:Number;
mySum = (2 + 4) * 3;
trace(mySum); // 18

Now the output of this statement is 18.

It’s also possible for operators to have the same precedence. In this case, the associativity
determines the order in which the operators perform. You can either have left-to-right
associativity or right-to-left associativity.

Take a look at the multiplication operator again. It has left-to-right associativity, so the

following two statements are the same.

var mySum:Number;

var myOtherSum:Number;

mySum = 2 * 4 * 3;

myOtherSum = (2 * 4) * 3;

trace(mySum); // 24

trace(myOtherSum); // 24

You might encounter situations in which two or more operators of the same precedence
appear in the same expression. In these cases, the compiler uses the rules of associativity to
determine which operator to process first. All of the binary operators, except the assignment
operators, are left-associative, which means that operators on the left are processed before
operators on the right. The assignment operators and the conditional (? :) operator are right-
associative, which means that the operators on the right are processed before operators on the
left. For more information on assignment operators, see “Using assignment operators”

on page 155. For more information on the conditional (?:) operator, see “About the
conditional operator” on page 160.

About operators 141

For example, consider the less than (<) and greater than (>) operators, which have the same
precedence. If both operators are used in the same expression, the operator on the left is
processed first because both operators are left-associative. This means that the following two
statements produce the same output:

trace(3 > 2 < 1); // false

trace((3 > 2) < 1); // false

The greater than (>) operator is processed first, which results in a value of true because the
operand 3 is greater than the operand 2. The value true is then passed to the less than (<)
operator, along with the operand 1. The less than (<) operator converts the value true to the
numeric value 1 and compares that numeric value to the second operand 1 to return the value
false (the value 1 is not less than 1).

Consider the order of operands in your ActionScript, particularly when you set up complex
conditions and you know how often one of those conditions is true. For example, if you know
that i will be greater than 50 in your condition, you need to write <50 first. Therefore, it’s
checked first, and the second condition that you write doesn’t need to be checked as often.

The following table lists the operators for ActionScript 2.0 in order of decreasing precedence.
Each row of the table contains operators of the same precedence. Each row of operators has
higher precedence than the row appearing below it in the table. For more information and
guidelines on using operators and parentheses, see Chapter 17, “Formatting ActionScript
syntax,” on page 697.

Group Operators

Primary [1 (x:y} O f(x) new x.y x[y]
Postfix X++ x--

Unary ++x --x + - ~ | delete typeof void
Multiplicative * /%

Additive + -

Bitwise shift D> O

Relational < > <= >= instanceof

Equality == l= === |==

Bitwise AND &

Bitwise XOR

Bitwise OR |

Logical AND &

Logical OR]

142 Syntax and Language Fundamentals

Group Operators

Conditional ?:

Assignment = %= /= %= 4= -= = >>= O>>= &= = |=

Comma

About using operators with strings

Comparison operators convert a operand to the type of the other if the both data types are
different. If one operand is a string and the other is a number, ActionScript converts the string
operand to a number and performs a numeric comparison on them. An exception to this rule
is the strict equality (===) operator which performs in the same way as the equality (==)
operator, except that data types are not converted. The result is true if both expressions,
including their data types, are equal. For more information on numeric operators, see “Using

numeric operators” on page 149.

Except for the equality operator (==), comparison operators (>, >=, <, and <=) affect strings
differently than when they operate on other values.

Comparison operators compare strings to determine which is first alphabetically. Strings with
uppercase characters precede strings that are lowercase. That means that "Egg" comes before
"chicken".

var c:String = "chicken";

var e:String "Egg";

trace(c < e); // false

var riddleArr:Array = new Array(c, e);
trace(riddleArr); // chicken,Egg
trace(riddleArr.sort()); // Egg,chicken

In this ActionScript, the sort () method of the Array class reorders the contents of the array
alphabetically. You can see that the value “Egg” comes before the value “chicken” because
uppercase E comes before a lowercase c. If you want to compare the strings regardless of case,
you need to convert the strings to uppercase or lowercase before you compare them. For more
information on comparison operators, see “About equality operators” on page 150 and “Using
relational and equality operators” on page 151.

About operators 143

You can use the toLowerCase() or toUpperCase() methods to convert strings to a similar
case before you compare them. In the following example, both strings convert to lowercase

strings and compare, and now the chicken comes before the egg:
gs and compare, and now the chick before the egg

var c:String = "chicken";
var e:String = "Egg";
trace(c.tolLowerCase() < e.tolLowerCase()); // true

Comparison operators compare only two strings. For example, the operators do not
compare the values if one operand is a numerical value. If one of the operands is a string,
ActionScript converts both operands to numbers and then compares them numerically.

310N

You can use operators to manipulate strings. You can use the addition (+) operator to
concatenate string operands. You might have already used the addition operator to
concatenate strings when you write trace statements. For example, you might write the
following:

var myNum:Number = 10;

trace("The variable is " + myNum + ".");

When you test this code, the Output panel displays the following:

The variable is 10.

In the previous example, the trace statement uses the + operator to concatenate instead of
add. When you deal with strings and numbers, Flash sometimes concatenates instead of
adding numerically.

For example, you might concatenate two strings from different variables in a single text field.
In the following ActionScript code, the variable myNum concatenates with a string, and the
string is displayed in the myTxt text field on the Stage.

this.createTextField("myTxt", 11, 0, 0, 100, 20);
myTxt.autoSize = "left";

var myNum:Number = 10;

myTxt.text = "One carrot. " + myNum + " Targe eggplants.";
myTxt.text += " Lots of vegetable broth.";

This code outputs the following in a text field with the instance name myTxt:

One carrot. 10 large eggplants. Lots of vegetable broth.

The previous example shows how you can use the addition (+) and addition assignment (+=)
operators to concatenate strings. Notice how the third line of code uses the addition operator

to concatenate the value of the myNum variable into the text field, and the fourth line of code

uses the addition assignment operator to concatenate a string onto the existing value of the

text field.

144 Syntax and Language Fundamentals

If only one of the text string operands is actually a string, Flash converts the other operand
into a string. Therefore, the value of myNum converts to a string in the previous example.

ActionScript treats spaces at the beginning or end of a string as a literal part of the string.

310N

Using dot and array access operators

You can use the dot operator (.) and the array access operator ([]) to access built-in or custom
ActionScript properties. You use dot operators to target certain indexes in an object. For
example, if you have an object that contains some user information, you can specify a certain
key name in the array access operator to retrieve a user’s name, as demonstrated in the
following ActionScript:

var someUser:0bject = {name:"Hal", 1d:2001};
trace("User's name is: " + someUser["name"]); // User's name is: Hal
trace("User's id is: " + someUser["id"]1); // User's id is: 2001

For example, the following ActionScript uses the dot operator to set certain properties
within objects:

myTextField.border = true;
year.month.day = 9;
myTextField.text = "My text";

The dot operator and the array access operator are very similar. The dot operator takes an
identifier as its property, but the array access operator evaluates the contents to a name and
then accesses the value of that named property. The array access operator lets you dynamically

set and retrieve instance names and variables.

The array access operator is useful if you don’t know exactly what keys are in an object. When
this occurs, you can use a for. . in loop to iterate through an object or movie clip and display

its contents.

To use dot and array access operators:

1. Ina new Flash document, create a movie clip on the main Timeline.
2. Select the movie clip and open the Property inspector.

3. Type in an instance name of myClip.

4. Add the following ActionScript to Frame 1 of the Timeline:

myClip.spam = 5;
trace(myClip.spam); // b5

About operators 145

If you want to set a value in the myClip instance on the current timeline you can use the
dot or array access operators, as demonstrated in this ActionScript. If you write an
expression inside the array access operator, it evaluates that expression first and uses the

result as the variable name.
5. Select Control > Test Movie to test the document.
The Output panel displays 5.

6. Return to the authoring environment, and replace the first line of ActionScript with
the following:

myClip["spam"] = 10;

7. Select Control > Test Movie to test the document.
The Output panel displays 10.

8. Return to the authoring environment, and double-click the myClip instance.

9. Add four new instances inside the myClip instance.

10. Use the Property inspector to add the following instance names to each of the four new
instances: nestedClip1, nestedClip2, nestedClip3, nestedClip4.

1. Add the following code to Frame 1 of the main Timeline:

var i:Number;
for (i =1; i <= 4; i++) {
myClip["nestedClip" + i]._visible = false;
}
This ActionScript toggles the visibility of each of the nested movie clips.
12. Select Control > Test Movie to test the ActionScript you just added.

Now the four nested instances are invisible. You're using the array access operator to
iterate over each nested movie clip in the myClip instance and set its visible property
dynamically. You save time, because you don't have to specifically target each instance.

You can also use the array access operator on the left side of an assignment, which lets you set
instance, variable, and object names dynamically:

myNum[i] = 10;
In ActionScript 2.0, you can use the bracket operator to access properties on an object that are
created dynamically, in case the class definition for that object is not given the dynamic
attribute. You can also create multidimensional arrays using this operator. For more
information on creating multidimensional arrays using array access operators, see “Creating

multidimensional arrays” on page 131.

146 Syntax and Language Fundamentals

About postfix operators

The postfix operators take one operator and either increment or decrement the operator’s
value. Although these operators are unary operators, they are classified separately from the rest
of the unary operators because of their higher precedence and special behavior. For
information on unary operators, see “About unary operators” on page 147.

When you use a postfix operator as part of a larger expression, the expression’s value is
returned before the postfix operator is processed. For example, the following code shows how
the value of the expression xNum++ is returned before the value is incremented.

var xNum:Number = 0;

trace(xNum++); // 0

trace(xNum); // 1

When you trace this code, the text in the Output panel reads:
0

1

The operators in this table have equal precedence:

Operator Operation performed

++ Increment (postfix)

Decrement (postfix)

About unary operators

Unary operators take one operand. The increment (++) and decrement (- -) operators in this
group are prefix operators, which means that they appear before the operand in an expression.
They can also appear after the operand, in which case they are postfix operators. For
information on postfix operators, see “About postfix operators” on page 147.

The prefix operators differ from the postfix counterparts because the increment or decrement
operation completes before the value of the overall expression is returned. For example, the
following code shows how the value of the expression xNum++ is returned after the value is
incremented.

var xNum:Number

trace(++xNum); //
trace(xNum); // 1

About operators 147

All of the operators in this table have equal precedence:

Operator Operation performed

++ Increment (prefix)
Decrement (prefix)

+ Unary +

! Unary - (negation)

typeof Returns type information

void Returns undefined value

About multiplicative operators

The multiplicative operators take two operands and perform multiplication, division, or
modulo calculations. Other numeric operators include additive operators. For information on

additive operators, see “About additive operators” on page 148.

All of the operators in this table have equal precedence:

Operator Operation performed

* Multiplication
/ Division
% Modulo

For information on using multiplicative operators, see “Using numeric operators”
g g

on page 149.

About additive operators

The additive operators take two operands and perform addition or subtraction calculations.
Other numeric operators include multiplicative operators. For information on multiplicative
operators, see “About multiplicative operators” on page 148.

The operators in this table have equal precedence:

Operator Operation performed

+ Addition

Subtraction

For information on using additive operators, see “Using numeric operators” on page 149.

148 Syntax and Language Fundamentals

Using numeric operators

You use numeric operators to add, subtract, divide, and multiply values in ActionScript. You
can perform different kinds of arithmetic operations. One of the most common operators is
the increment operator, commonly formed as i++. There are more things you can do with this
operator. For more information on the increment operator, see “Using operators to

manipulate values” on page 139.

You can add the increment before (preincrement) or after (postincrement) an operand.

To understand numeric operators in ActionScript:

1. Create a new Flash document.
2. Type the following ActionScript into Frame 1 of the Timeline:

// example one
var firstScore:Number = 29;
if (++firstScore >= 30) {
// should trace
trace("Success! ++firstScore is >= 30");
}
// example two
var secondScore:Number = 29;
if (secondScore++ >= 30) {
// shouldn't trace
trace("Success! secondScore++ is >= 30");
}

3. Select Control > Test Movie to test the ActionScript

The “Example one” code block traces, but the “Example two” code block does not. The
first example uses a preincrement (++firstScore) to increment and calculate
firstScore before it’s tested against 30. Therefore, firstScore increments to 30 and
then tests against 30.

However, Example two uses a postincrement (secondScore++), which evaluates after the
test is performed. Therefore, 29 compares against 30, and then increments to 30 after
the evaluation.

When you work with the addition operator, you can have unexpected results if you try to add
values in an expression, as you can see in the following example:

trace("the sum of 5 + 2 is: " + 5+ 2); // the sum of 5 + 2 is: 52

Flash concatenates the values 5 and 2 instead of adding them. To work around this, you can
wrap the expression 5+2 in a pair of parentheses, as shown in the following code:
trace("the sum of 5 + 2 is: " + (5 + 2)); // the sum of 5 + 2 is: 7

For more information on operator precedence, see “About operator precedence and
associativity” on page 140.

About operators 149

When you load data from external sources (such as XML files, FlashVars, web services, and so
on), you need to be very careful when you work with numeric operators. Sometimes Flash
treats the numbers like strings because the SWF file isn’t aware of the number’s data type. In
this case, you could add 3 and 7 with a result of 37 because both numbers are concatenated
like strings instead of adding numerically. In this situation, you need to manually convert the
data from strings to numbers using the Number () function.

About relational operators

The relational operators take two operands, compare their values, and return a Boolean value.

All of the operators in this table have equal precedence:

Operator Operation performed

< Less than

> Greater than

(= Less than or equal to

>= Greater than or equal to

instanceof Checks prototype chain

in Checks for object properties

For information on using relational operators, see “Using relational and equality operators”
on page 151.

About equality operators

The equality operators take two operands, compare their values, and return a Boolean value.
All of the operators in this table have equal precedence:

Operator Operation performed

- Equality

1= Inequality

— Strict equality
== Strict inequality

For information on using equality operators, see “Using relational and equality operators”
on page 151.

150 Syntax and Language Fundamentals

Using relational and equality operators

Relational and equality operators, also called comparison operators, compare values of
expressions, and they return either true or false (a Boolean value). You frequently use
comparison operators in conditional statements and loops to specify the condition for when
the loop should stop.

You can use the equality (==) operator to figure out whether the values or references of two
operands are equal, and this comparison returns a Boolean value. String, number, or Boolean
operand values compare using a value. Object and array operands are compared by a
reference.

In this example, you can see how to use the equality operator to test the array’s length and
display a message in the Output panel if there are no items in the array.

var myArr:Array = new Array();
if (myArr.length == 0) {

trace("the array is empty.");
}

When you select Control > Test Movie, the string the array is empty appears in the
Output panel.

You can use the equality operator to compare values, but you cannot use the equality operator
to set values. You might try to use the assignment operator (=) to check for equality.

To use relational and equality operators in your code:
1. Create a new Flash document.
2. Type the following ActionScript into Frame 1 of the Timeline:

var myNum:Number = 2;
if (myNum == 2) {
// do something
trace("It equals 2");
}

In this ActionScript, you use the equality operator (==) to check for equality. You check
whether the variable myNum equals 2.
3. Select Control > Test Movie.
The string It equals 2 appears in the Output panel.
4. Return to the authoring environment and change:
var myNum:Number = 2;
to:

var myNum:Number = 4;

About operators 151

5. Select Control > Test Movie again.

The string It equals 2 doesn’t appear in the Output panel.
6. Return to the authoring environment and change:

if (myNum == 2) {

to
if (myNum = 2) {
7. Select Control > Test Movie again.
The string It equals 2 appears in the Output panel again.
In step 6, you assign the value of 2 to myNum, instead of comparing myNum to 2. In this
case, the 1 f statement executes regardless of the previous value of myNum, which can cause
unexpected results when you test the Flash document.
For more information on correctly using the assignment operator, see "Using assignment

operators” on page 155.

The strict equality operator (===) is similar to the equality operator, except it doesnt perform
type conversion. If two operands are different types, the equality operator returns false. The
strict inequality operator (!==) returns the opposite of the strict equality operator.

The following ActionScript demonstrates the key difference between the equality operator
(==) and the strict equality operator (===):

var numl:Number = 32;

var num2:String = new String("32");

trace(numl == num2); // true

trace(numl === num2); // false

First, you define numeric variables: numl, and num2. If you compare the variables using the
equality operator, Flash tries to convert the values to the same data type and then compare the
values to see whether they are equal. When you use the strict equality operator (===) Flash
doesn’t attempt to do any data type conversion before it compares the values. As a result, Flash

sees the variables as two separate values.

In the following example, you'll use the greater than or equal to (>=) operator to compare

values and execute code based on the value a user enters into a text field.

152 Syntax and Language Fundamentals

To use the greater than or equal to operator in your code:

1. Select File > New and then select Flash Document to create a new FLA file.

2. Add the following code to Frame 1 of the main Timeline:

this.createTextField("myTxt", 20, 0, 0, 100, 20);
myTxt.type = "input";

myTxt.border = true;

myTxt.restrict = "0-9";

this.createEmptyMovieClip("submit_mc", 30);
submit_mc.beginFil1(0xFF0000);
submit_mc.moveTo(0, 0);
submit_mc.1ineTo(100, 0);
submit_mc.1ineTo(100, 20);
submit_mc.1ineTo(0, 20);
submit_mc.lineTo(0, 0);
submit_mc.endFil11();

submit_mc._x = 110;

submit_mc.onRelease = function(evt_obj:0bject):Void {
var myNum:Number = Number(myTxt.text);
if (isNaN(myNum)) {
trace("Please enter a number");
return;
}
if (myNum >= 10) {
trace("Your number is greater than or equal to 10");
} else {
trace("Your number is Tess than 10");
}
b

3. Select Control > Test Movie to test the ActionScript.
You can also check whether certain conditions are true and execute an alternative block if
the condition is not true.

4. Change the condition in your ActionScript to the following.

if (myNum == 10) {
trace("Your number is 10");
} else {
trace("Your number is not 10");
}

5. Select Control > Test Movie to test the ActionScript again.

About operators 153

Except for the strict equality (===) operator, the comparison operators compare strings only if
both operands are strings. If only one of the operands is a string, both operands convert to
numbers and perform a numeric comparison. For more information on strings and operators,
see “About using operators with strings” on page 143. For information on how order and
operator precedence affect your ActionScript, see “About operator precedence and
associativity” on page 140.

About assignment operators

The assignment operators take two operands and assign a value to one operand based on the
value of the other operand. All of the operators in this table have equal precedence:

Operator Operation performed

= Assignment

*= Multiplication assignment
Division assignment

%= Modulo assignment

+= Addition assignment

- Subtraction assignment

K= Bitwise left shift assignment

>>= Bitwise right shift assignment

>O>= Bitwise unsigned right shift assignment
&= Bitwise AND assignment

n= Bitwise XOR assignment

Bitwise OR assignment

For information on using assignment operators, see “Using assignment operators”

on page 155.

154 Syntax and Language Fundamentals

Using assignment operators

You can use the assignment operator (=) to assign a given value to a variable. You might assign

a string to a variable, as follows:

var myText:String = "ScratchyCat";

You can also use the assignment operator to assign several variables in the same expression. In
the following statement, the value of 10 is assigned the variables numOne, numTwo, and
numThree.

var numOne:Number;

var numTwo:Number;

var numThree:Number;

numOne = numTwo = numThree = 10;

You can also use compound assighment operators to combine operations. These operators
perform the operation on both operands, and then they assign the new value to the first
operand. For example, both of these statements do the same thing:

var myNum:Number = 0;
myNum += 15;
myNum = myNum + 15;

About logical operators

You use logical operators to compare Boolean values (true and false) and then return a
Boolean value based on the comparison. For example, if you have two operands that evaluate
to true, the logical AND (&&) operator returns true. Or if one or both of the operands
evaluate to true, the logical OR (| |) operator returns true.

The logical operators take two operands and return a Boolean result. The logical operators
differ in precedence and are listed in the table in order of decreasing precedence:

Operator Operation performed
8& Logical AND
|| Logical OR

For information on using logical operators, see “Using logical operators” on page 156.

About operators 155

Using logical operators

You often use logical operators with comparison operators to determine the condition of an

if statement. This is demonstrated by the next example.

To
1.

2.

use logical operators in your code:
Select File > New and create a new Flash document.

Open the Actions panel and type the following ActionScript on Frame 1 of the Timeline:

this.createTextField("myTxt", 20, 0, 0, 100, 20);
myTxt.type = "input";

myTxt.border = true;

myTxt.restrict = "0-9";

this.createEmptyMovieClip("submit_mc", 30);
submit_mc.beginFil1(0xFFO000);
submit_mc.moveTo(0, 0);
submit_mc.1ineTo(100, 0);
submit_mc.TineTo(100, 20);
submit_mc.1ineTo(0, 20);
submit_mc.lineTo(0, 0);
submit_mc.endFil1();
submit_mc._x = 110;

submit_mc.onRelease = function():Void {
var myNum:Number = Number(myTxt.text);
if (isNaN(myNum)) {
trace("Please enter a number");
return;
}
if ((myNum > 10) && (myNum < 20)) {
trace("Your number is between 10 and 20");
}oelse |
trace("Your number is NOT between 10 and 20");
}
bs
In this ActionScript, you create a text field at runtime. If you type a number into the text

field and click the button on the Stage, Flash uses the logical operator to display a message

in the Output panel. The message depends on the value of the number you type into the
text field.

156

Syntax and Language Fundamentals

When you use operands, you need to be careful of the order. This is particularly the case when
you use complex conditions. In the following snippet, you can see how you use the logical
AND operator to check that a number is between 10 and 20. Based on the result, you display
an appropriate message. If the number is less than 10 or greater than 20, an alternate message
is displayed in the Output panel.
submit_mc.onRelease = function():Void {
var myNum:Number = Number(myTxt.text);
if (isNaN(myNum)) {
trace("Please enter a number");
return;
}
if ((myNum > 10) && (myNum < 20)) {
trace("Your number is between 10 and 20");
} else {

trace("Your number is NOT between 10 and 20");
}

About bitwise shift operators

The bitwise shift operators take two operands and shift the bits of the first operand to the
extent specified by the second operand. All of the operators in this table have equal
precedence:

Operator Operation performed

<K Bitwise left shift
>> Bitwise right shift
>>> Bitwise unsigned right shift

For information on using bitwise operators, see “Using bitwise operators” on page 158. For
specific information on each bitwise operator, see its entry in the ActionScript 2.0 Language
Reference.

About operators 157

About bitwise logical operators

The bitwise logical operators take two operands and perform bit-level logical operations. The
bitwise logical operators differ in precedence and are listed in the table in order of decreasing
precedence:

Operator Operation performed

& Bitwise AND
" Bitwise XOR
| Bitwise OR

For information on using bitwise operators, see “Using bitwise operators” on page 158. For

specific information on each bitwise operator, see its entry in the ActionScript 2.0 Language
Reference.

Using bitwise operators

Bitwise operators internally manipulate floating-point numbers to change them into 32-bit
integers. The exact operation performed depends on the operator, but all bitwise operations
evaluate each binary digit (bit) of the 32-bit integer individually to compute a new value. For
a list of bitwise shift operators, see “About bitwise shift operators” on page 157. For a list of
bitwise logical operators, see “About bitwise logical operators” on page 158.

Using bitwise operators in Flash isn’t very common, but can be useful in some circumstances.
For example, you might want to build a permissions matrix for a Flash project, but you don’t
want to create separate variables for each type of permission. In this case, you might use
bitwise operators.

The following example shows how you can use the bitwise OR operator with the
Array.sort() method to specify sort options.

To use the bitwise OR operator:

1. Select File > New and create a new Flash document.

2. Type the following ActionScript into the Actions panel:

var myArr:Array = new Array("Bob", "Dan", "doug", "bill", "Hank",
"tom");

trace(myArr); // Bob,Dan,doug,bill,Hank,tom

myArr.sort(Array.CASEINSENSITIVE | Array.DESCENDING);

trace(myArr); // tom,Hank,doug,Dan,Bob,bill

158 Syntax and Language Fundamentals

The first line defines an array of random names and traces them to the Output panel.
Then you call the Array.sort() method and specify two sort options using the constant
values Array.CASEINSENSITIVE and Array.DESCENDING. The result of the sort method
causes the items in the array to be sorted in reverse order (z to a). The search is case-
insensitive; a and A are treated the same, instead of having a case-sensitive search where Z
comes before a.

3. Select Control > Test Movie to test your ActionScript. The following text is displayed in
the Output panel:
Bob,Dan,doug,bill,Hank,tom
tom,Hank,doug,Dan,Bob,bill

There are five options available in the sort method:

m 1 or Array CASEINSENSITIVE (binary = 1)

m 2 or Array DESCENDING (binary = 10)

m 4 or Array UNIQUESORT (binary = 100)

m 8 or Array RETURNINDEXEDARRAY (binary = 1000)
m 16 or Array NUMERIC (binary = 10000)

There are three different ways you can define the sort options for an array:

my_array.sort(Array.CASEINSENSITIVE | Array.DESCENDING); // constants
my_array.sort(l | 2); // numbers

my_array.sort(3); // adding the numbers

Although it might not be immediately obvious, the number values for the sort options are
actually bitwise digits (binary or base 2). The constant value Array.CASEINSENSITIVE equals
the numeric value of 1, which also happens to be the binary value of 1. The constant value
Array.DECENDING has a numeric value of 2 or a binary value of 10.

Working with binary numbers can get confusing. Binary only has two possible values, 1 or 0,
which is why the value 2 is represented as 10. If you want to display the number 3 in binary, it
would be 11 (1+10). The number 4 represented in binary is 100, representing 5 in binary is
101, and so on.

The following ActionScript demonstrates how to sort an array of numeric values in
descending order by using the bitwise AND operator to add the Array . DESCENDING and
Array.NUMERIC constants together.

var scores:Array = new Array(100,40,20,202,1,198);
trace(scores); // 100,40,20,202,1,198
trace(scores.sort()); // 1,100,198,20,202,40

var flags:Number = Array.NUMERIC|Array.DESCENDING;
trace(flags); // 18 (base 10)
trace(flags.toString(2)); // 10010 (binary -- base2)
trace(scores.sort(flags)); // 202,198,100,40,20,1

About operators 159

About the conditional operator

The conditional operator is a ternary operator, which means that it take three operands. The
conditional operator is a short-hand method of applying the i f. . e1se conditional statement:

Operator Operation performed

?: Conditional

For information on using the conditional operator and an example, see “About the
conditional operator and alternative syntax” on page 114.

Using operators in a document

In the following example, you use the Math.round() method to round calculations to an
arbitrary number of decimal places. This method rounds the value of the score parameter up
or down to the nearest integer, and then returns the value. After you slightly modify the
ActionScript, you can make Flash round numbers to a certain number of decimal

places instead.

In the example, you also use the division and multiplication operators to calculate a user’s
score based on the number of correct answers divided by the total number of questions that
are asked. The user’s score can multiply by a number and display to get a score between 0%
and 100%. Then you use the addition operator to concatenate the user’s score into a string
that is displayed in the Output panel.

To use operators in ActionScript:

1. Create a new Flash document.

2. Type the following ActionScript on Frame 1 of the main Timeline:

var correctAnswers:Number = 11;

var totalQuestions:Number 13;

//round to the nearest integer

//var score:Number = Math.round(correctAnswers / totalQuestions * 100);

//round to two decimal places

var score:Number = Math.round(correctAnswers / totalQuestions * 100 *
100) / 100;

trace("You got " + correctAnswers + " out of " + totalQuestions + "
answers correct, for a score of " + score + "%.");

160 Syntax and Language Fundamentals

3. Select Control > Test Movie.

The Output panel displays the following text:
You got 11 out of 13 answers correct, for a score of 84.62%.

When you call Math. round() in this example, the score rounds to the nearest integer (85)
and is displayed in the Output panel. If you multiply the number by an additional 100,
before you call Math.round(), and then divide by 100, you can make Flash round the
number to 2 decimal places. This results in a more accurate score.

4. Try changing the correctAnswers variable to 3 and select Control > Test Movie to test
the SWF file again.

If you are building a testing application, you might want to create a series of true/false or
multiple choice questions using the RadioButton and Label components. After users finish
answering each of the questions and click the submit button, you can compare their answers

to an answer key and then calculate their score.

About operators 161

162 Syntax and Language Fundamentals

CHAPTER 5

Functions and Methods

Understanding functions is important when you're writing ActionScript, creating classes, and
using methods. There are several different kinds of functions that you'll work with. In this
chapter, you learn about functions and methods: how to use them in your applications when
you use built-in classes, and how to write them. In Chapter 6, “Classes,” you'll create custom
classes in which you'll write functions regularly. You'll also learn how to write functions in
ActionScript class files.

You can use functions in your code to add interactivity, animations, and other effects to your
applications. This chapter covers the kinds of functions that you can write in your Flash
applications. For information on what functions and methods are, as well as exercises in which
you write and use functions and methods in Flash, see the following topics:

About functionsandmethods 163
Understandingmethods i 184

About functions and methods

Methods and functions are blocks of ActionScript code that you can reuse anywhere in a SWF
file. You might write your functions in the FLA file or in an external ActionScript file and

then call the function from anywhere within your documents. Methods are merely functions
that are located within an ActionScript class definition. You can define functions to execute a
series of statements on passed values. Your functions can also return values. After a function is

defined, it can be called from any timeline, including a timeline of a loaded SWF file.

163

If you pass values as parameters to a function, the function can perform calculations using the
supplied values. Each function has individual characteristics, and some functions require that
you pass certain types or numbers of values. If you pass more parameters than the function
requires, the function ignores the extra values. If you don’t pass a required parameter, the
function assigns the undefined data type to the empty parameters. This can cause errors
during runtime. A function can also return values (see “Returning values from functions”

on page 182).

To call a function, that function’s definition must be in a frame that the playhead has
reached.

310N

You can think of a well-written function as a “black box.” If the function contains carefully
placed comments about its input, output, and purpose, a person using the function does not
need to understand exactly how it works internally.

The basic syntax for a simple named function is:

function traceMe() ({
trace("your message");

}

traceMe();

For information on writing named functions, see “Writing named functions” on page 168.

The basic syntax for a simple named function that builds on the previous example by passing
a parameter, yourMessage, is:

function traceMe(yourMessage:String) {
trace(yourMessage);

}

traceMe("How you doing?");

Alternatively, if you want to pass multiple parameters, you could use the following code:

var yourName:String = "Ester";

var yourAge:String = "65";

var favSoftware:String = "Flash";

function traceMe(favSoftware:String, yourName:String, yourAge:String) {
trace("I'm " + yourName + ", I like " + favSoftware + ", and I'm " +
yourAge + ".");

}

traceMe(favSoftware,yourName,yourAge);

164 Functions and Methods

For more information on passing parameters, see “Passing parameters to a function”

on page 180.

There are numerous kinds of functions that you can write. For more information on writing
functions, as well as links to sections on writing specific kinds of functions, see “About types
of methods and functions” on page 165. For an example that compares methods and
functions, see “Understanding methods” on page 184.

For information on writing code using Script Assist, see Using Flash.

310N

For more information about functions and methods, see the following topics:

m “About types of methods and functions” on page 165

About types of methods and functions

Functions that belong to a class are called the methods of that class. There are several types of
functions that you can use in your applications, including built-in functions, named and user-
defined functions, anonymous functions, callback functions, constructor functions, and
function literals. The following sections contain information on how to define these

functions.

You can also write functions in an ActionScript class file. You use these functions as methods
in your scripts. In the following example, the Person class displays a constructor method, class
methods, instance methods, and accessor methods (getters and setters). The comments in this
code sample show where these methods occur in the code.

For information on writing class files, such as the following, see Chapter 6, “Classes,” on
page 187.

310N

class Person {
public static var numPeople:Number = 0;

// instance members
private var _speed:Number;

// constructor

public function Person(speed:Number) {
Person.numPeoplet++;
this._speed = speed;

}

// static methods
public static function getPeople():Number ({
return Person.numPeople;

About functions and methods 165

}

// instance methods

public function walk(speed:Number):Void {
this._speed = speed;

}

public function run():Void {
this._speed *= 2;

}

public function rest():Void f{
this._speed = 0;

}

// getters/setters (accessor methods)
public function get speed():Number {
return this._speed;

}
}
For a full demonstration of how to write methods like the ones in the previous code sample,
see Chapter 6, “Classes,” on page 187. The methods that you use in your code might belong
to a class that is built into the ActionScript language. MovieClip and Math are examples of
top-level classes that you might use in an application. When you use methods from these
classes in your code, they are functions written in the built-in class (similar to the previous
code sample). Alternatively, you could use methods from a custom class that you
wrote yourself.

Functions that don't belong to a class are called rop-level functions (sometimes called predefined
or built-in functions), meaning that you can call them without a constructor. Examples of
functions that are built in to the top level of the ActionScript language are trace() and
setInterval().

To add a top-level function call to your code, just add a single line of code in the Script pane
of the Actions panel. For example, type the following:

trace("my message");

When you test the SWF file with this single line of code, the top-level trace() function is
called, and text appears in the Output panel.

Remember: when you want to assign a method to a property, you omit the parentheses after
the method name because you're passing a reference to the function:

my_mc.myMethod = aFunction;

166 Functions and Methods

However, when you want to invoke a method in your code, you need to include the
parentheses following the method name:

my_mc.myMethod();

For more information on top-level functions, see “About built-in and top-level functions”
on page 167.

310N

You can also define functions in numerous other ways. For more information on each kind of
function, see the following sections:

m “About built-in and top-level functions” on page 167

m “Writing named functions” on page 168

m “Writing anonymous and callback functions” on page 170

m “About function literals” on page 172

m “Targeting and calling user-defined functions” on page 174

m “About constructor functions” on page 173

For information on writing and using functions and methods, see the following related

sections. For information on using functions, see “Using functions in Flash” on page 176. For
information on using methods, see “Understanding methods” on page 184.

For information on writing code using Script Assist, see Using Flash.

310N

About built-in and top-level functions

As discussed in “About functions and methods” on page 163, a function is a block of
ActionScript code that can be reused anywhere in a SWF file. If you pass values as parameters

to a function, the function operates on those values. A function can also return values.

You can use functions that are built into the ActionScript language. They might be top level,
as described in “About types of methods and functions” on page 165; or the function might
be in a built-in class, such as Math or MovieClip, which you use as a method in your
application.

You use built-in functions in ActionScript to perform certain tasks and to access information.
For example, you can get the number of milliseconds the SWF file has been playing by using
getTimer(). Or you can get the version number of Flash Player that hosts the file by using
getVersion(). Functions that belong to an object are called mezhods. Functions that don’t
belong to an object are called zop-level functions and are found in subcategories of the Global
Functions category of the Actions panel.

About functions and methods 167

Some built-in functions require you to pass certain values. If you pass more parameters than
the function requires, the extra values are ignored. If you don’t pass a required parameter, the
empty parameters are assigned the undefined data type, which can cause errors during

runtime.
g To call a function, that function’s definition must be in a frame that the playhead has
r_l|1 reached.

Top-level functions are easy to use. To call a function, simply use the function name and pass
any parameters required by that function. (For information on required parameters, see the
entry for the function in the ActionScript 2.0 Language Reference). For example, add the
following ActionScript to Frame 1 of the Timeline:

trace("my message");

When you test the SWF file, my message appears in the Output panel. Two other examples
of top-level functions are setInterval () and getTimer(). The next example shows how to
use both of these functions together. Add the following code to Frame 1 of the Timeline:
function myTimer():Void {

trace(getTimer());
}
var intervallID:Number = setInterval(myTimer, 100);
This code creates a simple timer using getTimer (), and uses the setInterval () and
trace() top-level functions to display the number of milliseconds since the SWF file began
to play in Flash Player.

Calling a top-level function is like calling a user-defined function. For more information, see
“Targeting and calling user-defined functions” on page 174. For information on each
function, see its entry in ActionScript 2.0 Language Reference.

Writing named functions

A named function is a kind of function that you commonly create in your ActionScript code
to carry out all kinds of actions. When you create a SWF file, the named functions are
compiled first, which means that you can reference the function anywhere in your code, as
long as the function has been defined in the current or a previous frame. For example, if a
function is defined in Frame 2 of a timeline, you cannot access that function in Frame 1 of
the timeline.

The standard format for named functions is as follows:

function functionName(parameters) {
// function block
}

168 Functions and Methods

This piece of code contains the following parts:

m functionName is the unique name of the function. All function names in a document
must be unique.

m parameters contains one or more parameters that you pass to the function. Parameters
are sometimes called arguments. For more information on parameters, see “Passing
parameters to a function” on page 180.

m // function block contains all of the ActionScript code that’s carried out by the
function. This part contains the statements that “do stuff.” You can put the code that you
want to execute here. The // function block comment is a placeholder for where your
code for the function block would go.

To use a named function:

1. Create a new document called namedFunc.fla.

2. Import a short sound file into the library by selecting File > Import > Import to Library
and selecting a sound file.

3. Right-click the sound file and select Linkage.
4. Type mySoundID in the Identifier text box.

5. Select Frame 1 of the Timeline and add the following code to the Actions panel:

function myMessage() ({
trace("mySoundID completed");
}
var my_sound:Sound = new Sound();
my_sound.attachSound("mySoundID");
my_sound.onSoundComplete = myMessage;
my_sound.start();
In this code you create a named function called myMessage, which you use later in the

script to call a trace() function.
6. Select Control > Test Movie to test the SWF file.

You use the function statement to create your own function in ActionScript. Remember that
parameters are optional; however, if you don’t have parameters, you still need to include the
brackets. The content between the curly braces (1 1) is called the function block.

You can write functions on the main timeline or within external ActionScript files, including

class files.

You also write constructor functions in class files using this format (however, the name of the
function matches the class). For more information on constructor functions, see “Writing the
constructor function” on page 228. Also see Chapter 6, “Classes,” on page 187 for

information on and examples of writing functions in classes.

About functions and methods 169

Writing anonymous and callback functions

A named function is a function that you reference in your script before or after you define it,
whereas an anonymous function is an unnamed function that references itself; you reference the
anonymous function when you create it. When you write ActionScript code, you will create

many anonymous functions.

Anonymous functions are commonly used when you work with event handlers. To write an
anonymous function, you could store a function literal inside a variable. Therefore, you can
reference the function later in your code. The next example shows you how to write an

anonymous function.

To write an anonymous function:
1. Create a movie clip on the Stage, and then select the clip.

2. Open the Property inspector, and type my_mc into the Instance Name text box.
3. Select Frame 1 of the Timeline, and type the following code into the Actions panel:

var myWidth = function () {
trace(my_mc._width);
by
//1ater in code you can add
myWidth();
4. Select Control > Test Movie.
The width of the movie clip is displayed in the Output panel.

You can also create a function inside an object, such as an XML or LoadVars instance. You can
associate an anonymous function with a certain event to create a callback function. A function
calls a callback function after a specific event occurs, such as after something finishes loading
(onLoad()) or finishes animating (onMotionFinished()).

For example, sometimes you need to write ActionScript to handle data that loads into a SWF
file from the server. After you finish loading data into a SWF file, you can access the data from
that location. It's important to use ActionScript to check whether the data has been fully

loaded. You can use callback functions to send a signal that the data has been loaded into the

document.

170 Functions and Methods

In the following callback function, in which you load a remote XML document, you associate
an anonymous function with the onLoad() event. You use XML.10ad () and the callback
function, as shown in the following example. Type the following code on Frame 1 of
the Timeline:
var my_xml:XML = new XML();
my_xml.onLoad = function(success:Boolean):Void {

trace(success);
$;_xm1.1oad("http://www.heTpexampTes.com/crossdomain.me");
You can see from the previous code snippet that the onLoad () event handler uses an
anonymous function to handle the onLoad() event.

For more information on callback functions, see Chapter 9, “Handling Events,” on page 291.

You could also use anonymous functions with the setInterval() function, as seen in the
following code, which uses setInterval () to call the anonymous function approximately
every 1000 milliseconds (1 second):

setInterval (function() {trace("interval");}, 1000);

You can use named functions instead of anonymous functions. Named functions are often
easier to read and understand (except in some circumstances, such as callback functions). You
can also forward-reference a named function, which means you reference it before the
function exists on a timeline.

You cannot reference an anonymous function anywhere in your code (unless you assign it to a
variable), as you can when you use a named function. For example, suppose that you have
anonymous functions on Frame 5 of your FLA file, such as the following:

//with a movie clip called my_mc that spans the timeline

stop();

var myWidth = function () {

trace(my_mc._width);
b

If you place the following code on Frame 1, it cannot reference the function:
myWidth();
Similarly, the following code placed on any frame does not work:

myWidth();

var myWidth:Function = function () {
trace(my_mc._width);

b

About functions and methods 17

However, this code works properly:

var myWidth:Function = function () {
trace(my_mc._width);
b

myWidth();
g You could also place myWidth() on any frame that is after the frame that contains the
r_l|1 myWidth function.

When defining a named function, calling it in a frame script works, even though the

equivalent code with an anonymous function does not work:

// the following does work because you are calling a named function:
myWidth();
function myWidth() {
trace("foo");
}

// the following does not work because you are calling an anonymous
function:

myWidth();

var myWidth:Function = function () {
trace("foo");

by

For more information, see “Writing named functions” on page 168.

For information on writing code using Script Assist, see Using Flash.

310N

About function literals

A function literal is an unnamed function that you declare in an expression instead of in a
statement. Function literals are useful when you need to use a function temporarily or to use a
function in your code where you might use an expression instead. The syntax for a function
literal is:

function (paraml, param2, etc) {
// statements
b

For example, the following code uses a function literal as an expression:

var yourName:String = "Ester";
setInterval (function() {trace(yourName);}, 200);

When you redefine a function literal, the new function definition replaces the old
definition.

310N

172 Functions and Methods

You can store a function literal in a variable to access it later in your code. To do so, you use an
anonymous function. For more information, see “Writing anonymous and callback functions”

on page 170.

About constructor functions

The constructor of a class is a special function that is called automatically when you create an
instance of a class by using the new keyword (such as, var my_xm1:XML = new XML() ;). The
constructor function has the same name as the class that contains it. For example, a custom

Person class that you create would contain the following constructor function:

public function Person(speed:Number) {
Person.numPeople++;
this._speed = speed;

}

Then you could create a new instance by using:

var myPerson:Person = new Person();

If you do not explicitly declare a constructor function in your class file—that is, if you don’t
create a function whose name matches that of the class—the compiler automatically
creates an empty constructor function for you.

310N

A class can contain only one constructor function; overloaded constructor functions are not
allowed in ActionScript 2.0. Also, a constructor function cannot have a return type. For more
information on writing constructor functions in class files, “Writing the constructor function”
on page 228.

Defining global and timeline functions

In “About functions and methods” on page 163, you explored the different kinds of functions
that are available in Flash. As with variables, functions are attached to the timeline of the
movie clip that defines them, and you must use a target path to call them. As with variables,
you can use the _global identifier to declare a global function that is available to all timelines
and scopes without using a target path. To define a global function, precede the function
name with the identifier _global, as shown in the following example:

_global.myFunction = function(myNum:Number):Number ({
return (myNum * 2) + 3;

by

trace(myFunction(b)) // 13

For information on _global and scope, “About variables and scope” on page 60.

About functions and methods 173

To define a timeline function, use the function statement followed by the name of the
function, any parameters to be passed to the function, and the ActionScript statements that
indicate what the function does.

The following example is a function named area0fCircle with the parameter radius:

function areaOfCircle(radius:Number):Number {
return (Math.PI * radius * radius);

}

trace(areaOfCircle(8));

You can also define functions in numerous other ways. For more information on each kind of
function, see the following sections:

m “About built-in and top-level functions” on page 167

m “Writing named functions” on page 168

m “Writing anonymous and callback functions” on page 170

m “About function literals” on page 172

m “About constructor functions” on page 173

m “Targeting and calling user-defined functions” on page 174

For information on naming functions, see “Naming functions” on page 176. For a detailed

example of using functions in an external class file, see “Using functions in Flash” on page 176
and Chapter 6, “Classes,” on page 187.

For information on writing code using Script Assist, see Using Flash.

310N

Targeting and calling user-defined functions

User-defined functions are simply functions that you create yourself to use in applications, as
opposed to functions in built-in classes that perform predefined functions. You name the
functions yourself and add statements in the function block. Previous sections cover writing
functions such as named, unnamed, and callback functions. For information on naming
functions, see “Naming functions” on page 176, and for information on using functions, see
“Using functions in Flash” on page 176.

174 Functions and Methods

You can use a target path to call a function in any timeline from any timeline, including from
a timeline of a loaded SWF file. To call a function, type the target path to the name of the
function, if necessary, and pass any required parameters inside parentheses. There are several
forms of syntax for user-defined functions. The following code uses a path to call the
initialize() function, which was defined on the current timeline and requires

no parameters:

this.initialize();

The following example uses a relative path to call the 11st () function, which was defined in
the functionsC1ip movie clip:

this._parent.functionsClip.list(6);

For information on writing named functions, see “Writing named functions” on page 168.
For more information on parameters, see “Passing parameters to a function” on page 180.

You can also define your own named functions. For example, the following named function
helloWorld() is user defined:

function helloWorld() ({
trace("Hello world!");
by

The following example shows you how to use a user-defined function in a FLA file.

To create and call a simple user-defined function:

1. Create a new Flash document and save it as udf.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:

function traceHello(name:String):Void ({

trace("hello, " + name + "!");
}
traceHello("world"); // hello, world!
The previous code creates a user-defined function named traceHello() that takes one
argument, name, and traces a greeting message. To call the user-defined function, you can
call traceHello from the same timeline as the function definition and pass a single
string value.

3. Select Control > Test Movie to test the Flash document.

For more information on named functions, see “Writing named functions” on page 168.
Classes contain many user-defined functions. For information on writing functions in class
files, see “Using functions in Flash” on page 176. Also see the following sections in Chapter 6,
“Classes”: “Using methods and properties from a class file” on page 206, “About public,
private, and static methods and properties (members)” on page 208, and “About class
members” on page 211.

About functions and methods 175

Naming functions

Function names should start with a lowercase letter. Your function names should describe the
value the function returns, if any. For example, if the function returns the title of a song, you
might name it getCurrentSong().

Establish a standard for grouping similar functions (functions that relate to each other based
on functionality), because ActionScript does not permit overloading. In the context of object-
oriented programming (OOP), overloading refers to the ability to make your functions behave
differently depending on what data types are passed into them.

As with variables, you cannot use special characters, and the method name cannot start with a
number. For more information, see “Naming conventions” on page 666. For information on

naming methods, see “Naming methods” on page 185.

Using functions in Flash

This section shows you how to use functions in an application. Some of the following code
examples use ActionScript that resides in the FLA file, and other code examples place
functions in a class file for comparison. For more information and examples on using
functions in a class file, see Chapter 6, “Classes,” on page 187. For detailed information and
instruction on how to write functions for a class file, see “Example: Writing custom classes”

on page 223.

To reduce the amount of work you have to do, as well as the size of your SWF file, try to reuse
blocks of code whenever possible. One way you can reuse code is by calling a function
multiple times instead of creating different code each time. Functions can be generic pieces of
code; you can use the same blocks of code for slightly different purposes in a SWF file.
Reusing code lets you create efficient applications and minimizes the ActionScript code that
you must write, which reduces development time.

You can create functions in a FLA file or a class file or write ActionScript code that resides in a
code-based component. The following examples show you how to create functions on a
timeline and in a class file.

= | | By packing your code into class files or code-based components, you can easily share,
T distribute, or reuse blocks of code. Users can install your component, drag it onto the
Stage, and use the code that you store in the file, such as the workflow for code-based
components available in Flash (Window > Common Libraries > Classes).

The following example shows you how to create and call a function in a FLA file.

To create and call a function in a FLA file:

1. Create a new Flash document and save it as basicFunction.fla.

176 Functions and Methods

2. Select Window > Actions to open the Actions panel.
3. Type the following ActionScript code into the Script pane:

function helloWorld(){

// statements here

trace("Hello world!");
b
This ActionScript defines the (user-defined, named) function called helloWor1d(). If
you test your SWEF file at this time, nothing happens. For example, you don’t see the
trace statement in the Output panel. To see the trace statement, you have to call the
helloWor1d() function.

4. Type the following line of ActionScript code after the function:
helloWorld();
This code calls the he11oWor1d() function.

5. Select Control > Test Movie to test the FLA file.
The following text is displayed in the Output panel: Hello world!

For information on passing values (parameters) to a function, see “Passing parameters to a
function” on page 180.

There are several different ways that you can write functions on the main timeline. Most
notably, you can use named functions and anonymous functions. For example, you can use
the following syntax when you create functions:

function myCircle(radius:Number):Number ({
return (Math.PI * radius * radius);

}

trace(myCircle(5));

Anonymous functions are often more difficult to read. Compare the following code to the
preceding code.

var myCircle:Function = function(radius:Number):Number ({
// function block here
return (Math.PI * radius * radius);

b

trace(myCircle(5));

You can also place functions in class files when you use ActionScript 2.0, as the following

example shows:

class Circle {
public function area(radius:Number):Number {
return (Math.PI * Math.pow(radius, 2));
}
public function perimeter(radius:Number):Number {
return (2 * Math.PI * radius);

About functions and methods 177

}
public function diameter(radius:Number):Number ({

return (radius * 2);
}
}

For more information on writing functions in a class file, see Chapter 6, “Classes,” on

page 187.

As you can see in the previous code sample, you don’t need to place functions on a timeline.
The following example also puts functions in a class file. This is a good practice to adopt
when you create large applications by using ActionScript 2.0, because it lets you reuse your
code easily in several applications. When you want to reuse the functions in other
applications, you can import the existing class rather than rewrite the code from scratch or
duplicate the functions in the new application.

To create functions in a class file:
1. Create a new ActionScript document and save it as Utils.as.

2. Type the following ActionScript into the Script pane:

class Utils {
public static function randomRange(min:Number, max:Number):Number ({
if (min > max) {
var temp:Number = min;
min = max;
max = temp;
}
return (Math.floor(Math.random() * (max - min + 1)) + min);
}
public static function arrayMin(num_array:Array):Number ({
if (num_array.length == 0) {
return Number.NaN;
}
num_array.sort(Array.NUMERIC | Array.DESCENDING);
var min:Number = Number(num_array.pop());
return min;
}
public static function arrayMax(num_array:Array):Number {
if (num_array.length == 0) {
return undefined;
}
num_array.sort(Array.NUMERIC);
var max:Number = Number(num_array.pop());
return max;

}

3. Select File > Save to save the ActionScript file.

178 Functions and Methods

Create a new Flash document and save it as classFunctions.fla in the same directory
as Utils.as.

Select Window > Actions to open the Actions panel.

Type the following ActionScript into the Script pane:

var randomMonth:Number = Utils.randomRange(0, 11);
var min:Number = Utils.arrayMin([3, 3, 5, 34, 2, 1, 1, -31)
var max:Number = Utils.arrayMax([3, 3, 5, 34, 2, 1, 1, -3])

trace("month: " + randomMonth);
trace("min: " + min); // -3
trace("max: " + max); // 34

Select Control > Test Movie to test the documents. The following text is displayed in the
Output panel:

month: 7

min: -3

max: 34

For information on writing code using Script Assist, see Using Flash.

310N

Using variables in functions

Local variables are valuable tools for organizing code and making it easy to understand. When

a function uses local variables, it can hide its variables from all other scripts in the SWF file;

local variables are invoked in the scope of the body of the function and cease to exist when the

function exits. Flash also treats any parameters passed to a function as local variables.

310N

You can also use regular variables in a function. However, if you modify regular variables,
it is good practice to use script comments to document these modifications.

To use variables in functions:

1.

Create a new Flash document and save it as flashvariables.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:

var myName:String = "Ester";
var myAge:String = "65";
var myFavSoftware:String = "Flash";

function traceMe(yourFavSoftware:String, yourName:String,
yourAge:String) f
trace("I'm " + yourName + ", I like " + yourFavSoftware + ", and I'm "
+ yourAge + ".");

}

traceMe(myFavSoftware, myName, myAge);

About functions and methods 179

3. Select Control > Test Movie to test the Flash document.

For more information on passing parameters, see “Passing parameters to a function”
on page 180. For more information on variables and data, see Chapter 3, “Data and Data
Types,” on page 35.

Passing parameters to a function

Parameters, also referred to as arguments, are the elements on which a function executes its
code. (In this book, the terms parameter and argument are interchangeable.) You can pass
parameters (values) to a function. You can then use these parameters for processing the
function. You use the values within the function block (statements within the function).

Sometimes parameters are required, and sometimes they are optional. You might even have
some required and some optional parameters in a single function. If you do not pass enough
parameters to a function, Flash sets the missing parameter values to undefined, which may
cause unexpected results in your SWF file.

The following function called myFunc () takes the parameter someText:

function myFunc(someText:String):Void {
trace(someText);
}
After passing the parameter, you can pass a value to the function when you call the function.
This value traces in the Output panel, as follows:

myFunc("This is what traces");

When you call the function, you should always pass the specified number of parameters unless
your function checks for undefined values and sets default values accordingly. The function
substitutes the passed values for the parameters in the function definition; if any parameters
are missing, Flash sets their value to undefined. You regularly pass parameters into functions
when you write ActionScript code.

You can also pass multiple parameters to a function, which can be as simple as the following:

var birthday:Date = new Date(1901, 2, 3);
trace(birthday);

Each parameter is separated by a comma delimiter. Many built-in functions in the
ActionScript language have multiple parameters. For example, the startDrag() method of
the MovieClip class takes five parameters, 1ockCenter, Teft, top, right, and bottom:

startDrag(lockCenter:Boolean, left:Number, top:Number, right:Number,
bottom:Number):Void

To pass a parameter to a function:

1. Create a new Flash document and save it as parameters.fla.

180 Functions and Methods

2. Add the following code to Frame 1 of the Timeline:

function traceMe(yourMessage:String):Void {

trace(yourMessage);
}
traceMe("How are you doing?");
The first few lines of code create a user-defined function called traceMe (), which takes a
single parameter, yourMessage. The last line of code calls the traceMe () function and
passes the string value “How are you doing?”.

3. Select Control > Test Movie to test the Flash document.

The next example demonstrates how to pass multiple parameters to a function.

To pass multiple parameters to a function:

1.

Create a new Flash document and save it as functionTest.fla.

2. Add the following code to Frame 1 of the main Timeline:

function getArea(width:Number, height:Number):Number ({
return width * height;
}

The getArea() function takes two parameters, width and height.
Type the following code after the function:

var area:Number = getArea(10, 12);
trace(area); // 120

The getArea() function call assigns the values 10 and 12 to the width and height,
respectively, and you save the return value in the area instance. Then you trace the values

that you save in the area instance.
Select Control > Test Movie to test the SWF file.
You see 120 in the Output panel.

The parameters in the getArea () function are similar to values in a local variable; they

exist while the function is called and cease to exist when the function exits.

In the next example, the ActionScript returns the value NaN (not a number) if you don’t pass

enough parameters to the addNumbers () function.

To pass a variable number of parameters to a function:

1.

Create a new Flash document and save it as functionTest2.fla.

2. Add the following code to Frame 1 of the main Timeline:

function addNumbers(a:Number, b:Number, c:Number):Number {
return (a + b + ¢);

}

trace(addNumbers(1l, 4, 6)); // 11

About functions and methods 181

trace(addNumbers(1l, 4)); // NaN (Not a Number), c¢ equals undefined
trace(addNumbers(l, 4, 6, 8)); // 11

If you don’t pass enough parameters to the addNumbers function, the missing arguments
are assigned a default value of undefined. If you pass too many parameters, the excess

parameters are ignored.
3. Select Control > Test Movie to test the Flash document.

Flash displays the following values: 11, NaN, 11.

Returning values from functions

You use the return statement to return values from functions. The return statement

specifies the value that is returned by a function. The return statement returns the result of

an evaluation as a value of the function in which an expression executes. The return

statement returns its result immediately to the calling code.

For more information, see return statement in the ActionScript 2.0 Language Reference.

The following rules govern how to use the return statement in functions:

m If you specify a return type other than Void for a function, you must include a return
statement and it must be followed by the returned value in the function.

m Ifyou specify a return type of Void, you do not need to include a return statement, but if
you do, it must not be followed by any value.

m Regardless of the return type, you can use a return statement to exit from the middle of a
function.

m Ifyou don’t specify a return type, including a return statement is optional.

For example, the following function returns the square of the parameter myNum and specifies

that the returned value must be a Number data type:

function sqr(myNum:Number):Number {

return myNum * myNum;
}
Some functions perform a series of tasks without returning a value. The next example returns
the processed value. You are capturing that value in a variable, and then you can use that
variable within your application.

To return a value and capture it in a variable:

1. Create a new Flash document and save it as return.fla.

182 Functions and Methods

2. Add the following code to Frame 1 of the main Timeline:

function getArea(width:Number, height:Number):Number ({
return width * height;
}

The getArea() function takes two parameters, width and height.
3. Type the following code after the function:

var area:Number = getArea(10, 12);

trace(area); // 120

The getArea() function call assigns the values 10 and 12 to the width and height,
respectively, and you save the return value in the area instance. Then you trace the values

that you save in the area instance.
4. Select Control > Test Movie to test the SWF file.
You see 120 in the Output panel.

The parameters in the getArea () function are similar to values in a local variable; they

exist while the function is called and cease to exist when the function exits.

About nested functions

You can call a function from inside another function. This lets you nest functions so that you
can have them perform specific tasks in Flash.

For example, you can nest functions on a timeline to perform specific tasks on a string. Type
the following code on Frame 1 of the Timeline:

var myStr:String = "My marshmallow chicken is yellow.";

trace("Original string: " + myStr);

function formatText():Void {
changeString("Put chicken in microwave.");
trace("Changed string: " + myStr);

}

function changeString(newtext:String):Void {
myStr = newtext;

}

// Call the function.

formatText();

Select Control > Test Movie to test the nested function. The formatText() and
changeString() functions are both applied to the string when you call the formatText ()
function.

About functions and methods 183

Understanding methods

Methods are functions that are associated with a class. The class could be a custom class or
built-in classes that are part of the ActionScript language. For information on comparing
methods to functions, see “About functions and methods” on page 163 and “About types of
methods and functions” on page 165.

For example, sort0On() is a built-in method associated with the Array class (sort0On isa
function of the predefined Array class built into Flash).

To use the sortOn() method in a FLA file:

1. Create a new Flash document and save it as methods.fla.

2. Add the following code to Frame 1 of the Timeline:

var userArr:Array = new Array();

userArr.push({firstname:"George", age:39});

userArr.push({firstname:"Dan", age:43});

userArr.push({firstname:"Socks", age:2});

userArr.sortOn("firstname");

var userArraylenth:Number = userArr.length;

var 1:Number;

for (i = 0; i < userArraylenth; i++) {
trace(userArr[i].firstname);

}

You use the sort0On() method of the Array class to create a new Array object named
userArr. The array is populated by three objects that contain a first name and age, and
then the array is sorted based on the value of each object’s firstname property. Finally,
you loop over each item in the array and display the first name in the Output panel and
sort the names alphabetically by first letter.

3. Select Control > Test Movie to test the SWF file.

This code displays the following in the Output panel:

Dan

George

Socks
As demonstrated in “Writing named functions” on page 168, when you write the following
code on Frame 1 of the Timeline, your ActionScript code defines a function called
eatCabbage().
function eatCabbage() {

trace("tastes bad");

}
eatCabbage();
However, if you write the eatCabbage () function within a class file and, for example, call
eatCabbage() in the FLA file, then eatCabbage() is considered to be a method.

184 Functions and Methods

The next examples show you how to create methods within a class.

To compare methods and functions:

1. Create a new ActionScript file, select File > Save As, and save it as EatingHabits.as.
2. Type the following ActionScript code in the Script window:

class EatingHabits {
public function eatCabbage():Void {
trace("tastes bad");
}
}

3. Save your changes to EatingHabits.as.

4. Create a new Flash document, select File > Save As, name it methodTest.fla, and save this
file in the same directory as EatingHabits.as.

5. Type the following ActionScript code onto Frame 1 of the Timeline:

var myHabits:EatingHabits = new EatingHabits();
myHabits.eatCabbage();

When you use this ActionScript, you are calling the eatCabbage () method of the
EatingHabits class.

310N

When you use methods of any built-in class (in addition to the custom class you
wrote earlier in this procedure), you are using a method on a timeline.

6. After the previous line of ActionScript, add the following code:

function eatCarrots():Void ({
trace("tastes good");

}

eatCarrots();

In this code, you write and call the eatCarrots() function.
7. Select Control > Test Movie to test the SWF file.

Naming methods

You should use verbs to name methods, and words with mixed cases for concatenated words,
making sure that the first letter is lowercase. For example, you might name methods in the
following ways:

sing();

boogie();

singlLoud();

danceFast();

Understanding methods 185

You use verbs for most method names because methods perform an operation on an object. As
with variables, you cannot use special characters, and the method name cannot start with a

number. For more information, see “Naming conventions” on page 666.

186 Functions and Methods

CHAPTER 6

Classes

This chapter introduces you to using and writing classes using ActionScript 2.0. Classes are
the backbone of ActionScript 2.0, and are more important than they were in earlier versions
of Flash. You will learn how important classes are in Flash throughout this chapter.

This chapter begins by explaining some fundamental terminology and how it relates to classes
and object-oriented programming (OOP). Next you walk through a sample class file and
understand how each section of the class file works and how the class is organized. The rest of
the chapter shows you how to create your own custom classes and how to use them within
your Flash documents. You learn about the Flash classpath and how a class should be
documented so that other people who read or use your code can easily understand the code
and the class’s overall purpose.

This section contains code examples that you can use to become familiar with creating classes
in ActionScript 2.0. By the end of this chapter, you should be able to write a typical class file,
understand and recognize Flash classes, and also feel comfortable reading other people’s

class files.

If you're not familiar with ActionScript 2.0 scripting, see Chapter 4, “Syntax and Language
Fundamentals,” on page 77 and Chapter 17, “Best Practices and Coding Conventions for
ActionScript 2.0,” on page 665.

For more information on working with custom and built-in classes, see the following topics:

About object-oriented programmingand Flash 188
Writing custom classfiles. e 196
About working with custom classes in an application 199
Example: Writing custom classes. 223
Example: Using customclass filesinFlash.............. 236
AssigningaclasstosymbolsinFlash 239
Compilingand exporting classesccoiiiiii i 240
Understanding classes and SCOPEe oottt et 243
About top-level and built-inclasses 246
About working with built-inclasses 256

187

About object-oriented programming and
Flash

ActionScript 2.0 is an object-oriented language. Like ActionScript, OOP languages are based
on the concept of classes and instances. A class defines all of the properties that distinguish a
series of objects. For example, a User class represents a bunch of users who are using your
application. Then, you have an instantiation of the class, which, for the User class, is one of
the individual users—one of its members. The instantiation produces an instance of the User
class, and that instance has all of the properties of the User class.

Classes are also considered like daza types or templates that you can create to define a new type
of object. For example, if you need a data type of Lettuce in your application, you might write
the Lettuce class. This defines the Lettuce object, and then you can assign your Lettuce
methods (wash()) and properties (1eafy or bugs). To define a class, you use the c1ass
keyword in an external script file. You can create an external script file in the Flash authoring
tool by selecting File > New and then selecting ActionScript File.

ActionScript 2.0 includes features such as filter effects, file upload and download, and the
External API, and also provides several powerful and familiar OOP concepts and keywords
(such as class, interface, and package) found in other programming languages, such as
Java. The programming language lets you build program structures that are reusable, scalable,
robust, and maintainable. It can also decrease development time by providing users with
thorough coding assistance and debugging information. You can use ActionScript 2.0 to
create objects and establish inheritance and to create custom classes and extend the Flash top-

level and built-in classes. You learn how to create classes and use custom classes in this chapter.

Flash includes approximately 65 top-level and built-in classes that provide everything from
basic, or “primitive,” data types (Array, Boolean, Date, and so on), to custom errors and
events, as well as several ways to load external content (XML, images, raw binary data, and
more). You can also write your own custom classes and integrate them into your Flash
documents or even extend the top-level classes and add your own functionality or modify
existing functionality. For example, “About class members” on page 211 in this chapter shows
you how to make a custom Person class that contains custom properties for the person’s name
and age. You can then treat this custom class as a new data type in your documents and create

a new instance of the class using the new operator.
For more information on working with OOP, see the following topics:
m “The benefits of using classes” on page 189

m “About packages” on page 189

188 Classes

m “About values and data types” on page 193

m “Object-oriented programming fundamentals” on page 193

The benefits of using classes

In OOP, a class defines a category of object. A class describes the properties (data) and
methods (behaviors) for an object, much like an architectural blueprint describes the
characteristics of a building. You write a custom class in an external ActionScript (AS) file and
you can import it into your application when you compile the FLA file.

Classes can be very useful when you build larger Flash applications because you can organize a
lot of the application’s complexity in external class files. When you move a lot of the logic into
a custom class, you can not only make the code easier to reuse, but you can also “hide” some
of the methods and properties from other parts of the ActionScript code. This helps you
prevent people from accessing sensitive information or changing data that shouldn’t

be changed.

When you use a class, you can also extend existing classes and add new functionality or
modify existing functionality. For example, if you create three very similar classes, you can
write a base class and then write two other classes that extend the base class. These two classes
can add additional methods and properties, so that you don’t need to create three class files
that all duplicate the same code and logic.

Another benefit of using classes is code reusability. For example, if you create a custom class
that creates a custom progress bar using the Drawing application programming interface
(API), you could save the progress bar class in your classpath and reuse the same code in all of
your Flash documents by importing the custom class. For more information on setting the
classpath, see “About importing class files” on page 201 and “About setting and modifying
the classpath” on page 202.

About packages

When you are creating classes, you organize your ActionScript class files in packages. A
package is a directory that contains one or more class files and that resides in a designated
classpath directory (see “About importing class files” on page 201 and “About setting and
modifying the classpath” on page 202). A package can, in turn, contain other packages, called
subpackages, each with its own class files.

About object-oriented programming and Flash 189

Like variables, package names must be identifiers; that is, the first character can be a letter,
underscore (_), or dollar sign ($), and each subsequent character can be a letter, number,
underscore, or dollar sign. There are preferred ways to name packages, which for example
recommend that you avoid using underscores or dollar sign characters. For more information

on naming packages, see “Naming packages” on page 675.

Packages are commonly used to organize related classes. For example, you might have three
related classes, Square, Circle, and Triangle, that are defined in Square.as, Circle.as, and
Triangle.as. Assume that you've saved the ActionScript files to a directory specified in the
classpath, as shown in the following example:

// In Square.as:
class Square {}

// In Circle.as:
class Circle {}

// In Triangle.as:

class Triangle {}

Because these three class files are related, you might decide to put them in a package
(directory) called Shapes. In this case, the fully qualified class name would contain the
package path, as well as the simple class name. Package paths are denoted with dot (.) syntax,
where each dot indicates a subdirectory.

For example, if you placed each ActionScript file that defines a shape in the Shapes directory,
you would need to change the name of each class file to reflect the new location, as follows:

// In Shapes/Square.as:
class Shapes.Square {}

// In Shapes/Circle.as:
class Shapes.Circle {}

// In Shapes/Triangle.as:

class Shapes.Triangle {}

To reference a class that resides in a package directory, you can either specify its fully qualified
class name or import the package by using the import statement. For more information, see

“Working with packages” on page 191.

190 Classes

A comparison of classes and packages

In OOP, a class defines a category of object. Classes are essentially data types that you can
create if you want to define a new type of object in your application. A class describes the
properties (data) and behaviors (methods) for an object, much like an architectural blueprint
describes the characteristics of a building. The properties (variables defined within a class) and
methods of a class are collectively called the class’s members. To use the properties and
methods defined by a class, you generally first create an instance of that class (except for
classes that have all static members (see “About class (static) members” on page 258, such as
the top-level Math class, and “Static methods and properties” on page 210). The relationship
between an instance and its class is similar to the relationship between a house and its
blueprints.

Packages in Flash are directories that contain one or more class files and reside in a designated
file path. You might place related custom class files within a single directory. For example, you
might have three related classes called Steel Widget, PlasticWidget, and WoodWidget that are
defined in Steel Widget.as, PlasticWidget.as, and Wood Widget.as. You would organize these
classes in the Widget package. For more information on packages, see “Working with
packages” on page 191 and “Creating and packaging your class files” on page 226.

Working with packages

Packages are directories that contain one or more class files and reside in a designated
classpath directory. For example, the flash.filters package is a directory on your hard disk that
contains several class files for each filter type (such as BevelFilter, BlurFilter,
DropShadowFilter, and so on) in Flash 8.

To use the import statement, you must specify ActionScript 2.0 and Flash Player 6 or
later in the Flash tab of your FLA file’s Publish Settings dialog box.

310N

The import statement lets you access classes without specifying their fully qualified names.
For example, if you want to use the BlurFilter class in a script, you must refer to it by its fully
qualified name (flash.filters.BlurFilter) or import it; if you import it, you can refer to it by its
class name (BlurFilter). The following ActionScript code demonstrates the differences
between using the import statement and using fully qualified class names.

If you don’t import the BlurFilter class, your code needs to use the fully qualified class name
(package name followed by class name) in order to use the filter:
// without importing

var myBlur:flash.filters.BlurFilter = new flash.filters.BlurFilter(10, 10,
3);

About object-oriented programming and Flash 191

The same code, written with an import statement, lets you access the BlurFilter using only
the class name instead of always having to use the fully qualified name. This can save typing
and reduce the chance of making typing mistakes:

// with importing

import flash.filters.BlurFilter;

var myBlur:BlurfFilter = new BlurfFilter(10, 10, 3);

If you were importing several classes within a package (such as the BlurFilter,
DropShadowFilter, and GlowFilter) you could use one of two methods of importing each
class. The first method of importing multiple classes is to import each class using a separate
import statement, as seen in the following snippet:

import flash.filters.BlurFilter;

import flash.filters.DropShadowFilter;

import flash.filters.GlowFilter;

Using individual import statements for each class within a package can quickly become very
time consuming and prone to typing mistakes. The second method of importing classes
within a package is to use a wildcard import that imports all classes within a certain level of a
package. The following ActionScript shows an example of using a wildcard import:

import flash.filters.*; // imports each class within flash.filters package

The import statement applies only to the current script (frame or object) in which it’s called.
For example, suppose on Frame 1 of a Flash document you import all the classes in the
macr.util package. On that frame, you can reference classes in that package by their class
names instead of their fully qualified names. If you wanted to use the class name on another
frame script, however, you would need to reference classes in that package by their fully
qualified names or add an import statement to the other frame that imports the classes in
that package.

When using import statements, it’s also important to note that classes are imported only for
the level specified. For example, if you imported all classes in the mx.transitions package, only
those classes within the /transitions/ directory are imported, not all classes within
subdirectories (such as the classes in the mx.transitions.easing package).

= | | If you import a class but don't use it in your script, the class isn't exported as part of the
T SWEF file. This means you can import large packages without being concerned about the
size of the SWF file; the bytecode associated with a class is included in a SWF file only if
that class is actually used.

192 Classes

About values and data types

Data, values, and types are important when you start writing classes and using them. You
learned about data and types in Chapter 3, “Data and Data Types,” on page 35. When you
work with classes, remember that data types describe the kind of information a variable or
ActionScript element can contain, such as Boolean, Number, and String. For more
information, see “About data types” on page 36.

Expressions have values, while values and properties have #ypes. The values that you can set
and get to and from a property in your class must be compatible with that property. Type
compatibility means the type of a value is compatible with the type that is in use, such as the
following example:

var myNum:Number = 10;

For more information on strict data typing, see “About assigning data types and strict data

typing” on page 45.

Object-oriented programming fundamentals

In the following sections, you will examine some of the terminology used throughout this
chapter before you start writing ActionScript code. This brief introduction to principles
involved in developing object-oriented programs helps you follow the examples and sections
within this chapter and the rest of this book. These principles are described in more depth in
the rest of this chapter, along with details on how they are implemented in Flash.

The following sections use the analogy of a cat, demonstrating how cats might compare to
OOP concepts.

Objects

Think of a real-world object, such as a cat. A cat could be said to have properties (or states),
such as name, age, and color; a cat also has behaviors such as sleeping, eating, and purring. In
the world of OOP, objects also have properties and behaviors. Using object-oriented
techniques, you can model a real-world object (such as a cat) or a more abstract object (such as
a chemical process).

310N

The word behaviors is used generically here and does not refer to the Behaviors panel in
the Flash authoring environment.

For more information on objects, see “Object data type” on page 42.

About object-oriented programming and Flash 193

Instances and class members

Continuing with the real-world analogy of a cat, consider that there are cats of different
colors, ages, and names, with different ways of eating and purring. But despite their individual
differences, all cats are members of the same category, or in OOP terms, the same class: the
class of cats. In OOP terminology, each individual cat is said to be an instance of the Cat class.

Likewise in OOPD, a class defines a blueprint for a type of object. The characteristics and
behaviors that belong to a class are jointly referred to as members of that class. The
characteristics (in the cat example, the name, age, and color) are called properties of the class
and are represented as variables; the behaviors (play, sleep) are called mezhods of the class and
are represented as functions.

For more information on instances and class members, see “About class members”

on page 211 and “Using class members” on page 214.

Inheritance

One of the primary benefits of OOP is that you can create subclasses of (or extend) a class; the
subclass then inherits all the properties and methods of the class. The subclass typically
defines additional methods and properties or overrides methods or properties defined in the
superclass. Subclasses can also override (provide their own definitions for) methods defined in
a superclass.

One of the major benefits of using a superclass/subclass structure is that it is easier to reuse
similar code between various classes. For example, you could build a superclass called Animal,
which contains common characteristics and behaviors of all animals. Next you could build
several subclasses that inherit from the Animal superclass and add characteristics and
behaviors specific to that type of animal.

You might create a Cat class that inherits from another class. For example, you might create a
Mammal class that defines certain properties and behaviors common to all mammals. You
could then create a Cat subclass that extends the Mammal class. Another subclass, say, the

Siamese class, could extend (subclass) the Cat class, and so on.

Writing subclasses lets you reuse code. Instead of recreating all the code common to both

classes, you can simply extend an existing class.

= |In a complex application, determining how to structure the hierarchy of your classes is an
T important part of the design process. Make sure you determine this hierarchy before you
begin to program.

For more information on inheritance and subclasses, see Chapter 7, “Inheritance,” on

page 263.

194 Classes

Interfaces

Interfaces in OOP can be described as templates of class definitions, and classes that
implement interfaces are required to implement that template of methods. Using the cat
analogy, an interface is similar to a blueprint of a cat: the blueprint tells you which parts you

need, but not necessarily how those parts are assembled, or how the parts work.

You can use interfaces to add structure and ease of maintenance to your applications. Because
ActionScript 2.0 supports extending only from a single superclass, you can use interfaces as a
form of limited multiple inheritance.

You can also think of an interface as a “programming contract” that you can use to enforce
relationships between otherwise unrelated classes. For example, suppose you are working with
a team of programmers, each of whom is working on a different part (class) of the same
application. While designing the application, you agree on a set of methods that the different
classes use to communicate. So you create an interface that declares these methods, their
parameters, and their return types. Any class that implements this interface must provide

definitions for those methods; otherwise, a compiler error results.

For more information on inheritance, see Chapter 7, “Inheritance,” on page 263. For more
information on interfaces, see Chapter 8, “Interfaces,” on page 275.

Encapsulation

In elegant object-oriented design, objects are seen as “black boxes” that contain, or
encapsulate, functionality. A programmer should be able to interact with an object by knowing
only its properties, methods, and events (its programming interface), without knowing the
details of its implementation. This approach enables programmers to think at higher levels of
abstraction and provides an organizing framework for building complex systems.

Encapsulation is why ActionScript 2.0 includes, for example, member access control, so
details of the implementation can be made private and invisible to code outside an object.
The code outside the object is forced to interact with the object’s programming interface
rather than with the implementation details (which can be hidden in private methods and
properties). This approach provides some important benefits; for example, it lets the creator
of the object change the object’s implementation without requiring any changes to code
outside of the object—that is, as long as the programming interface doesn’t change.

For more information on encapsulation, see “About using encapsulation” on page 221.

About object-oriented programming and Flash 195

Polymorphism

OOP lets you express differences between individual classes using a technique called
polymorphism, by which classes can override methods of their superclasses and define
specialized implementations of those methods. In Flash, subclasses can define specialized
implementations of methods inherited from its superclass but cannot access the superclass’s

implementation as in other programming languages.

For example, you might start with a class called Mammal that has play () and sTeep()
methods. You then create Cat, Monkey, and Dog subclasses to extend the Mammal class. The
subclasses override the play () method from the Mammal class to reflect the habits of those
particular kinds of animals. Monkey implements the play () method to swing from trees; Cat
implements the play () method to pounce at a ball of yarn; Dog implements the play ()
method to fetch a ball. Because the sTeep() functionality is similar among the animals, you

would use the superclass implementation.

For more information on polymorphism, see Chapter 7, “Inheritance,” on page 263 and
“Using polymorphism in an application” on page 271.

Writing custom class files

The following example examines the parts of a class file. You learn how to write a class, and
how you can modify the class to extend the ways that you can use it with Flash. You learn
about the parts of a class and how to import them as well as related information about
working with custom class files in Flash.

You begin by looking at a very simple class. The following example shows the organization of

a simple class called UserClass.

To define a class, you use the class keyword in an external script file (that is, not in a script
you are writing in the Actions panel). The class structure is also pertinent for interface files.
This structure is illustrated below, and following this illustration you create a class.

m The class file begins with documentation comments that include a general description of
the code as well as author and version information.

m Add your import statements (if applicable).

m Write a package statement, class declaration, or interface declaration, as follows:
class UserClass {...}

m Include any necessary class or interface implementation comments. In these comments,
add information that is pertinent for the entire class or interface.

m Add all your static variables. Write the public class variables first and follow them with
private class variables.

196 Classes

Add instance variables. Write the public member variables first, and follow them with
private member variables.

Add the constructor statement, such as the one in the following example:

public function UserClass(username:String, password:String) {...}
Write your methods. Group methods by their functionality, not by their accessibility or
scope. Organizing methods this way helps improve the readability and clarity of

your code.

Write the getter/setter methods into the class file.

The following example looks at a simple ActionScript class named User.

To create class files:

1.

2.
3.

Select File > New and then select ActionScript File, and then click OK.
Select File > Save As and name the new file User.as.

Type the following ActionScript code into the Script window:
/ * %

User class

author: John Doe

version: 0.8

modified: 08/21/2005

copyright: Adobe Systems Incorporated

This code defines a custom User class that allows you to create new
users and specify user Togin information.
*/

class User {
// private instance variables
private var __username:String;
private var __password:String;

// constructor statement

public function User(p_username:String, p_password:String) f{
this.__username = p_username;
this.__password = p_password;

}

public function get username():String ({
return this.__username;

}

public function set username(value:String):Void {
this.__username = value;

}

Writing custom class files 197

4.

public function get password():String {
return this.__password;
}
public function set password(value:String):Void f{
this.__password = value;
}
}

Save your changes to the class file.

The previous code snippet begins with a standardized documentation comment, which
specifies the class name, author, version, date the class was last modified, copyright
information, and a brief description of what the class does.

The User class’s constructor statement takes two parameters: p_username and
p_password, which are copied into the class’s private instance variables __username and
__password. The remainder of the code in the class defines the getter and setter
properties for the private instance variables. If you want to create a read-only property,
then you would define a getter function, but not a setter function. For example, if you
want to make sure a user name cannot be changed after it has been defined, you would
delete the username setter function in the User class file.

Select File > New and then select Flash Document.

Select File > Save As and name the file user_test.fla. Save the file in the same directory as

User.as.
Type the following ActionScript into Frame 1 of the Timeline:

import User;

var userl:User = new User("unl", "pwl");
trace("Before:");

trace("\t username = " + userl.username); // unl
trace("\t password = " + userl.password); // pwl
userl.username = "Inu";

userl.password = "lwp";

trace("After:");

trace("\t username = " + userl.username); // 1lnu
trace("\t password = " + userl.password); // lwp

Because the User class you created previously is very basic, the ActionScript in the Flash
document is also very straightforward. The first line of code imports the custom User class
into your Flash document. Importing the User class lets you use the class as a custom data

type.

198

Classes

A single instance of the User class is defined and assigned to a variable named user1. You
assign the user1 User object a value and define a username of unl and a password of
pwl. The following two trace statements display the current value of userl.username
and userl.password using the User class’s getter functions, which both return strings.
The next two lines use the User class’s setter functions to set new values for the username
and password variables. Finally, you trace the values for username and password to the
Output panel. The trace statements display the modified values that you set using the
setter functions.

8. Save the FLA file, and then select Control > Test Movie to test the files.

You see the results of the trace statements in the Output panel. In the next examples, you
use these files in an application.

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript Xm1Menu () constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

m XmlMenu.as

m xmlmenu.fla

About working with custom classes in an
application

In “Writing custom class files” on page 196, you created a custom class file. In the following
sections, you use that class file in an application. At the minimum, the workflow for creating

classes involves the following steps:

1. Define a class in an external ActionScript class file. For information on defining and
writing a class file, see “Writing custom class files” on page 196.

2. Save the class file to a designated classpath directory (a location where Flash looks for
classes), or in the same directory as the application’s FLA file. For more information on
setting the classpath, see “About setting and modifying the classpath” on page 202. For a
comparison and more information on importing class files, see “About importing class
files” on page 201.

About working with custom classes in an application 199

http://www.adobe.com/go/learn_fl_samples

3. Create an instance of the class in another script, either in a FLA document or an external
script file or by creating a subclass based on the original class. For more information on
creating an instance of a class, see “Creating instances of classes in an example”

on page 238.
The following sections in this chapter contain code examples that you can use to become
familiar with creating classes in ActionScript 2.0. If you're not familiar with ActionScript 2.0,
please read Chapter 3, “Data and Data Types,” on page 35 and Chapter 4, “Syntax and
Language Fundamentals,” on page 77.
For more information on working with custom classes, see the following topics:
m “About importing class files” on page 201
m “Using a class file in Flash” on page 205
m “Using methods and properties from a class file” on page 206
m “About class members” on page 211
m “About getter and setter methods” on page 216
m “How the compiler resolves class references” on page 205
m “About dynamic classes” on page 219
m “About using encapsulation” on page 221
m “About using the this keyword in classes” on page 222

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmTMenu () constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

m XmlMenu.as

m xmlmenu.fla

200 Classes

http://www.adobe.com/go/learn_fl_samples

About importing class files

In order to use a class or interface that you've defined, Flash must locate the external
ActionScript files that contain the class or interface definition so that it can import the file.
The list of directories in which Flash searches for class, interface, function, and variable
definitions is called the classparh. Flash has two classpath settings—a global classpath and a
document-level classpath:

m Global classpath is a classpath that’s shared by all Flash documents. You set it in the
Preferences dialog box (Edit > Preferences (Windows) or Flash > Preferences (Macintosh),
click ActionScript in the Category list, and then click ActionScript 2.0 Settings).

m Document-level classpath is a classpath that you specifically define for a single Flash
document. It is set in the Publish Settings dialog box (File > Publish Settings, select the
Flash tab, and then click the Settings button).

When you import class files, the following rules apply:

m The import statements can exist in the following locations:

» Anywhere before the class definition in class files

= Anywhere in frame or object scripts

= Anywhere in ActionScript files that you include in an application (using the #finclude
statement).

m You import individual, packaged definitions using this syntax:
import flash.display.BitmapData;

m You can import entire packages using the wildcard syntax:
import flash.display.*;

You can also include ActionScript code in a Flash document (FLA) file using an include

statement. The following rules apply to the include statement:

m include statements are essentially a copy and paste of the content inside the included
ActionScript file.

m include statements inside ActionScript class files are relative to the subdirectory that
contains the file.

About working with custom classes in an application 201

m An include statement in a FLA file can only bring in code that is valid inside FLA files,
and the same goes for other places that include statements can live. For example, if you
have an include statement inside a class definition, only property and method definitions
can exist in the included ActionScript file:

// Foo.as
class Foo {

#include "FooDef.as"
}

// FooDef.as:

var fooProp;

function fooMethod() {}

trace("Foo"); // This statement is not permitted in a class definition.
For more information on the inc1lude statement, see #include directive in the ActionScript 2.0
Language Reference. For more information on classpaths, see “About setting and modifying the
classpath” on page 202.

About setting and modifying the classpath

In order to use a class or interface that you've defined, Flash must locate the external
ActionScript files that contain the class or interface definition. The list of directories in which
Flash searches for class and interface definitions is called the classpath.

When you create an ActionScript class file, you need to save the file to one of the directories
specified in the classpath or a subdirectory therein. (You can modify the classpath to include
the desired directory path). Otherwise, Flash won't be able to resolve, that is, locate, the class
or interface specified in the script. Subdirectories that you create within a classpath directory
are called packages and let you organize your classes. (For more information on packages, see
“Creating and packaging your class files” on page 226.)

Flash has two classpath settings: a global classpath and a document-level classpath. The global
classpath is a classpath that’s shared by all of your Flash documents. The document-level
classpath is a classpath that you specifically define for a single Flash document.

The global classpath applies to external ActionScript files and to FLA files, and you set it in
the Preferences dialog box (Windows: Edit > Preferences (Windows) or Flash > Preferences
(Macintosh), select ActionScript from the Category list, and then click ActionScript 2.0
Settings). You can set the document-level classpath in the Flash documents Publish Settings
dialog box (File > Publish Settings, select the Flash tab, and then click the Settings button).

When you click the Check Syntax button above the Script pane while editing an
ActionScript file, the compiler looks only in the global classpath. ActionScript files aren't
associated with FLA files in Edit mode and don't have their own classpath.

310N

202 Classes

Using a global classpath
The global classpath is a classpath that’s shared by all of your Flash documents.

You can modify the global classpath using the Preferences dialog box. To modify the
document-level classpath setting, you use the Publish Settings dialog box for the FLA file. In
both cases, you can add absolute directory paths (for example, C: /my_classes) and relative

directory paths (for example, .. /my_classes or “.”). The order of directories in the dialog
box reflects the order in which they are searched.

By default, the global classpath contains one absolute path and one relative path. The absolute
path is denoted by $(LocalData)/Classes in the Preferences dialog box. The location of the
absolute path is shown here:

m Windows: Hard Disk\Documents and Settings\user\Local Settings\Application
Data\Adobe\Adobe Flash CS3\/znguage\Configuration\Classes.

In Windows, the Application Data folder is hidden by default. To show hidden folders
and files, select My Computer to open Windows Explorer, select Tools>Folder
Options and then select the View tab. Under the View tab, select the Show hidden
files and folders radio button.

310N

m Macintosh: Hard Disk/Users/user/Library/Application Support/Adobe/Adobe Flash CS3/
languagel Configuration/Classes.

Do not delete the absolute global classpath. Flash uses this classpath to access
built-in classes. If you accidentally delete this classpath, reinstate it by adding
$(LocalData)/Classes as a new classpath.

310N

The relative path portion of the global classpath is denoted by a single dot (.) and points to
the current document directory. Be aware that relative classpaths can point to different
directories, depending on the location of the document being compiled or published.

You can use the following steps to add a global classpath or edit an existing classpath.

To modify the global classpath:
1. Select Edit > Preferences (Windows) or Flash > Preferences (Macintosh) to open the
Preferences dialog box.

2. Click the ActionScript in the left column, and then click the ActionScript 2.0
Settings button.

3. Click the Browse to Path button to browse to the directory you want to add.

4. Browse to the path that you want to add and click OK.

To delete a directory from the classpath:
1. Select the path in the Classpath list.

About working with custom classes in an application 203

2. Click the Remove from Path button.

Do not delete the absolute global classpath. Flash uses this classpath to access
built-in classes. If you accidentally delete this classpath, you can reinstate it by
adding $(LocalData)/Classes as a new classpath.

310N

For information on importing packages, see “Working with packages” on page 191.

Using a document-level classpath

The document-level classpath applies only to FLA files. You set the document-level classpath
in the Publish Settings dialog box for a particular FLA file (File > Publish Settings, then click
the Flash tab, and then click ActionScript 2.0 Settings). The document-level classpath is
empty by default. When you create and save a FLA file in a directory, that directory becomes
a designated classpath directory.

When you create classes, in some cases you might want to store them in a directory that you

then add to the list of global classpath directories in the following situations:

m Ifyou have a set of utility classes that all your projects use

m Ifyou want to check the syntax of your code (click the Check Syntax button) that’s within
the external ActionScript file

Creating a directory prevents the loss of custom classes if you ever uninstall and reinstall Flash,

especially if the default global classpath directory is deleted and overwritten, because you

would lose any classes that you stored in that directory.

For example, you might create a directory such as the following for your custom classes:

m Windows: Hard Disk\Documents and Settings\user\custom classes.

m Macintosh: Hard Disk/Users/user/custom classes.

Then, you would add this path to the list of global classpaths (see “Using a global classpath”

on page 203).

When Flash attempts to resolve class references in a FLA script, it first searches the document-
level classpath specified for that FLA file. If Flash doesn’t find the class in that classpath, or if
that classpath is empty, it searches the global classpath. If Flash doesn't find the class in the
global classpath, a compiler error occurs.

To modify the document-level classpath:
1. Select File > Publish Settings to open the Publish Settings dialog box.

2. Click the Flash tab.

3. Click the Settings button next to the ActionScript Version pop-up menu.

204 Classes

4. You can either manually type a file path or you can click the Browse to Path button to
browse to the directory you want to add to the classpath.

To edit an existing classpath directory, select the path in the Classpath list, click the
Browse to Path button, browse to the directory you want to add, and click OK.

To delete a directory from the classpath, select the path in the Classpath list, and
click the Remove Selected Path (-) button.

310N |310N]

For more information on packages, see “About packages” on page 189.

How the compiler resolves class references

When Flash attempts to resolve class references in a FLA script, it first searches the document-
level classpath specified for that FLA file. If the class is not found in that classpath, or if that
classpath is empty, Flash searches the global classpath. If the class is not found in the global

classpath, a compiler error occurs.

When you click the Check Syntax button while editing an ActionScript file, the compiler
looks only in the global classpath; ActionScript files aren’t associated with FLA files in Edit
mode and don’t have their own classpath.

Using a class file in Flash

To create an instance of an ActionScript class, use the new operator to invoke the class’s
constructor function. The constructor function always has the same name as the class and
returns an instance of the class, which you typically assign to a variable. For example, if you
were using the User class from “Writing custom class files” on page 196, you would write the

following code to create a new User object:

var firstUser:User = new User();

In some cases, you don’t need to create an instance of a class to use its properties and
methods. For more information on class (static) members, see “About class (static)
members” on page 258 and “Static methods and properties” on page 210.

310N

Use the dot (.) operator to access the value of a property in an instance. Type the name of the
instance on the left side of the dot, and the name of the property on the right side. For
example, in the following statement, firstUser is the instance and username is the property:

firstUser.username

About working with custom classes in an application 205

You can also use the top-level or built-in classes that make up the ActionScript language in a
Flash document. For example, the following code creates a new Array object and then shows
its Tength property:

var myArray:Array = new Array("apples",
trace(myArray.length); // 3

"oranges", "bananas");

For more information on using custom classes in Flash, see “Example: Using custom class files
in Flash” on page 236. For information on the constructor function, see “Writing the
constructor function” on page 228.

Using methods and properties from a class file

In OOP, members (properties or methods) of a class can be instance members or class
members. Instance members are created for each instance of the class; they are defined to the
prototype of the class when they are inidalized in the class definition. In contrast, class

members are created once per class. (Class members are also known as static members.)

Properties are attributes that define an object. For example, 1ength is a property of all arrays
that specifies the number of elements in the array. Methods are functions that you associate
with a class. For more information on functions and methods, see Chapter 5, “Functions and

Methods,” on page 163.
The following example shows you how you would create a method in a class file:

class Sample {
public function myMethod():Void {
trace("myMethod");
}
}
Next you could invoke that method in your document. To invoke an instance method or
access an instance property, you reference an instance of the class. In the following example,
picture0l, an instance of the custom Picture class (available in the following exercise),
invokes the showInfo() method:
var imgl:Picture = new Picture("http://www.helpexamples.com/flash/images/
imagel.jpg");
// Invoke the showInfo() method.
imgl.showInfo();
The next example demonstrates how you can write a custom Picture class to hold various

pieces of information about a photo.

206 Classes

To use the Picture and PictureClass classes in a FLA file:
1. Select File > New and then select ActionScript File. Save the document as Picture.as and

then click OK.
You write your custom Picture class in this document.

2. Type the following ActionScript code into the Script window:
/ * %
Picture class
author: John Doe
version: 0.53
modified: 6/24/2005
copyright: Adobe Systems Incorporated

The Picture class is used as a container for an image and its URL.
*/

class Picture {
private var __infoObj:0bject;

public function Picture(src:String) {
this.__infoObj = new Object();
this.__infoObj.src = src;

}

public function showInfo():Void {
trace(this.toString());

}

private function toString():String {
return "[Picture src=" + this.__infoObj.src + "1";

}

public function get src():String {
return this.__infoObj.src;
}
public function set src(value:String):Void {
this.__infoObj.src = value;
}
}

3. Save the ActionScript file.

4. Select File > New and then select Flash Document to create a new FLA file. Save it as

picture_test.fla in the same directory as you saved the Picture class file.

About working with custom classes in an application 207

5. Type the following ActionScript code into Frame 1 of the Timeline:

var picturel:Picture = new Picture("http://www.helpexamples.com/flash/
images/imagel.jpg");

picturel.showInfo();

this.createEmptyMovieClip("img_mc", 9);

img_mc.loadMovie(picturel.src);

6. Save the Flash document.
7. Select Control > Test Movie to test the document.

The following text is displayed in the Output panel:

[Picture src=http://www.helpexamples.com/flash/images/imagel.jpg]

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript Xm1Menu () constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

m XmlMenu.as

m xmlmenu.fla

About public, private, and static methods and
properties (members)

When you write ActionScript class files in an external script file, there are four types of
methods and properties that you can create: public methods and properties, private methods
and properties, public static methods and properties, and private static methods and
properties. These methods and properties define how Flash can access variables, and they
allow you to specify what parts of your code can access certain methods or properties.

When you are building class-based applications, whether the application is small or large, it is
especially important to consider whether a method or property should be private or public.
Considering this ensures that your code is as secure as possible. For example, if you were
building a User class, you might not want to allow people using the class to be able to change
a user’s ID. By setting the class property (sometimes referred to as an instance member) to
private, you can limit access to the property to code within the class or subclasses of that
class, meaning that no users can change that property directly.

208 Classes

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Public methods and properties

The pub1ic keyword specifies that a variable or function is available to any caller. Because
variables and functions are public by default, the this keyword is used primarily for stylistic
and readability benefits, indicating that the variable exists in the current scope. For example,
you might want to use the this keyword for consistency in a block of code that also contains
private or static variables. The this keyword can be used with either the public or

private keyword.

The following Sample class already has a public method named myMethod():

class Sample {
private var ID:Number;
public function myMethod():Void {
this.ID = 15;
trace(this.ID); // 15
trace("myMethod");
}
}

If you want to add a pub1ic property, you use the word “public” instead of “private,” as you

can see in the following sample code:

class Sample {
private var ID:Number;
public var email:String;
public function myMethod():Void {
trace("myMethod");
}
}

Because the email property is public, you can change it within the Sample class, or directly
within a FLA.

Private methods and properties

The private keyword specifies that a variable or function is available only to the class that
declares or defines it or to subclasses of that class. By default, a variable or function is public,
and available to any caller. Use the this keyword if you want to restrict access to a variable or
function, as you can see in the following example:

class Sample {
private var ID:Number;
public function myMethod():Void {
this.ID = 15;
trace(this.ID); // 15
trace("myMethod");
}

About working with custom classes in an application 209

If you want to add a private property to the previous class, you simply use the keyword
private before the var keyword.

If you attempt to access the private 1D property from outside the Sample class, you get a
compiler error and a message in the Output panel. The message indicates that the member is

private and cannot be accessed.

Static methods and properties

The static keyword specifies that a variable or function is created only once per class rather
than in every object based on that class. You can access a static class member without creating
an instance of the class. Static methods and properties can be set in either the public or

private scope.

Static members, also called class members, are assigned to the class, not to any instance of the
class. To invoke a class method or access a class property, you reference the class name, rather

than a specific instance of the class, as shown in the following code:

trace(Math.PI / 8); // 0.392699081698724

If you type this single line of code in the script pane of the Actions panel, you see a result trace
in the Output panel.

For example, in the previous Sample class example, you could create a static variable to keep
track of how many instances of the class have been created, as demonstrated in the
following code:

class Sample {
public static var count:Number = 0;
private var ID:Number;
public var email:String;
public function Sample() {
Sample.count++;
trace("count updated: " + Sample.count);
}
public function myMethod():Void {
trace("myMethod");
}
}

Every time you create a new instance of the Sample class, the constructor method traces the
total number of Sample class instances that have been defined so far.

Some of the top-level ActionScript classes have class members (or static members), as you saw
earlier in this section when you called the Math.PI property. Class members (properties and
methods) are accessed or invoked on the class name, not on an instance of the class.

Therefore, you don’t create an instance of the class to use those properties and methods.

210 Classes

For example, the top-level Math class consists only of static methods and properties. To call
any of its methods, you don’t create an instance of the Math class. Instead, you simply call the
methods on the Math class itself. The following code calls the sqrt () method of the

Math class:

var squareRoot:Number = Math.sqrt(4);

trace(squareRoot); // 2

The following code invokes the max () method of the Math class, which determines the larger

of two numbers:

var largerNumber:Number = Math.max(10, 20);

trace(largerNumber); // 20

For more information on creating class members, see “About class members” on page 211 and

“Using class members” on page 214.

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript Xm1Menu () constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

m XmlMenu.as

m xmlmenu.fla

About class members

Most of the members (methods and properties) discussed so far in this chapter are of a type
called instance members. For each instance member, there’s a unique copy of that member in
every instance of the class. For example, the emai1 member variable of the Sample class has an

instance member, because each person has a different e-mail address.

Another type of member is a class member. There is only one copy of a class member, and you
use it for the entire class. Any variable declared within a class, but outside a function, is a
property of the class. In the following example, the Person class has two properties, age and
username, of type Number and String, respectively:
class Person {

public var age:Number;

public var username:String;
}

About working with custom classes in an application 21

http://www.adobe.com/go/learn_fl_samples

Similarly, any function declared within a class is considered a method of the class. In the
Person class example, you can create a method called getInfo():
class Person {

public var age:Number;

public var username:String;

public function getInfo():String ({

// getInfo() method definition

}
}
In the previous code snippet the Person class’s get Info() method, as well as the age and
username properties, are all public instance members. The age property would not be a good
class member, because each person has a different age. Only properties and methods that are
shared by all individuals of the class should be class members.

Suppose that you want every class to have a species variable that indicates the proper Latin
name for the species that the class represents. For every Person object, the species is Homo
sapiens. It would be wasteful to store a unique copy of the string "Homo sapiens" for every

instance of the class, so this member should be a class member.

Class members are declared with the static keyword. For example, you could declare the
species class member with the following code:

class Person {
public static var species:String = "Homo sapiens";
//

}

You can also declare methods of a class to be static, as shown in the following code:

public static function getSpecies():String ({
return Person.species;
}

Static methods can access only static properties, not instance properties. For example, the
following code results in a compiler error because the class method getAge () references the
instance variable age:

class Person {
public var age:Number = 15;
/] ...
public static function getAge():Number {
return age; /* **Error**: Instance variables cannot be accessed in
static functions. */
}
}

To solve this problem, you could either make the method an instance method or make the
variable a class variable.

212 Classes

For more information on class members (also called static properties), see “Static methods and
properties” on page 210.

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript Xm1Menu () constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

m XmlMenu.as

m xmlmenu.fla

Using the Singleton design pattern

A common way to use class members is with the Singleton design pattern. A design pattern
defines a formal approach for structuring your code. Typically, you might structure a design
pattern as a solution for a common programming problem. There are many established design
patterns, such as Singleton. The Singleton design pattern makes sure that a class has only one
instance and provides a way of globally accessing the instance. For detailed information on the
Singleton design pattern, see www.adobe.com/devnet/coldfusion/articles/
design_patterns.html.

Often you encounter situations when you need exactly one object of a particular type in a
system. For example, in a chess game, there is only one chessboard, and in a country, there is
only one capital city. Even though there is only one object, you should encapsulate the
functionality of this object in a class. However, you might need to manage and access the one
instance of that object. Using a global variable is one way to do this, but global variables are
not desirable for most projects. A better approach is to make the class manage the single
instance of the object itself using class members. The following example shows a typical
Singleton design pattern usage, where the Singleton instance is created only once.

To use the Singleton design pattern:

1. Select File > New and then select ActionScript File. Save the document as Singleton.as.

2. Type the following ActionScript code into the Script window:
/~k~k
Singleton class
author: John Doe
version: 0.53
modified: 6/24/2008
copyright: Adobe Systems Incorporated
*/

About working with custom classes in an application 213

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/devnet/mx/coldfusion/articles/design_patterns.html
http://www.adobe.com/devnet/mx/coldfusion/articles/design_patterns.html

class Singleton {
private static var instance:Singleton = null;
public function trackChanges():Void {
trace("tracking changes.");
}
public static function getlnstance():Singleton {
if (Singleton.instance == null) {
trace("creating new Singleton.");
Singleton.instance = new Singleton();
}
return Singleton.instance;

}
3. Save the Singleton.as document.

4. Select File > New and then select Flash Document to create a new FLA file, and save it as
singleton_test.fla in the same directory as you saved the Singleton class file.

5. Type the following ActionScript code into Frame 1 of the Timeline:

Singleton.getInstance().trackChanges(); // tracking changes.

var s:Singleton = Singleton.getInstance(); // tracking changes.
s.trackChanges();

6. Save the Flash document.
7. Select Control > Test Movie to test the document.

The Singleton object is not created until you need it—that is, until some other code asks for it
by calling the getInstance() method. This is typically called lazy creation, and it can help

make your code more efficient in many circumstances.

Remember not to use too few or too many class files for your application, because doing so
can lead to poorly designed class files, which are not beneficial to the application’s
performance or to your workflow. You should always attempt to use class files instead of
placing code in other places (such as timelines); however, avoid creating many classes that
have only a small amount of functionality or only a few classes that handle a lot of
functionality. Both of these scenarios might indicate poor design.

Using class members

One use of class (static) members is to maintain state information about a class and its
instances. For example, suppose you want to keep track of the number of instances that have
been created from a particular class. An easy way to do this is to use a class property that

increments each time a new instance is created.

214 Classes

In the following example, you'll create a class called Widget that defines a single, static
instance counter named widgetCount. Each time a new instance of the class is created, the
value of widgetCount increments by 1 and the current value of widgetCount is displayed in

the Output panel.

To create an instance counter using a class variable:
1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:

class Widget f{
//Initialize the class variable
public static var widgetCount:Number = 0;
public function Widget() f{
Widget.widgetCount++;
trace("Creating widget #" + Widget.widgetCount);

}

The widgetCount variable is declared as static, so it initializes to 0 only once. Each time
the Widget class’s constructor statement is called, it adds 1 to widgetCount and then
shows the number of the current instance that’s being created.

3. Save your file as Widget.as.

4. Select File > New and then select Flash Document to create a new FLA, and save it as
widget_test.fla in the same directory as Widget.as.

5. In widget_test.fla, type the following code into Frame 1 of the Timeline:

// Before you create any instances of the class,

// Widget.widgetCount is zero (0).

trace("Widget count at start: " + Widget.widgetCount); // 0
var widgetl:Widget = new Widget(); // 1

var widget2:Widget = new Widget(); // 2

var widget3:Widget = new Widget(); // 3

trace("Widget count at end: " + Widget.widgetCount); // 3

6. Save the changes to widget_test.fla.
7. Select Control > Test Movie to test the file.

Flash displays the following information in the Output panel:

Widget count at start: 0
Creating widget # 1
Creating widget # 2
Creating widget # 3
Widget count at end: 3

About working with custom classes in an application 215

About getter and setter methods

Getter and setter methods are accessor methods, meaning that they are generally a public
interface to change private class members. You use getter and setter methods to define a
property. You access getter and setter methods as properties outside the class, even though you
define them within the class as methods. Those properties outside the class can have a
different name from the property name in the class.

There are some advantages to using getter and setter methods, such as the ability to let you
create members with sophisticated functionality that you can access like properties. They also
let you create read-only and write-only properties.

Even though getter and setter methods are useful, you should be careful not to overuse them
because, among other issues, they can make code maintenance more difficult in certain
situations. Also, they provide access to your class implementation, like public members. OOP

practice discourages direct access to properties within a class.

When you write classes, you are always encouraged to make as many as possible of your
instance variables private and add getter and setter methods accordingly. This is because there
are several times when you may not want to let users change certain variables within your
classes. For example, if you have a private static method that tracks the number of instances
created for a specific class, you don’t want a user to modify that counter using code. Only the
constructor statement should increment that variable whenever it’s called. In this situation,
you might create a private instance variable and allow a getter method only for the counter
variable, which means users are able to retrieve the current value only by using the getter
method, and they won't be able to set new values using the setter method. Creating a getter
without a setter is a simple way of making certain variables in your class read-only.

Using getter and setter methods

The syntax for getter and setter methods is as follows:

m A getter method does not take any parameters and always returns a value.

m A setter method always takes a parameter and never returns a value.

Classes typically define getter methods that provide read access and setter methods that

provide write access to a given property. For example, imagine a class that contains a property
called userName:

private var userName:String;
Instead of allowing instances of the class to directly access this property (user.userName =

"Buster", for example), the class might have two methods, getUserName () and
setUserName(), that would be implemented as shown in the next example.

216 Classes

To use getter and setter methods:
1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:

class Login {
private var __username:String;
public function Login(username:String) {
this.__username = username;
}
public function getUserName():String ({
return this.__username;
}
public function setUserName(value:String):Void {
this.__username = value;
}
}

3. Save the ActionScript document as Login.as.
As you can see, getUserName () returns the current value of userName, and
setUserName() sets the value of userName to the string parameter passed to the method.
4. Select File > New and then select Flash Document to create a new FLA, and save it as
login_test.fla in the same directory as Login.as.
5. Add the following ActionScript to Frame 1 of the main Timeline:
var user:Login = new Login("RickyM");
// calling getUserName() method

var userName:String = user.getUserName();
trace(userName); // RickyM

// calling setUserName() method
user.setUserName("Enriquel”);
trace(user.getUserName()); // Enriquel

6. Select Control > Test Movie to test the file.

Flash displays the following information in the Output panel:
RickyM
Enriquel
However, if you want to use a more concise syntax, you can use implicit getter and setter

methods. Implicit getter and setter methods let you access class properties in a direct manner,
while maintaining good OOP practice.

About working with custom classes in an application 217

To define these methods, use the get and set method attributes. You create methods that get
or set the value of a property, and add the keyword get or set before the method name, as
shown in the next example.

Implicit getter and setter methods are syntactic shorthand for the Object.addProperty()
method found in ActionScript 1.0.

310N

To use implicit getter and setter methods:
1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:

class Login2 {
private var __username:String;
public function Login2(username:String) ({
this.__username = username;
}
public function get userName():String ({
return this.__username;
}
public function set userName(value:String):Void {
this.__username = value;
}
}

3. Save the ActionScript document as Login2.as.

Remember that a getter method does not take any parameters. A setter method must take
exactly one required parameter. A setter method can have the same name as a getter
method in the same scope. Getter and setter methods cannot have the same names as
other properties. For example, in the previous example code you defined getter and setter
methods named userName; in this case you could not also have a property named
userName in the same class.

4. Select File > New and then select Flash Document to create a new FLA, and save it as
login2_test.fla in the same directory as Login2.as.

5. Add the following ActionScript to Frame 1 of the main Timeline:
var user:Login2 = new Login2("RickyM");
// calling "get" method

var userNameStr:String = user.userName;
trace(userNameStr); // RickyM

// calling "set" method
user.userName = "Enriquel";
trace(user.userName); // Enriquel

218 Classes

Unlike ordinary methods, you invoke getter and setter methods without any parentheses
or arguments. You invoke getter and setter methods as you would a property by the
same name.

6. Save the Flash document and select Control > Test Movie to test the file.

Flash displays the following information in the Output panel:

RickyM
Enriquel

You cannot use getter and setter method attributes in interface method declarations.

310N

About dynamic classes

Adding the dynamic keyword to a class definition specifies that objects based on the specified
class can add and access dynamic properties at runtime. You should create dynamic classes
only if you specifically require this functionality.

Type checking on dynamic classes is less strict than type checking on nondynamic classes,
because members accessed inside the class definition and on class instances are not compared
with those defined in the class scope. Class member functions, however, can still be type

checked for return types and parameter types.

For information on creating dynamic classes, see “Creating dynamic classes” on page 219.

Creating dynamic classes

By default, the properties and methods of a class are fixed. That is, an instance of a class can’t
create or access properties or methods that weren’t originally declared or defined by the class.
For example, consider a Person class that defines two properties, userName and age.

To create a class that is not dynamic:
1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following ActionScript into the Script window:

class Person {
public var userName:String;
public var age:Number;
}
If, in another script, you create an instance of the Person class and try to access a property
of the class that doesn’t exist, the compiler generates an error.

3. Save the file on your hard disk as Person.as.

About working with custom classes in an application 219

Select File > New and then select Flash Document to create a new FLA file, and then

click OK.

. Select File > Save As, name the file person_test.fla, and save the file in the same directory

as the Person class you created earlier.

Add the following code to create a new instance of the Person class (firstPerson), and try
to assign a value to a property called hairColor (which doesn’t exist in the Person class):

var firstPerson:Person = new Person();
firstPerson.hairColor = "blue"; // Error. There is no property with the
name ‘'hairColor'.

Save the Flash document.
Select Control > Test Movie to test the code.

This code causes a compiler error because the Person class doesn’t declare a property
named hairColor. In most cases, this is exactly what you want to happen. Compiler
errors might not seem desirable, but they are very beneficial to programmers: good
error messages help you to write correct code by pointing out mistakes early in the

coding process.

In some cases, however, you might want to add and access properties or methods of a class at

runtime that aren’t defined in the original class definition. The dynamic class modifier lets

you do just that.

To create a dynamic class:

1.

2.
3.

Select File > New and then select ActionScript File, and then click OK.
Select File > Save As and name the file Person2.as. Save the file on your hard disk.

Type the following code into the Script window:

dynamic class Person? {
public var userName:String;
public var age:Number;
}
This ActionScript adds the dynamic keyword to the Person class in the previous example.
Instances of the Person2 class can add and access properties and methods that are not

defined in this class.

Save your changes to the ActionScript file.

. Select File > New and then select Flash Document to create a new FLA file, and then

click OK.

Select File > Save As and name the new file person2_test.fla. Save it in the same directory
as Person2.as.

220 Classes

7. Type the following code to create a new instance of the Person2 class (firstPerson), and
assign a value to a property called hairColor (which doesn’t exist in the Person2 class).

var firstPerson:Person2 = new Person2();
firstPerson.hairColor = "blue";
trace(firstPerson.hairColor); // blue

8. Save your changes to the person2_test.fla file.
9. Select Control > Test Movie to test the code.

Because the custom Flash class is dynamic, you can add methods and properties to the
class at runtime (when the SWF file plays). When you test the code the text blue should
be displayed in the Output panel.

When you develop applications, you wouldn't want to make classes dynamic unless you
needed to. One reason not to use dynamic classes is that type checking on dynamic classes is
less strict than type checking on nondynamic classes, because members accessed inside the
class definition and on class instances are not compared with those defined in the class
scope. Class member functions, however, can still be type checked for return types and
parameter types.

Subclasses of dynamic classes are also dynamic, with one exception. Subclasses of the
MovieClip class are not dynamic by default, even though the MovieClip class itself is
dynamic. This implementation provides you with more control over subclasses of the

MovieClip class, because you can choose to make your subclasses dynamic or not:

class A extends MovieClip {} // A is not dynamic
dynamic class B extends A {} //

B is dynamic
class C extends B {} // C is dynamic
class D extends A {} // D is not dynamic
dynamic class E extends MovieClip{} // E is dynamic

For information on subclasses, see Chapter 7, “Inheritance,” on page 263.

About using encapsulation

In elegant object-oriented design, objects are seen as “black boxes” that contain, or
encapsulate, functionality. A programmer should be able to interact with an object by knowing
only its properties, methods, and events (its programming interface), without knowing the
details of its implementation. This approach enables programmers to think at higher levels of
abstraction and provides an organizing framework for building complex systems.

About working with custom classes in an application 221

Encapsulation is why ActionScript 2.0 includes, for example, member access control, so that
details of the implementation can be made private and invisible to code outside an object.
The code outside the object is forced to interact with the object’s programming interface
rather than with the implementation details. This approach provides some important
benefits; for example, it lets the creator of the object change the object’s implementation
without requiring any changes to code outside of the object, as long as the programming
interface doesn’t change.

An example of encapsulation in Flash would be setting all your member and class variables to
private and forcing people who implement your classes to access these variables using getter
and setter methods. Performing encapsulation this way ensures that if you ever need to change
the structure of the variables in the future, you would need only to change the behavior of the
getter and setter functions rather than force every developer to change the way he or she
accesses the class’s variables.

The following code shows how you could modify the Person class from earlier examples, set
its instance members to private, and define getter and setter methods for the private instance
members:

class Person {

private var __userName:String;

private var __age:Number;

public function get userName():String {
return this.__userName;

}

public function set userName(value:String):Void {
this.__userName = value;

}

public function get age():Number {
return this.__age;

}

public function set age(value:Number):Void {
this.__age = value;

}

About using the this keyword in classes

Use the this keyword as a prefix within your classes for methods and member variables.
Although it is not necessary, the this keyword makes it easy to tell that a property or method
belongs to a class when it has a prefix; without the keyword, you cannot tell whether the
property or method belongs to the superclass.

222 Classes

You can also use a class name prefix for static variables and methods, even within a class. This
helps qualify the references you make, which makes code readable. Depending on the coding
environment you use, adding prefixes might also trigger code hints.

You do not have to add these prefixes, and some developers feel it is unnecessary.
Adobe recommends adding the this keyword as a prefix, because it can aid readability
and helps you write clean code by providing context for your methods and variables.

310N

Example: Writing custom classes

Now that you've explored the basics of a class file, and what kinds of things it contains, it’s
time to learn some of the general guidelines for creating a class file. The first example in this
chapter shows you how to write classes and package them. The second example shows you
how to use those class files with a FLA file.

ActionScript code in external files is compiled into a SWF file when you publish, export,
test, or debug a FLA file. Therefore, if you make any changes to an external file, you must
save the file and recompile any FLA files that use it.

NOILNVD

As discussed in “Writing custom class files” on page 196, a class consists of two main parts:
the declaration and the body. The class declaration consists minimally of the class statement,
followed by an identifier for the class name, and then left and right curly braces ({1).
Everything inside the braces is the class body, as shown in the following example:

class className {
// class body
}

Remember: you can define classes only in external ActionScript files. For example, you cant
define a class in a frame script in a FLA file. Therefore, you create a new file for this example.

In its most basic form, a class declaration consists of the cTass keyword, followed by the class
name (Person, in this case), and then left and right curly braces ({1). Everything between the
braces is called the class body and is where the class’s properties and methods are defined.

By the end of this example, the basic ordering of your class files is as follows:

m Documentation comments

m Class declaration

m Constructor function

m Class body

You do not write subclasses in this chapter. For more information on inheritance and
subclassing, see Chapter 7, “Inheritance,” on page 263.

Example: Writing custom classes 223

This example includes the following topics:

m “About general guidelines for creating a class” on page 224
m “Creating and packaging your class files” on page 226

m “Writing the constructor function” on page 228

m “Adding methods and properties” on page 230

m “Controlling member access in your classes” on page 233
m “Documenting the classes” on page 234

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmTMenu () constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

m XmlMenu.as

m xmlmenu.fla

About general guidelines for creating a class

The following points are guidelines to follow when you write custom class files. They help
you write correct and well-formed classes. You practice these guidelines in upcoming
examples.

m In general, place only one declaration per line, and do not place either the same or
different types of declarations on a single line. Format your declarations as the following
example shows:
private var SKU:Number; // product SKU (identifying) number
private var quantity:Number; // quantity of product

m Inidalize local variables when you declare them, unless that initial value is determined by a
calculation. For information on initializing variables, see “Adding methods and
properties” on page 230.

m Declare variables before you first use them (including loops). For example, the following
code predeclares the loop iterator variable (i) before using it in the for loop:

var my_array:Array = new Array("one", "two", "three");
var 1:Number;
for (i =0 ; i < my_array.length; i++) {

trace(i + " =" + my_array[il);
}

224 Classes

http://www.adobe.com/go/learn_fl_samples

m Avoid using local declarations that hide higher-level declarations. For example, do not
declare a variable twice, as the following example shows:

// bad code
var counter:Number = 0;
function myMethod() {
var counter:Number;
for (counter = 0; counter <= 4; counter++) {
// statements;
}
}

This code declares the same variable inside an inner block.

m Do not assign many variables to a single value in a statement, because it is difficult to read,

as you can see in the following ActionScript code samples:

// bad form
xPos = yPos = 15;

or
// bad form
class User {

private var m_username:String, m_password:String;
}

m Have a good reason for making public instance variables, or public static, class, or member

variables. Make sure that these variables are explicitly public before you create them

this way.

m Set most member variables to private unless there is a good reason to make them public. It

is much better from a design standpoint to make member variables private and allow
access only to those variables through a small group of getter and setter functions.

About naming class files

Class names must be identifiers—that is, the first character must be a letter, underscore (_), or

dollar sign ($), and each subsequent character must be a letter, number, underscore, or dollar

sign. As a preferred practice, try to always limit class names to letters.

The class name must exactly match the name of the ActionScript file that contains it,
including capitalization. In the following example, if you create a class called Rock, the
ActionScript file that contains the class definition must be named Rock.as:

// In file Rock.as

class Rock {

// Rock class body
}

Example: Writing custom classes

225

You name and create a class definition in the following section. See the section “Creating and
packaging your class files” on page 226 to create, name, and package the class files. For more

information on naming class files, see “Naming classes and objects” on page 673.

Creating and packaging your class files

In this section, you create, name, and package your class files for this example (“Example:
Writing custom classes” on page 223). The following sections show you how to write
complete (yet simple) class files. For detailed information on packages, see “About packages”
on page 189, “A comparison of classes and packages” on page 191, and “Working with
packages” on page 191.

When you create a class file, decide where you want to store the file. In the following steps,
you'll save the class file and the application FLA file that uses the class file in the same
directory for simplicity. However, if you want to check syntax, you also need to tell Flash how
it can find the file. Typically, when you create an application, you add the directory in which
you store your application and class files to the Flash classpath. For information about
classpaths, see “About setting and modifying the classpath” on page 202.

Class files are also called ActionScript (AS) files. You create AS files in the Flash authoring tool
or by using an external editor. For example, Macromedia Dreamweaver can create AS files.

The name of a class (ClassA) must exactly match the name of the AS file that contains it
(ClassA.as). This is very important; if these two names don’t match exactly, including
capitalization, the class won’t compile.

310N

To create a class file and class declaration:

1. Select File > New and then select Flash Document to create a new FLA document, and then
click OK.

2. Select File > Save As, name the new file package_test.fla, and save the Flash document to
the current directory.
You'll add content to this Flash document in a future step.

3. Select File > New and then select ActionScript File, and then click OK.

4. Select File > Save As and create a new subdirectory named com, and then do the following:
a. In the com subdirectory, create a new subdirectory named adobe.
b. in the adobe subdirectory, create an new subdirectory named utils.

c. Save the current ActionScript document in the utils directory and name the file
ClassA.as.

226 Classes

5. Type the following code into the Script window:

class com.adobe.utils.ClassA {
}

The preceding code creates a new class named ClassA in the com.adobe.utils package.
6. Save the ClassA.as ActionScript document.
7. Select File > New and then select ActionScript File, and then click OK.
8. Select File > Save As, name the new file ClassB.as, and save it in the same directory as
ClassA.as created in an earlier step.
9. Type the following code into the Script window:

class com.adobe.utils.ClassB {
}

The previous code creates a new class named ClassB in the com.adobe.utils package.
10. Save your changes to both the ClassA.as and ClassB.as class files.

The class files you use in a FLA file import into a SWF file when you compile it. The code
you write in a class file should have a certain methodology and ordering, which are discussed
in the following sections.

If you are creating multiple custom classes, use packages to organize your class files. A package
is a directory that contains one or more class files and resides in a designated classpath
directory. A class name must be fully qualified within the file in which it is declared—that is,
it must reflect the directory (package) in which it is stored. For more information on
classpaths, see “About setting and modifying the classpath” on page 202.

For example, a class named com.adobe.docs.YourClass is stored in the com/adobe/docs
directory. The class declaration in the YourClass.as file looks like this:

class com.adobe.docs.YourClass {
// your class

You write the class declaration that reflects the package directory in the following
section, “Example: Writing custom classes” on page 223.

ETTI

For this reason, it’s good practice to plan your package structure before you begin creating
classes. Otherwise, if you decide to move class files after you create them, you will have to

modify the class declaration statements to reflect their new location.

To package your class files:

1. Decide on the package name you’d like to use.

Example: Writing custom classes 227

Package names should be intuitive and easily identifiable by fellow developers. Remember
that the package name also matches a specific directory structure. For example, any classes
in the com.adobe.uti1s package needs to be placed in a com/adobe/utils folder on your
hard drive.

2. Create the required directory structure after you've chosen a package name.
For example, if your package was named com.adobe.uti1s, you would need to create a
directory structure of com/adobe/utils and place your classes in the utils folder.

3. Use the com.adobe.utils prefix for any class you create in this package.
For example, if your class name was ClassA, the full class name would need to be
com.adobe.utils.ClassA within the com/adobe/utils/ClassA.as class file.

4. If you change your package structure at a future point, remember to modify not only the
directory structure, but the package name within each class file, as well as every import

statement or reference to a class within that package.

To continue writing the class files, see “Writing the constructor function” on page 228.

Writing the constructor function

You have already learned how to write the class declaration in “Creating and packaging your
class files” on page 226. In this part of the chapter, you write what’s called the class files
constructor function.

You learn how to write the comments, statements, and declarations in later sections.

310N

Constructors are functions that you use to initialize (define) the properties and methods of a
class. By definition, constructors are functions within a class definition that have the same
name as the class. For example, the following code defines a Person class and implements a
constructor function. In OOP, the constructor function initializes each new instance of

a class.

A class’s constructor is a special function that is called automatically when you create an
instance of a class using the new operator. The constructor function has the same name as the
class that contains it. For example, the Person class you created contained the following
constructor function:

// Person class constructor function

public function Person (uname:String, age:Number) {

this.__name = uname;
this.__age = age;

228 Classes

Consider the following points when you write constructor functions:

m If no constructor function is explicitly declared—that is, if you don't create a function
whose name matches that of the class—the compiler automatically creates an empty
constructor function for you.

m A class can contain only one constructor function; overloaded constructor functions are
not allowed in ActionScript 2.0.

m A constructor function should have no return type.

The term constructor is also typically used when you create (instantiate) an object based on a

particular class. The following statements are calls to the constructor functions for the top-

level Array class and the custom Person class:

var day_array:Array = new Array("Sun", "Mon", "Tue", "Wed", "Thu", "Fri",
"Sat");
var somePerson:Person = new Person("Tom", 30);

Next you'll add a special function called a constructor function.

The following exercise is part of “Example: Writing custom classes” on page 223. If you
do not wish to progress through the example, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

310N

To add the constructor functions to your class files:
1. Open the ClassA.as class file in the Flash authoring tool.

2. Modify the existing class file so it matches the following code (the changes to make appear
in boldface):

class com.adobe.utils.ClassA {
function ClassA() {
trace("ClassA constructor™);
}
}

The previous code defines a constructor method for the ClassA class. This constructor

traces a simple string to the Output panel, which will let you know when a new instance
of the class has been created.

3. Open the ClassB.as class file in the Flash authoring tool.

4. Modify the class file so it matches the following code (the changes to make appear
in boldface):

class com.adobe.utils.ClassB {
function ClassB() {
trace("ClassB constructor™);

}

Example: Writing custom classes 229

http://www.helpexamples.com/flash/learnas/classes/

5. Save both ActionScript files before you proceed.

To continue writing your class file, see “Adding methods and properties” on page 230.

Adding methods and properties

To create the properties for the ClassA and ClassB classes, use the var keyword to define

variables.
g The following three exercises are part of “Example: Writing custom classes”
H on page 223. If you do not wish to progress through the example, you can download the
class files from www.helpexamples.com/flash/learnas/classes/.

To add properties to the ClassA and ClassB classes:
1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA.as ActionScript file to match the following code (the changes to make
appear in boldface):

class com.adobe.utils.ClassA {
static var _className:String;
function ClassA() {
trace("ClassA constructor");
}
}

The previous block of code adds a single new static variable, _cTassName, which contains
the name of the current class.

3. Modify the ClassB class and add the static variable so it is similar to the previous code.

4. Save both ActionScript files before you proceed.

= | | By convention, class properties are defined at the top of the class body. Defining
T them at the top makes the code easier to understand, but isn’t required.

You use the post-colon syntax (for example, var username:Stringand var age:Number) in
the variable declarations. This is an example of strict data typing. When you type a variable
using the var variableName:variableType format, the ActionScript compiler ensures that
any values assigned to that variable match the specified type. If the correct data type is not
used in the FLA file importing this class, the compiler throws an error. For more information
on strict data typing, see “About assigning data types and strict data typing” on page 45.

230 Classes

http://www.helpexamples.com/flash/learnas/classes/

A class’s members consist of properties (variable declarations) and methods (function
definitions). You must declare and define all properties and methods inside the class body (the
curly braces [{ }]); otherwise, an error occurs during compilation. For information on
members, see “About public, private, and static methods and properties (members)”

on page 208.

To add methods to the ClassA and ClassB classes:
1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA class file so it matches the following code (the changes to make appear
in boldface):

class com.adobe.utils.ClassA {
static var _className:String;

function ClassA() ({
trace("ClassA constructor");
}
function doSomething():Void {
trace("ClassA - doSomething()");
}
}

The block of code in boldface creates a new method in the class, which traces a string to
the Output panel.

3. In ClassA.as, select Tools > Check Syntax to check the syntax of your ActionScript file.

If any errors are reported in the Output panel, compare the ActionScript in your script to
the complete code written in the previous step. If you cannot fix the code errors, copy and
paste the complete code into the Script window before you proceed.

4. Check the syntax of ClassB.as as you did in ClassA.as.

If any errors appear in the Output panel, copy and paste the complete code into the Script
window before you proceed:

class com.adobe.utils.ClassB {
static var _className:String;

function ClassB() {
trace("ClassB constructor");
}
function doSomething():Void {
trace("ClassB - doSomething()");
}

Example: Writing custom classes 231

5. Save both ActionScript files before you proceed.

You can initialize properties inline—that is, when you declare them—with default values, as
shown in the following example:

class Person {

var age:Number = 50;

var username:String = "John Doe";
}
When you initialize properties inline, the expression on the right side of an assignment must
be a compile-time constant. That is, the expression cannot refer to anything that is set or
defined at runtime. Compile-time constants include string literals, numbers, Boolean values,
null, and undefined, as well as constructor functions for the following top-level classes: Array,
Boolean, Number, Object, and String.

To initialize properties inline:
1. Open ClassA.as and ClassB.as in the Flash authoring tool.
2. Modify the ClassA class file so the code matches the following ActionScript (the changes

to make appear in boldface):

class com.adobe.utils.ClassA {
static var _className:String = "ClassA";

function ClassA() ({
trace("ClassA constructor");
}
function doSomething():Void f{
trace("ClassA - doSomething()");
}
}
The only difference between the existing class file and the previous block of code is there is

now a value defined for the static _cTassName variable, “ClassA”.
3. Modify the ClassB class file and add the inline property, changing the value to “ClassB”.
4. Save both ActionScript files before you proceed.

This rule applies only to instance variables (variables that are copied into each instance of a
class), not class variables (variables that belong to the class).

When you initialize arrays inline, only one array is created for all instances of the class.

310N

To continue writing your class file, see “Controlling member access in your classes”

on page 233.

232 Classes

Controlling member access in your classes

By default, any property or method of a class can be accessed by any other class: all members
of a class are public by default. However, in some cases you might want to protect data or
methods of a class from access by other classes. You need to make those members private
(available only to the class that declares or defines them).

You specify public or private members using the public or private member attribute. For
example, the following code declares a private variable (a property) and a private method (a
function). The following class (LoginClass) defines a private property named userName and a
private method named getUserName():

class LoginClass f{
private var userName:String;
private function getUserName():String {
return this.userName;
}
// Constructor:
public function LoginClass(user:String) ({
this.userName = user;
}
}

Private members (properties and methods) are accessible only to the class that defines those
members and to subclasses of that original class. Instances of the original class, or instances of
subclasses of that class, cannot access privately declared properties and methods; that is,
private members are accessible only within class definitions, not at the instance level. In the

following example, you change member access in your class files.

This exercise is part of “Example: Writing custom classes” on page 223. If you do not
wish to progress through the example, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

310N

To control member access:

1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA.as ActionScript file so its contents match the following ActionScript
(the changes to make appear in boldface):

class com.adobe.utils.ClassA {
private static var _className:String = "ClassA";

public function ClassA() {
trace("ClassA constructor");
}

Example: Writing custom classes 233

http://www.helpexamples.com/flash/learnas/classes/

public function doSomething():Void {
trace("ClassA - doSomething()");

}
}
This previous code sets both methods (the ClassA constructor and the doSomething()
method) as public, meaning that they can be accessed by external scripts. The static
_className variable is set as private, meaning the variable can be accessed only from
within the class and not from external scripts.

3. Modify the ClassB.as ActionScript file and add the same method and property access as the
ClassA class.

4. Save both ActionScript files before you proceed.

An instance of ClassA or ClassB cannot access the private members. For example, the
following code, added to Frame 1 of the Timeline in a FLA file, would result in a compiler
error indicating that the method is private and can’t be accessed:

import com.adobe.utils.ClassA;

var a:ClassA = new ClassA();

trace(a._className); // Error. The member is private and cannot be accessed.
Member access control is a compile-time-only feature; at runtime, Flash Player does not
distinguish between private or public members.

To continue writing your class file, see “Documenting the classes” on page 234.

Documenting the classes

Using comments in your classes and interfaces is an important part of documenting them for
other users. For example, you might want to distribute your class files into the Flash
community, or you might be working with a team of designers or developers who will use
your class files in their work or as part of a project youre working on. Documentation helps
other users understand the purpose and origins of the class.

There are two kinds of comments in a typical class or interface file: documentation comments
and implementation comments. You use documentation comments to describe the code’s
specifications, but not the implementation. You use implementation comments to comment
out code or to comment on the implementation of particular sections of code. The two kinds
of comments use slightly different delimiters. Documentation comments are delimited with
/** and */, and implementation comments are delimited with /* and */.

Documentation comments are not a language construct in ActionScript 2.0. However,
they are a common way of structuring comments in a class file that you can use in your
AS files.

310N

234 Classes

Use documentation comments to describe interfaces, classes, methods, and constructors.
Include one documentation comment per class, interface, or member, and place it directly
before the declaration.

If you have to document additional information that does not fit into the documentation
comments, use implementation comments (in the format of block comments or single-line
comments, as described in “About comments” on page 95). Implementation comments, if
you add them, directly follow the declaration.

Do not include comments that do not directly relate to the class being read. For example,
do not include comments that describe the corresponding package.

The following exercise is part of “Example: Writing custom classes” on page 223. If you
do not wish to progress through the example, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

| a1oN| |3loN|

To document your class files:
1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA class file and add the new code to the top of the class file (the changes
to make appear in boldface):
/**
ClassA class
version 1.1
6/21/2005
copyright Adobe Systems Incorporated
*/
class com.adobe.utils.ClassA {
private static var _className:String = "ClassA";

public function ClassA() {
trace("ClassA constructor");
}
public function doSomething():Void {
trace("ClassA - doSomething()");
}
}
The code above added a comment to the top of the class file. It’s always a good idea to add
comments to your ActionScript and Flash files so that you can add useful information
such as the author of the class, date last modified, copyright information, or any potential

issues/bugs that may be present in the file.

3. Add a similar comment to the top of the ClassB.as ActionScript file, changing the class

name and any other information as you see fit.

4. Save both ActionScript files before you proceed.

Example: Writing custom classes 235

http://www.helpexamples.com/flash/learnas/classes/

You might also add the block, single-line, or trailing comments within the class’s code. For
information on writing good comments within your code, see “Writing good comments”
on page 677. For general information about comments, see “Single-line comments”

on page 96, “Multiline comments” on page 97, and “Trailing comments” on page 98.

To learn how to use these custom class files in a SWF file, see “Example: Using custom class

files in Flash” on page 236.

Example: Using custom class files
in Flash

This example uses class files that are written in the example called “Example: Writing custom
classes” on page 223, or you can download them from www.helpexamples.com/flash/learnas/
classes/. If you completed “Example: Writing custom classes” on page 223, locate ClassA.as
and ClassB.as on your hard disk.

Since the package name of the ClassA class file is com.adobe.utils.ClassA, you'll need to
make sure that you save the class files in the proper directory structure. Create a subfolder
named com in the current directory. Within the com folder, add a new folder named adobe.
Add a third, and final, subdirectory within the adobe folder named utils. Save both the
ClassA.as and ClassB.as class files within this utils folder. Now you are ready to proceed with

this example.

You can use the custom classes written in “Example: Writing custom classes” on page 223
with a FLA file. In this example, you use the custom classes to create a small application in
Flash. Your classes compile into the SWF file when you publish the document, and then
everything works together. In the following exercises, you learn how classpaths work, how to
use class files in your application, as well as how to import classes and packages.

To continue this example, proceed to “Importing classes and packages” on page 236.

Importing classes and packages

To reference a class in another script, you must prefix the class name with the class’s package
name. The combination of a class’s name and its package path is the class’s fully qualified class
name. If a class resides in a top-level classpath directory—not in a subdirectory in the
classpath directory—then its class name is also its fully qualified class name.

236 Classes

http://www.helpexamples.com/flash/learnas/classes/
http://www.helpexamples.com/flash/learnas/classes/

To specify package paths, use dot (.) notation to separate package directory names. Package

paths are hierarchical; that is, each dot represents a nested directory. For example, suppose you
create a class named ClassName that resides in a com/adobe/docs/TearnAs2 package in your
classpath. To create an instance of that class, you could specify the fully qualified class name.

You can also use the fully qualified class name to type your variables, as shown in the
following example:

var myInstance:com.adobe.docs.learnAs2.ClassName = new
com.adobe.docs.TearnAs2.ClassName();

You can use the import statement to import packages into a script, which lets you use a class’s

abbreviated name rather than its fully qualified name. You can also use the wildcard character

(*) to import all the classes in a package. If you use the wildcard character, you don’t need to

use the fully qualified class name each time you use the class.

For example, suppose that in a script you imported the above class using the import
statement, as shown in the following example:

import com.adobe.docs.learnAs2.util.UserClass;

Later, in the same script, you could reference that class by its abbreviated name, as shown in
the following example:

var myUser:UserClass = new UserClass();

You can use the wildcard character (*) to import all the classes in a given package. Suppose
you have a package named com.adobe.uti1s that contains two ActionScript class files,
ClassA.as and ClassB.as. In another script, you could import both classes in that package
using the wildcard character, as shown in the following code:

import com.adobe.utils.*;

The following example shows that you can then reference either of the classes directly in the

same script:

var myA:ClassA = new ClassA();

var myB:ClassB = new ClassB();

The import statement applies only to the current script (frame or object) in which it’s called.
If an imported class is not used in a script, the class is not included in the resulting SWF file’s
bytecode, and the class isn’t available to any SWF files that the FLA file containing the import
statement might load.

The following exercise is part of “Example: Using custom class files in Flash”

on page 236 which continues the examples “Example: Writing custom classes”. If you
need ClassA and ClassB, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

310N

Example: Using custom class files in Flash 237

http://www.helpexamples.com/flash/learnas/classes/

To import a class or package:
1. Open the file called package_test.fla.

2. Type the following code into the Script window:

import com.adobe.utils.*;

var a = new ClassA(); // ClassA constructor

var b = new ClassB(); // ClassB constructor

The previous block of code begins by importing each of the classes within the
com.adobe.utils package by using the wildcard (*) character. Next, you create a new
instance of the ClassA class, which causes the constructor method to trace a message to the
Output panel. An instance of the ClassB class is also created, which sends debugging
messages to the Output panel.

3. Save your changes to the Flash document before you proceed.

To continue using these class files in a Flash file, see “Creating instances of classes in an

example” on page 238.

Creating instances of classes in an example

Instances are objects that contain all the properties and methods of a particular class. For
example, arrays are instances of the Array class, so you can use any of the methods or
properties of the Array class with any array instance. Or you can create you own class, such as

UserSettings, and then create an instance of the UserSettings class.

Continuing the example you started in “Example: Using custom class files in Flash”
on page 236, you modified FLA file to import the classes you wrote so that you dont have to
always refer to them by their fully qualified names.

The next step in this example (“Example: Using custom class files in Flash” on page 236) is to
create an instance of the ClassA and ClassB classes in a script, such as a frame script in a
package_test.fla Flash document, and assign it to a variable. To create an instance of a custom
class, you use the new operator in the same way you would when creating an instance of a top-
level ActionScript class (such as the Date or Array class). You refer to the class using its fully
qualified class name, or import the class (as demonstrated in “Importing classes and packages”

on page 230.)

The following exercise is part of “Example: Using custom class files in Flash”
on page 236 which continues the examples “Example: Writing custom classes”.

310N

238 Classes

To create a new instance of the ClassA and ClassB classes:

1.

Open the file called package_test.fla.

2. Type the following boldface code into the Script window:

3.

import com.adobe.utils.*;

var a:ClassA = new ClassA(); // ClassA constructor

a.doSomething(); // call the ClassA's doSomething() method

var b:ClassB = new ClassB(); // ClassB constructor

b.doSomething(); // call the ClassB's doSomething() method

Data typing your objects in this code example enables the compiler to ensure that you
don’t try to access properties or methods that aren’t defined in your custom class. For more
information on strict data typing, see “About assigning data types and strict data typing”
on page 45. The exception to data typing your objects is if you declare the class to be
dynamic using the dynamic keyword. See “Creating dynamic classes” on page 219.

Save your changes to the FLA file before you proceed.

You should now have a basic understanding of how to create and use classes in your Flash

documents. Remember that you can also create instances of top-level ActionScript or built-in

classes (see “About working with built-in classes” on page 256).

To continue using these class files in a Flash file, see “Assigning a class to symbols in Flash”

on page 239.

Assigning a class to symbols in Flash

You can also assign a class to symbols that you might use in a Flash file, such as a movie clip

object on the Stage.

To assign a class to a movie clip symbol:

1.

2.
3.

Select File > New and then select ActionScript File, and then click OK.
Select File > Save As, name the file Animal.as, and save the file on your hard disk.
Type the following code into the Script window:

class Animal {
public function Animal() {
trace("Animal::constructor");
}
}

This ActionScript creates a new class called Animal that has a constructor method that
traces a string to the Output panel.

Save your changes to the ActionScript file.

Assigning a class to symbols in Flash 239

5. Select File > New and then select Flash Document to create a new FLA file, and then
click OK.

6. Select File > Save As, name the file animal_test.fla, and save the file to the same folder as
the Animal.as file you created in step 2.

7. Select Insert > New Symbol to launch the Create New Symbol dialog box.
8. Enter a symbol name of animal, and select the Movie Clip option.

9. Click the Advanced button in the lower-right corner of the Create New Symbol dialog box
to enable more options.
The Advanced button is available when you are in the basic mode of the Create New
Symbol dialog box.

10. Click the Export for ActionScript check box in the Linkage section.
Enabling this option allows you to dynamically attach instances of this symbol to your
Flash documents during runtime.

1. Enter an identifier value of animal_id, and set the ActionScript 2.0 Class to Animal (to
match the class name specified in step 3).

12. Select the Export in First Frame check box and click OK to apply your changes and close
the dialog box.

13. Save the Flash document and select Control > Test Movie.

The Output panel displays the text from your Animal class’s constructor function.

If you need to modify the Movie Clip’s Linkage properties, you can right-click the
symbol in the document’s library and select Properties or Linkage from the context
menu.

310N

Compiling and exporting classes
By default, classes used by a SWF file are packaged and exported in the SWF file’s first frame.

You can also specify a different frame where your classes are packaged and exported. This is
useful, for example, if a SWF file uses many classes that require a long time to download (such
as components). If the classes are exported in the first frame, the user has to wait until all the
class code has downloaded before that frame appears. By specifying a later frame in the
timeline, you could display a short-loading animation in the first few frames of the timeline
while the class code in the later frame downloads.

To specify the export frame for classes for a Flash document:
1. Select File > New and then select Flash Document. Save the new document as
exportClasses.fla.

240 Classes

10.

1.

12.

13.

14.

Rename the default layer to content, drag a ProgressBar component from the Components
panel to the Stage, and give it an instance name of my_pb.

Create a new layer, drag it above the content layer, and rename it actions.
Add the following ActionScript code to Frame 1 of the actions layer on the main Timeline:

my_pb.indeterminate = true;

. Create a new keyframe on Frame 2 of the actions layer and add the following ActionScript

code:

var classesFrame:Number = 10;
if (_framesloaded < classesFrame) {
trace(this.getByteslLoaded() + " of " + this.getBytesTotal() + " bytes
loaded");
gotoAndPlay(1);
} else |
gotoAndStop(classesFrame);
}
Create a new keyframe on Frame 10 of the actions layer and add the following

ActionScript:

stop();

Create a new keyframe on Frame 10 of the content layer and drag several components onto
the Stage.

Right-click each component (except the ProgressBar) in the Library panel and select
Linkage from the context menu to launch the Linkage Properties dialog box.

. In the Linkage Properties dialog box, make sure that Export for ActionScript is selected,

deselect the Export in First Frame check box, and click OK.
Select File > Publish Settings.
In the Publish Settings dialog box, select the Flash tab.

Click the Settings button next to the ActionScript version pop-up menu to open the
ActionScript Settings dialog box.

In the Export Frame for Classes text box, enter the number of the frame where you want
to export your class code (Frame 10).

If the frame specified does not exist in the timeline, you get an error message when you
publish your SWF file.

Click OK to close the ActionScript Settings dialog box, and then click OK to close the
Publish Settings dialog box.

Compiling and exporting classes 241

15. Select Control > Test Movie to test the Flash document. If the Components load too
quickly, select View > Simulate Download from the SWF file. Flash simulates downloading
the Flash document at a lower speed, which allows you to see the progress bar component

animate as the class files download.

For more information on ASO files, see “Using ASO files” on page 242.

Using ASO files

During compilation, Flash sometimes creates files with .aso extensions in the /aso
subdirectory of the default global classpath directory (see “About setting and modifying the
classpath” on page 202). The .aso extension stands for ActionScript object (ASO). For each
ActionScript 2.0 file that is implicitly or explicitly imported and successfully compiled, Flash
generates an ASO file. The file contains the bytecode that’s produced from the associated
ActionScript (AS) file. Therefore, these files contain the compiled form (the byzecode) of a
class file.

Flash needs to regenerate an ASO file only when the following scenarios occur:
m The corresponding AS file has been modified.

m ActionScript files that contain definitions imported or used by the corresponding
ActionScript file have been modified.

m ActionScript files included by the corresponding ActionScript file have been modified.

The compiler creates ASO files for caching purposes. You might notice that your first
compilation is slower than subsequent compilations. This is because only the AS files that
have changed are recompiled into ASO files. For unchanged AS files, the compiler reads the
already-compiled bytecode directly out of the ASO file instead of recompiling the AS file.

The ASO file format is an intermediate format developed for internal use only. It is not a
documented file format and is not intended to be redistributed.

If you experience problems in which Flash appears to be compiling older versions of a file you
have edited, delete the ASO files and then recompile. If you plan to delete ASO files, delete
them when Flash is not performing other operations, such as checking syntax or exporting

SWFs.

242 Classes

To delete ASO files:
If you are editing a FLA file, and you want to delete an ASO file, select one of the following in
the authoring environment:
m Select Control > Delete ASO Files to delete ASO files and continue editing.
m Select Control > Delete ASO Files and Test Movie to delete ASO files and test
the application.
If you are editing an ActionScript document in the Script window:
m Select Control > Delete ASO Files to delete ASO files and continue editing.
m Select Control > Delete ASO Files and Test Project to delete ASO files and then test
the application.

There is a limit to how much code you can place in a single class: the bytecode for a class
definition in an exported SWF file cannot be larger than 32,767 bytes. If the bytecode is
larger than that limit, a warning message appears.

You can't predict the size of the bytecode representation of a given class, but classes up to
1,500 lines usually don’t go over the limit.

If your class goes over the limit, move some of the code into another class. In general, it is

good OOP practice to keep classes relatively short.

Understanding classes and scope

When you move ActionScript code into classes, you might have to change how you use the
this keyword. For example, if you have a class method that uses a callback function (such as
the LoadVars classs onLoad () method), it can be difficult to know whether the this keyword
refers to the class or to the LoadVars object. In this situation, it might be necessary to create a
pointer to the current class, as the next example shows.

Understanding classes and scope 243

To understand scope and external class files:
1. Select File > New and then select ActionScript File, and then click OK.

2. Type or paste the following code into the Script window:
/~k~k
Product class
Product.as
*/
class Product {
private var productsXml:XML;
// constructor
// targetXmlStr - string, contains the path to an XML file
function Product(targetXmlStr:String) {
/* Create a local reference to the current class.
Even if you are within the XML's onlLoad event handler, you
can reference the current class instead of only the XML packet.
*/
var thisObj:Product = this;
// Create a local variable, which is used to load the XML file.
var prodXml:XML = new XML();
prodXml.ignoreWhite = true;
prodXml.onlLoad = function(success:Boolean) {
if (success) {
/* 1f the XML successfully Tloads and parses,
set the class's productsXml variable to the parsed
XML document and call the init function.
*/
thisObj.productsXml = this;
thisObj.init();
}oelse |
/* There was an error loading the XML file. */
trace("error loading XML");
}
b
// Begin loading the XML document.
prodXml.load(targetXmlStr);
}
public function init():Void {
// Display the XML packet.
trace(this.productsXml);
}
}

Because you are trying to reference the private member variable within an onLoad handler,
the this keyword actually refers to the prodXm1 instance and not the Product class, which
you might expect. For this reason, you must create a pointer to the local class file so that
you can directly reference the class from the onlLoad handler. You can now use this class
with a Flash document.

244 Classes

Save the previous ActionScript code as Product.as.
Create a new Flash document named testProduct.fla in the same directory.

Select Frame 1 of the main Timeline.

°o o & w

Type the following ActionScript into the Actions panel:

var myProduct:Product = new Product("http://www.helpexamples.com/
crossdomain.xml");

7. Select Control > Test Movie to test this code in the test environment.
The contents of the specified XML document appear in the Output panel.

Another type of scope you encounter when working with these classes is static variables and
static functions. The static keyword specifies that a variable or function is created only once
per class rather than being created in every instance of that class. You can access a static class
member without creating an instance of the class by using the syntax
someClassName.username. For more information on static variables and functions, see
“About public, private, and static methods and properties (members)” on page 208 and
“Using class members” on page 214.

Another benefit of static variables is that static variables don’t lose their values after the
variable’s scope has ended. The following example demonstrates how you can use the static
keyword to create a counter that tracks how many instances of the class Flash has created.
Because the numInstances variable is static, the variable is created only once for the entire

class, not for every single instance.

To use the static keyword:
1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:

class User {
private static var numInstances:Number = 0;
public function User() {
User.numlnstances++;
}
public static function get instances():Number {
return User.numlnstances;
}
}

The previous code defines a User class that tracks the number of times the constructor has
been called. A private, static variable (User.numInstances) is incremented within the
constructor method.

3. Save the document as User.as.

Understanding classes and scope 245

4. Select File > New and then select Flash Document to create a new FLA file, and save the
FLA file in the same directory as User.as.

5. Type the following ActionScript code in Frame 1 of the Timeline:

trace(User.instances); // 0
var userl:User = new User();
trace(User.instances); // 1
var user2:User = new User();
trace(User.instances); // 2
The first line of code calls the static instances () getter method, which returns the value
of the private static numInstances variable. The rest of the code creates new instances of

the User class and displays the current value returned by the instances() getter method.
6. Select Control > Test Movie to test the documents.

For information on using the this keyword in classes, see “About using the this keyword in
classes” on page 222.

About top-level and built-in classes

In addition to the ActionScript core language elements and constructs (for and whiTe loops,
for example) and primitive data types (numbers, strings, and Booleans) described earlier in
this manual (see Chapter 3, “Data and Data Types,” on page 35 and Chapter 4, “Syntax and
Language Fundamentals,” on page 77), ActionScript also provides several built-in classes
(complex data types). These classes provide a variety of scripting features and functionality. You
have used top-level classes and other built-in classes that are part of the ActionScript language
in earlier chapters, and you will use them throughout the remaining chapters. There are many
classes that ship with Flash that you use to create interactivity and functionality in your SWF
files, and you can even build complex applications using them. For example, you can use the
Math class to perform equations in your applications. Or you might use the BitmapData class

to create pixels and scripted animations.

Top-level classes, listed in “Top-level classes” on page 249, are written into Flash Player. In the
Actions toolbox, these classes are located in the ActionScript 2.0 Classes directory. Some of
the top-level classes are based on the ECMAScript (ECMA-262) edition 3 language
specification and are called core ActionScript classes. Examples of core classes are the Array,
Boolean, Date, and Math classes. For more information on packages, see “Working with
packages” on page 191.

246 Classes

You can find the ActionScript classes installed on your hard disk. You can find the classes

folders here:

m Windows: Hard Disk\Documents and Settings\user\Local Settings\Application
Data\Adobe\Flash CS3\/anguage\Configuration\Classes.

In Windows, the Application Data folder is hidden by default. To show hidden folders and
files, select My Computer to open Windows Explorer, select Tools>Folder Options and
then select the View tab. Under the View tab, select the Show hidden files and folders
radio button.

310N

m Macintosh: Hard Disk/Users/user/Library/Application Support/Adobe/Adobe Flash CS3/
languagel Configuration/Classes.

Do note the Read Me document located in this directory for more information about
its structure.

To understand the distinction between core ActionScript classes and those specific to Flash,
consider the distinction between core and client-side JavaScript. The client-side JavaScript
classes provide control over the client environment (the web browser and web page content),
and the classes specific to Flash provide runtime control over the appearance and behavior of a

Flash application.

The rest of the built-in ActionScript classes are specific to Flash and the Flash Player object
model. Examples of these classes are the Camera, MovieClip, and LoadVars classes. Other
classes are organized into packages, such as flash.display. All of these classes are sometimes
referred to as built-in classes (predefined classes that you can use for adding functionality to
your applications).

The following sections introduce the built-in ActionScript classes, and describe the
fundamental tasks you perform with these built-in classes. For an overview of working with
classes and objects in object-oriented programming, see “About working with built-in classes”
on page 256. Code examples using these classes are included throughout this manual.

For information on language elements (such as constants, operators, and directives), see
Chapter 4, “Syntax and Language Fundamentals,” on page 77.

About top-level and built-in classes 247

For more information on top-level and built-in classes, see the following topics:

“Top-level classes” on page 249

“The flash.display package” on page 252

“The flash.external package” on page 253

“The flash.filters package” on page 253

“The flash.geom package” on page 254

“The flash.net package” on page 255

“The flash.text package” on page 255

“The mx.lang package” on page 255

“The System and TextField packages” on page 256

Other language elements

There are other language elements that make up ActionScript, outside of classes. These

include directives, constants, global functions, global properties, operators, and statements.

For information on how to use each of these language elements, see the following topics:

Chapter 4, “Syntax and Language Fundamentals”

Chapter 5, “Functions and Methods”

You can find a list of these language elements in the following sections of the ActionScript 2.0

Language Reference:

Compiler Directives
Constants

Global Functions
Global Properties
Operators

Statements

248 Classes

Top-level classes

The top level contains the ActionScript classes and global functions, many of which provide
core functionality for your applications. Core classes, borrowed directly from ECMAScript,
include Array, Boolean, Date, Error, Function, Math, Number, Object, String, and System.
To find more information on each class, see the following table.

g The CustomActions and XMLUI classes are available only in the Flash authoring
— | |environment.
m

Class Description

Accessibility The Accessibility class manages communication between SWF files
and screen reader applications. You use the methods of this class with
the global _accProps property to control accessible properties for movie
clips, buttons, and text fields at runtime. See Accessibility.

Array The Array class represents arrays in ActionScript and all array objects
are instances of this class. The Array class contains methods and
properties for working with array objects. See Array.

AsBroadcaster Provides event notification and listener management capabilities that
can be added to other objects. See AsBroadcaster.

Boolean The Boolean class is a wrapper for Boolean (true or false) values. See
Boolean..

Button The Button class provides methods, properties, and event handlers for
working with buttons. See Button. Note that the built-in Button class is
different from the Button component class, associated with the version
2 component, Button.

Camera The Camera class provides access to the user’s camera, if one is
installed. When used with Flash Media Server, your SWF file can
capture, broadcast, and record images and video from a user’s camera.
See Camera.

Color The Color class lets you set the RGB color value and color transform of

movie clip instances and retrieve those values after you set them. The
Color class is deprecated in Flash Player 8 in favor of the
ColorTransform class. For information on color transforms, see
ColorTransform (flash.geom.ColorTransform).

About top-level and built-in classes 249

Class

Description

ContextMenu

ContextMenultem

CustomActions

Date

Error

Function

Key

LoadVars

LocalConnection

Math

Microphone

The ContextMenu class lets you control the contents of the Flash
Player context menu at runtime. You can associate separate
ContextMenu objects with MovieClip, Button, or TextField objects by
using the menu property available to those classes. You can also add
custom menu items to a ContextMenu object by using the
ContextMenultem class. See ContextMenu.

The ContextMenultem class lets you create new menu items that
appear in the Flash Player context menu. You add new menu items that
you create with this class to the Flash Player context menu by using the
ContextMenu class. See ContextMenultem.

The CustomActions class lets you manage any custom actions that are
registered with the authoring tool. See CustomActions.

The Date class shows how dates and times are represented in
ActionScript, and it supports operations for manipulating dates and
times. The Date class also provides the means for obtaining the current
date and time from the operating system. See Date.

The Error class contains information about runtime errors that occur in
your scripts. You typically use the throw statement to generate an error
condition, which you can handle using a try..catch..finally
statement. See Error.

The Function class is the class representation of all ActionScript
functions, including those native to ActionScript and those that you
define. See Function.

The Key class provides methods and properties for getting information
about the keyboard and key presses. See Key.

The LoadVars class lets you transfer variables between a SWF file and
a server in name-value pairs. See LoadVars.

The LocalConnection class lets you develop SWF files that send
instructions to each other without using the fscommand() method or
JavaScript. See LocalConnection.

The Math class provides convenient access to common mathematical
constants and provides several common mathematical functions. All
the properties and methods of the Math class are static and must be
called with the syntax Math.method(parameter) or Math.constant. See
Math.

The Microphone class provides access to the user’s microphone, if one
is installed. When used with Flash Media Server, your SWF file can
broadcast and record audio from a user’s microphone. See
Microphone.

250 Classes

Class Description

Mouse The Mouse class provides control over the mouse in a SWF file; for
example, this class lets you hide or show the mouse pointer. See
Mouse.

MovieClip Every movie clip in a SWF file is an instance of the MovieClip class.

MovieClipLoader

NetConnection

NetStream

Number

Object

Printdob

Selection

SharedObject

Sound

Stage

String

You use the methods and properties of this class to control movie clip
objects. See MovieClip.

This class lets you implement listener callbacks that provide status
information while SWF, JPEG, GIF, and PNG files load into movie clip
instances. See MovieClipLoader.

The NetConnection class establishes a local streaming connection for
playing a Flash Video (FLV) file from an HTTP address or from the local
file system. See NetConnection.

The NetStream class controls playback of FLV files from a local file
system or HTTP address. See NetStream.

The Number class is a wrapper for the primitive number data type. See
Number.

The Object class is at the root of the ActionScript class hierarchy; all
other classes inherit its methods and properties. See Object.

The Printdob class lets you print content from a SWF file, including
content that is rendered dynamically, and multipage documents. See
Printdob.

The Selection class lets you set and control the text field in which the
insertion point is located (the text field that has focus). See Selection.

The SharedObject class offers persistent local data storage on the
client computer, similar to cookies. This class offers real-time data
sharing between objects on the client’s computer. See SharedObject.

The Sound class provides control over sounds in a SWF file. See
Sound.

The Stage class provides information about a SWF file’s dimensions,
alignment, and scale mode. It also reports Stage resize events. See
Stage.

The String class is a wrapper for the string primitive data type, which
lets you use the methods and properties of the String object to
manipulate primitive string value types. See String.

About top-level and built-in classes 251

Class

Description

System

TextField

TextFormat

TextSnapshot

Video

XML

XMLNode

XMLSocket

XMLUI

The System class provides information about Flash Player and the
system on which Flash Player is running (for example, screen resolution
and current system language). It also lets you show or hide the Flash
Player Settings panel and modify SWF file security settings. See
System.

The TextField class provides control over dynamic and input text fields,
such as retrieving formatting information, invoking event handlers, and
changing properties such as alpha or background color. See TextField.

The TextFormat class lets you apply formatting styles to characters or
paragraphs in a TextField object. See TextFormat.

The TextSnapshot object lets you access and lay out static text inside a
movie clip. See TextSnapshot.

The Video class lets you show video objects in a SWF file. You can use
this class with Flash Media Server to display live streaming video in a
SWEF file, or within Flash to display a Flash Video (FLV) file. See Video.

This class contains methods and properties for working with XML
objects. See XML.

The XMLNode class represents a single node in an XML document
tree. It is the XML class’s superclass. See XMLNode.

The XMLSocket class lets you create a persistent socket connection
between a server computer and client running Flash Player. Client
sockets enable low-latency data transfer, such as that which is required
for real-time chat applications. See XMLSocket.

The XMLUI object enables communication with SWF files that are
used as a custom user interface for the Flash authoring tool’s
extensibility features (such as Behaviors, Commands, Effects, and
Tools). See XMLUL.

The flash.display package

The flash.display package contains the BitmapData class that you can use to build

visual displays.
Class Description
BitmapData The BitmapData class lets you create arbitrarily sized transparent or

opague bitmap images in the document and manipulate them in various
ways at runtime. See BitmapData (flash.display.BitmapData).

252 Classes

The flash.external package

The flash.external package lets you communicate with the Flash Player container using
ActionScript code. For example, if you embed a SWF file in an HTML page, that HTML
page is the container. You would be able to communicate with the HTML page using the
Externallnterface class and JavaScript. Also called the External API.

Class Description

Externallnterface The Externallnterface class is the External API, a subsystem that
enables communications between ActionScript and the Flash Player
container (such as an HTML page using JavaScript) or a desktop
application that uses Flash Player. See Externallnterface
(flash.external.Externallnterface).

The flash.filters package

The flash.filters package contains classes for the bitmap filter effects available in Flash Player
8. Filters let you apply rich visual effects, such as blur, bevel, glow, and drop shadows, to
Image and MovieClip instances. For more information on each class, see the cross references
provided in the following table.

Class Description

BevelFilter The BevelFilter class lets you add a bevel effect to a movie clip
instance. See BevelFilter (flash.filters.BevelFilter).

BitmapFilter The BitmapFilter class is a base class for all filter effects. See
BitmapFilter (flash.filters.BitmapFilter).

BlurFilter The BlurFilter class lets you apply a blur effect to movie clip
instances. See BlurFilter (flash.filters.BlurFilter).

ColorMatrixFilter The ColorMatrixFilter class lets you apply a 4 x 5 matrix
transformation on the ARGB color and alpha values of every pixel
on the input image. After applying the transformation, you can
produce a result with a new set of ARGB color and alpha values.
See ColorMatrixFilter (flash.filters.ColorMatrixFilter).

ConvolutionFilter The ConvolutionFilter class lets you apply a matrix convolution
filter effect. See ConvolutionFilter (flash.filters.ConvolutionFilter).

DisplacementMapFilter The DisplacementMapFilter class lets you use the pixel values
from a specified image (the displacement map image) to spatially
displace the original instance (a movie clip) that you apply the filter
to. See DisplacementMapFilter
(flash.filters.DisplacementMapFilter).

About top-level and built-in classes 253

Class

Description

DropShadowFilter

GlowfFilter

GradientBevelFilter

GradientGlowFilter

The DropShadowfFilter class lets you add a drop shadow to a
movie clip. See DropShadowFilter
(flash.filters.DropShadowFilter).

The GlowfFilter class lets you add a glow effect to a movie clip. See
GlowFilter (flash.filters.GlowFilter).

The GradientBevelFilter class lets you apply a gradient bevel effect
to a movie clip. See GradientBevelFilter
(flash.filters.GradientBevelFilter).

The GradientGlowFilter class lets you apply a gradient glow effect
to a movie clip. See GradientGlowFilter
(flash.filters.GradientGlowFilter).

The flash.geom package

The flash.geom package contains geometry classes, such as points, rectangles, and

transformation matrices. These classes support the BitmapData class and the bitmap caching

feature. For more information on each class, see the cross references provided in the

following table.

Class

Description

ColorTransform

Matrix

Point

Rectangle

Transform

The ColorTransform class lets you mathematically set the RGB color
value and color transform of an instance. You can retrieve these values
after they have been set. See ColorTransform
(flash.geom.ColorTransform).

Represents a transformation matrix that determines how to map points
from one coordinate space to another. See Matrix (flash.geom.Matrix).

The Point object represents a location in a two-dimensional coordinate
system, where x represents the horizontal axis and y represents the
vertical axis. See Point (flash.geom.Point).

The Rectangle class is used to create and modify Rectangle objects.
See Rectangle (flash.geom.Rectangle).

Collects data about color transformations and coordinate
manipulations that are applied to an object instance. See Transform
(flash.geom.Transform).

254 Classes

The flash.net package

The flash.net package contains classes that let you upload and download one or more files
between a user’s computer and the server. For more information on each class, see the cross
references provided in the following table.

Class Description

FileReference The FileReference class lets you upload and download one or more
files between a user’s computer and a server. See FileReference
(flash.net.FileReference).

FileReferencelList = The FileReferencelist class lets you upload one or more files from a
user’s computer to a server. See FileReferenceL.ist
(flash.net.FileReferenceL.ist).

The flash.text package

The flash.text package contains the TextRenderer class for working with advanced anti-
aliasing in available in Flash Player 8.

Class Description

TextRenderer This class provides functionality for the advanced anti-aliasing
capability in Flash Player 8. See TextRenderer
(flash.text. TextRenderer).

The mx.lang package

The mx.lang package contains the Locale class for working with multilanguage text.

Class Description

Locale This class lets you control how multilanguage text displays in a SWF
file. See Locale (mx.lang.Locale).

About top-level and built-in classes 255

The System and TextField packages

The System package contains the capabilities, IME, and security classes. These classes deal
with client settings that might affect your application in Flash Player. For more information
on each class, see the cross references provided in the following table.

Class Description

capabilities The capabilities class determines the abilities of the system and Flash
Player that’s hosting the SWF file. This lets you customize content for
different formats. See capabilities (System.capabilities).

IME The IME class lets you directly manipulate the operating system’s input
method editor (IME) that’s within the Flash Player application running
on a client computer. See IME (System.IME).

security The security class contains methods that specify how SWF files in
different domains can communicate with each other. See security
(System.security).

The TextField package contains the StyleSheet class that you can use to apply CSS styles

to text.
Class Description
StyleSheet The StyleSheet class lets you create a style sheet object that contains

text formatting rules such as font size, color, and other formatting
styles. See StyleSheet (TextField.StyleSheet).

About working with built-in classes

In object-oriented programming (OOP), a class defines a category of object. A class describes
the properties (data) and behavior (methods) for an object, much like an architectural
blueprint describes the characteristics of a building. For information on classes and other

object-oriented programming concepts, see the following sections:
m “Object-oriented programming fundamentals” on page 193
m “Writing custom class files” on page 196

Flash has many built-in classes that you can use in your code (see “About top-level and built-
in classes” on page 246), which helps you easily add interactivity to your applications. To use
the properties and methods defined by a built-in class, you generally first create an instance of
that class (except for classes that have static members). The relationship between an instance
and its class is similar to the relationship between a house and its architectural blueprints, as
discussed in “About top-level and built-in classes” on page 246.

256 Classes

For more information on using classes that are built into Flash, see the following topics:
m “About creating a new instance of a built-in class” on page 257

m “Accessing built-in object properties” on page 257

m “About calling built-in object methods” on page 258

m “About class (static) members” on page 258

m “Preloading class files” on page 260

m “Excluding classes” on page 259

About creating a new instance of a built-in class

To create an instance of an ActionScript class, use the new operator to invoke the class’s
constructor function. The constructor function always has the same name as the class, and

returns an instance of the class, which you typically assign to a variable.
For example, the following code creates a new Sound object:
var song_sound:Sound = new Sound();

In some cases, you don’t need to create an instance of a class to use its properties and methods.
For more information, see “About class (static) members” on page 258.

Accessing built-in object properties

Use the dot (.) operator to access the value of a property in an object. Put the name of the
object on the left side of the dot, and put the name of the property on the right side. For
example, in the following statement, my_obj is the object and firstName is the property:

my_obj.firstName

The following code creates a new Array object and then shows its Tength property:

var my_array:Array = new Array("apples "oranges", "bananas");

trace(my_array.length); // 3

You can also use the array access operator ([]) to access the properties of an object, such as
using the array access operator for debugging purposes. The following example loops over an
object to display each of its properties.

To loop over the contents of an object:
1. Create a new Flash document and save it as forin.fla.
2. Add the following ActionScript to Frame 1 of the main Timeline:

var results:0bject = {firstName:"Tommy", TastName:"G", age:7, avg:0.336,
b:"R", t:"L"}:
for (var i:String in results) {

About working with built-in classes 257

trace("the value of [" + i + "] is: " + results[i]);
}
The previous code defines a new Object named results and defines values for firstName,
TastName, age, avg, b, and t. A for..1in loop traces each property in the results object
and traces their value to the Output panel.

3. Select Control > Test movie to test the Flash document.

For more information on operators, including dot and array access operators, see “About
operators” on page 137. For more information on methods and properties, see Chapter 5,
“Functions and Methods,” on page 163. For examples of working with properties of the built-
in MovieClip class, see Chapter 10, “Working with Movie Clips,” on page 313 For examples
of working with the properties of the TextField, String, TextRenderer, and TextFormat classes,
see Chapter 11, “Working with Text and Strings,” on page 343.

About calling built-in object methods

You call an object’s method by using the dot (.) operator followed by the method. For
example, the following code creates a new Sound object and calls its setVolume () method:

var my_sound:Sound = new Sound(this);

my_sound.setVolume(50);

For examples of working with methods of the built-in MovieClip class, see Chapter 10,
“Working with Movie Clips,” on page 313. For examples of working with methods of the
built-in TextField, String, TextRenderer, and TextFormat classes, see Chapter 11, “Working
with Text and Strings,” on page 343.

About class (static) members

Some built-in ActionScript classes have class members (static members). Class members
(properties and methods) are accessed or invoked on the class name, not on an instance of the

class. Therefore, you don’t create an instance of the class to use those properties and methods.
For example, all the properties of the Math class are static. The following code invokes the
max () method of the Math class to determine the larger of two numbers:

var TargerNumber:Number = Math.max(10, 20);
trace(largerNumber); // 20

For more information on static methods of the Math class, and examples of using them, see

Math in the ActionScript 2.0 Language Reference.

258 Classes

Excluding classes

To reduce the size of a SWF file, you might want to exclude classes from compilation but still
be able to access and use them for type checking. For example, you might want to do this if
you are developing an application that uses multiple SWF files or shared libraries, especially
those that access many of the same classes. Excluding classes helps you avoid duplicating

classes in those files.
For more information on excluding classes, see the following topics:

m “Preloading class files” on page 260

To exclude classes from compilation:
1. Create a new XML file.

2. Name the XML file FLA_filename_exclude.xml, where FLA_filename is the name of your
FLA file without the extension.

For example, if your FLA file is sellStocks.fla, the XML filename must be
sellStocks_exclude.xml.

3. Save the file in the same directory as the FLA file.
4. Place the following tags in the XML file:

<excludeAssets>
<asset name="classNamel" />
<asset name="className2" />
<{/excludeAssets>

The values you specify for the name attributes in the <asset> tags are the names of classes
you want to exclude from the SWF file. Add as many as you require for your application.
For example, the following XML file excludes the mx.core.UIObject and mx.screens.Slide
classes from the SWF file:

<excludeAssets>
<asset name="mx.core.UIObject" />
<asset name="mx.screens.Slide" />
</excludeAssets>

For information on preloading classes, see “Preloading class files” on page 260.

About working with built-in classes 259

Preloading class files

This section describes some of the methodologies for preloading and exporting classes in Flash
(including the classes that components in version 2 of the Component Architecture use).
Preloading involves loading some of the data for a SWF file before the user starts interacting
with it. Flash imports classes on the first frame of a SWF file when you use external classes,
and this data is the first element to load into a SWF file. It is similar for the component
classes, because the framework for components also loads into the first frame of a SWF file.
When you build large applications, the loading time can be lengthy when you must import
data, so you must deal with this data intelligently, as the following procedures show.

Because the classes are the first data to load, you might have problems creating a progress bar
or loading animation if the classes load before the progress bar, because you probably want the
progress bar to reflect the loading progress of all data (including classes). Therefore, you want
to load the classes after other parts of the SWF file, but before you use components.

The following procedure shows you how to change the frame in which classes load into a

SWE file.

To select a different frame for the classes to load into a SWF file:
1. Select File > Publish Settings.

2. Select the Flash tab, and click the Settings button.

3. In the Export Frame for Classes text box, type the number of a new frame to determine

when to load the classes.
4. Click OK.

You cannot use any classes until the playhead reaches the frame you choose to load them into.
For example, version 2 components require classes for their functionality, so you must load
components after the Export frame for ActionScript 2.0 classes. If you export for Frame 3,
you cannot use anything from those classes until the playhead reaches Frame 3 and loads

the data.

260 Classes

If you want to preload a file that uses classes, such as version 2 component classes, you must
preload the components in the SWF file. To accomplish this, you must set your components
to export for a different frame in the SWF file. By default, the UI components export in
Frame 1 of the SWF file, so make sure that you deselect Export in First Frame from the
component’s Linkage dialog box.

If you add a component to the Stage using ActionScript, then you need to drag an
instance of the component you want to add onto the pasteboard (the area around the
Stage). This tells Flash that you’re using the component in your application, and that its
not an unused library item. Remember, Flash does not add unused library items to SWF
files.

310N

If components do not load on the first frame, you can create a custom progress bar for the first
frame of the SWF file. Do not reference any components in your ActionScript or include any
components on the Stage until you load the classes for the frame you specified in the Export

Frame for Classes text box.

You must export components after the ActionScript classes that they use.

NOILNVD

About working with built-in classes 261

262 Classes

CHAPTER 7

Inheritance

In Chapter 6, “Classes,” you learned how to write class files and how classes help you organize
code into external files. The chapter also demonstrated how you can organize class files into
related packages. This chapter aims to show you how to write more advanced classes that
extend the functionality of an existing class. This is a useful subject, because you might find
yourself extending your own custom classes or existing classes so that you can add new
methods and properties.

For more information on inheritance, see “About inheritance” on page 263. For more
information on methods and properties, see Chapter 5, “Functions and Methods,” on

page 163.

For more information on inheritance, see the following topics:

Aboutinheritance. e 263
About writing subclassesinFlash.......... i 265
Using polymorphisminan application............ 27

About inheritance

In Chapter 6, “Classes,” you saw how you could create a class file to create your own custom
data types. Learning how to create custom class files shows you how to move code off the
timeline and into external files. Moving code into external files makes it easier to edit your
code. Now that you're familiar with the basics of creating your own custom classes, you learn
about an object-oriented programming (OOP) technique called subclassing or extending a
class, which lets you create new classes based on an existing class.

One of the benefits of OOP is that you can create subclasses of a class. The subclass inherits all
the properties and methods of a superclass. For example, if you extend (or subclass) the
MovieClip class, you are creating a custom class that extends the MovieClip class. Your
subclass inherits all of the properties and methods of the MovieClip class. Or you might create
a set of classes that extends from a custom superclass. For example, the Lettuce class might
extend from the Vegetable superclass.

263

Your subclass typically defines additional methods and properties that you can use in your
application, hence it extends the superclass. Subclasses can also override (provide their own
definitions for) methods inherited from a superclass. If a subclass overrides a method inherited
from its superclass, you can no longer access the superclasss definition within the subclass.
The only exception to the above rule is that, if you are within the subclass’s constructor
function, you call the superclass’s constructor using the super statement. For more
information on overriding, see “Overriding methods and properties” on page 268.

For example, you might create a Mammal class that defines certain properties and behaviors
that are common to all mammals. You could then create a Cat subclass that extends the
Mammal class. Using subclasses lets you reuse code so that instead of re-creating all the code
common to both classes you could simply extend an existing class. Another subclass, the
Siamese class, could extend the Cat class, and so on. In a complex application, determining

how to structure the hierarchy of your classes is a large part of the design process.

Inheritance and subclassing are very useful in larger applications, because they let you create a
series of related classes that can share functionality. For example, you could create an
Employee class that defines the basic methods and properties of a typical employee within a
company. You could then create a new class called Contractor that extends the Employee class
and inherits all of its methods and properties. The Contractor class could add its own specific
methods and properties, or it could override methods and properties that are defined in the
Employee superclass. You could then create a new class called Manager, which also extends the
Employee class and defines additional methods and properties such as hire(), fire(),
raise(), and promote (). You could even extend a subclass, such as Manager, and create a
new class called Director, which again adds new methods or overrides existing methods.

Each time that you extend an existing class, the new class inherits all the current methods and
properties of the subclass. If each class wasn’t related, you'd have to rewrite each method and
property in each separate class file, even if the functionality was the same in the fellow classes.
You would have to spend a lot more time not only coding, but also debugging your
application and maintaining a project if similar logic changed in multiple files.

In ActionScript, you use the extends keyword to establish inheritance between a class and its
superclass, or to extend an interface. For more information on using the extends keyword,
see “About writing subclasses in Flash” on page 265 and “About writing a subclass”

on page 265. For additional information on the extends keyword, see extends statement in
the ActionScript 2.0 Language Reference.

264 Inheritance

About writing subclasses in Flash

In object-oriented programming, a subclass can inherit the properties and methods of another
class, called the superclass. You can extend your own custom classes as well as many of the core

and Flash Player ActionScript classes. You cannot extend the TextField class.

To create this kind of relationship between two classes, you use the class statement’s extends
clause. To specify a superclass, you use the following syntax:

class SubClass extends SuperClass {}

The class you specify in SubClass inherits all the properties and methods defined
in SuperClass.

For example, you might create a Mammal class that defines properties and methods common
to all mammals. To create a variation of the Mammal class, such as a Marsupial class, you
would extend the Mammal class—that is, create a subclass of the Mammal class, as follows:

class Marsupial extends Mammal {}

The subclass inherits all the properties and methods of the superclass, including any
properties or methods that you have declared to be private using the private keyword.

For more information on extending classes, see the following topics:
m “About writing a subclass” on page 265
m “Overriding methods and properties” on page 268

For more information on private members, see “About public, private, and static methods and
properties (members)” on page 208. For an example that creates a subclass, see “Example:
Extending the Widget class” on page 266.

About writing a subclass

The following code defines the custom class JukeBox, which extends the Sound class. It
defines an array called song_arr and a method called p1aySong (), which plays a song and
invokes the ToadSound () method that it inherits from the Sound class.

class JukeBox extends Sound {
public var song_arr:Array = new Array("beethoven.mp3", "bach.mp3",
"mozart.mp3");
public function playSong(songID:Number):Void {
super.loadSound(song_arr[songID], true);
}

About writing subclasses in Flash 265

If you don’t place a call to super () in the constructor function of a subclass, the compiler
automatically generates a call to the constructor of its immediate superclass with no
parameters as the first statement of the function. If the superclass doesnt have a constructor,
the compiler creates an empty constructor function and then generates a call to it from the
subclass. However, if the superclass takes parameters in its definition, you must create a
constructor in the subclass and call the superclass with the required parameters.

Multiple inheritance, or inheriting from more than one class, is not allowed in ActionScript
2.0. However, classes can effectively inherit from multiple classes if you use individual
extends statements, as shown in the following example:

// not allowed
class C extends A, B {} // **Error: A class may not extend more than one
class.

// allowed

class B extends A {}

class C extends B {}

You can also use interfaces to implement a limited form of multiple inheritance. For more
information on interfaces, see Chapter 8, “Interfaces,” on page 275. For an example that
creates a subclass, see “Example: Extending the Widget class” on page 266. For additional
information on super, see super statement in the ActionScript 2.0 Language Reference.

Example: Extending the Widget class

Class members propagate to subclasses of the superclass that defines those members. The next
example demonstrates how you could create a Widget class, which you extend (subclass) by
writing a class named SubWidget.

To create the Widget class and SubWidget subclass:

1. Create a new ActionScript file and save it as Widget.as.
2. Add the following code to the new document:

class Widget {
public static var widgetCount:Number = 0;
public function Widget() f{
Widget.widgetCount++;
}
}

3. Save your changes to the ActionScript file.

4. Create a new ActionScript file and save it as SubWidget.as in the same directory as the

Widget class.

266 Inheritance

. In SubWidget.as, type the following code into the Script window:

class SubWidget extends Widget {
public function SubWidget() {
trace("Creating subwidget #" + Widget.widgetCount);
}
}

Save your changes to SubWidget.as.

Create a new FLA file, and save it as subWidgetTest.fla in the same directory as the
previous ActionScript class files.

In the subWidgetTest.fla file, type the following code into Frame 1 of the main Timeline:

var swl:SubWidget = new SubWidget();

var sw2:SubWidget = new SubWidget();

trace("Widget.widgetCount = " + Widget.widgetCount);
trace("SubWidget.widgetCount = " + SubWidget.widgetCount);

The previous code creates two instances of the SubWidget class: sw1 and sw2. Each call to
the SubWidget constructor traces the current value of the static Widget.widgetCount
property. Because the SubWidget class is a subclass of the Widget class, you can access the
widgetCount property through the SubWidget class, and the compiler rewrites the
reference (in the bytecode, not in your ActionScript file) as Widget.widgetCount. If you
try to access the static widgetCount property off of instances of the Widget or SubWidget
class, like swl or sw2, the compiler throws an error.

. Save your changes to the document.

10.

Select Control > Test Movie to test the Flash document.

The Output panel displays the following output:

Creating subwidget #1

Creating subwidget #2

Widget.widgetCount = 2

SubWidget.widgetCount = 2

You see this output because even though the Widget class’s constructor is never explicitly
called, the SubWidget class’s constructor calls it for you. This causes the Widget classs
constructor to increment the Widget class’s static widgetCount variable.

The ActionScript 2.0 compiler can resolve static member references within
class definitions.

About writing subclasses in Flash 267

If you don’t specify the class name for the Widget.widgetCount property but instead refer
only to widgetCount, the ActionScript 2.0 compiler resolves the reference to
Widget.widgetCount and correctly exports that property. Similarly, if you refer to the
property as SubWidget.widgetCount, the compiler rewrites the reference (in the
bytecode, not in your ActionScript file) as Widget.widgetCount because SubWidget is a
subclass of the Widget class.

g If you try to access the static widgetCount variable from the Widget class using the
S sw1 or sw2 instances, Flash generates an error telling you that static members can
o) be accessed only directly through classes.

z

For optimal readability of your code, Adobe recommends that you always use explicit
references to static member variables in your code, as shown in the previous example. Using
explicit references means that you can easily identify where the definition of a static
member resides.

Overriding methods and properties

When a subclass extends a superclass, the subclass inherits all of the superclass’s methods and
properties. One of the advantages of working with classes and extending classes is that it
allows you not only to provide new functionality to an existing class but also to modify
existing functionality. For example, consider the Widget class that you created in “Example:
Extending the Widget class” on page 266. You could create a new method in your superclass
(Widget) and then either override the method in your subclass (SubWidget) or just use the
inherited method from the Widget class. The following example shows how you can override
existing methods in your classes.

To override methods in a subclass:

1. Create a new ActionScript document and save it as Widget.as.

2. In Widget.as, type the following ActionScript code into the Script window.

Note: If you created the Widget class in an earlier example, modify the existing code by
adding the doSomething () method, as follows:

class Widget f{

public static var widgetCount:Number = 0;

public function Widget() {
Widget.widgetCount++;

}

public function doSomething():Void {
trace("Widget::doSomething()");

}

268 Inheritance

10.

Save your changes to the ActionScript document.
The Widget class now defines a constructor and a public method called doSomething().

Create a new ActionScript file named SubWidget.as and save it in the same directory
as Widget.as.

If you created the SubWidget class in “Example: Extending the Widget class”
on page 266, you can use this file instead.

310N

In SubWidget.as, type the following ActionScript code into the Script window:

class SubWidget extends Widget {
public function SubWidget() f{
trace("Creating subwidget # " + Widget.widgetCount);
doSomething();
}
}

Save your changes to SubWidget.as.

Notice that the SubWidget class’s constructor calls the doSomething () method that you
defined in the superclass.

Create a new Flash document and save it as subWidgetTest.fla in the same directory as the
ActionScript documents.

In subWidgetTest.fla, type the following ActionScript into Frame 1 of the main Timeline:

var swl:SubWidget = new SubWidget();
var sw2:SubWidget new SubWidget();

Save your changes to the Flash document.

Select Control > Test Movie to test the Flash document. You see the following output in
the Output panel:

Creating subwidget # 1

Widget::doSomething()

Creating subwidget # 2

Widget::doSomething()

This output shows that the SubWidget class’s constructor calls the constructor of its
superclass (Widget), which increments the static widgetCount property. The SubWidget’s
constructor traces the superclass’s static property and calls the doSomething () method,
which inherits from the superclass.

About writing subclasses in Flash 269

1.

12.
13.

14.

Open the SubWidget class and add a new method named doSomething (). Modify your
class so that it matches the following code (add the code that’s in boldface):

class SubWidget extends Widget {
public function SubWidget() {
trace("Creating subwidget # " + Widget.widgetCount);
doSomething();
}
public function doSomething():Void {
trace("SubWidget::doSomething()");
}
}

Save your changes to the class file, and then open subwidgetTest.fla again.

Select Control > Test Movie to test the file. You see the following output in the
Output panel:

Creating subwidget # 1

SubWidget::doSomething()

Creating subwidget # 2

SubWidget::doSomething()

The previous output shows that the doSomething() method in the SubWidget class’s
constructor is calling the doSomething () method in the current class instead of

the superclass.

Open the SubWidget class again, and modify the SubWidget class’s constructor to call the
superclass’s doSomething () method (add the code that’s in boldface):

public function SubWidget() f{
trace("Creating subwidget # " + Widget.widgetCount);
super.doSomething();
}
As demonstrated, you can add the super keyword to call the superclass’s doSomething()
method instead of the doSomething() method in the current class. For additional
information on super, see the super entry in the ActionScript 2.0 Language Reference.

Save the SubWidget class file with the modified constructor and select Control > Test
Movie to republish the Flash document.

The Output panel displays the contents of the Widget class’s doSomething() method.

270

Inheritance

Using polymorphism in an application

Object-oriented programming lets you express differences between individual classes using a

technique called polymorphism, by which classes can override methods of their superclasses

and define specialized implementations of those methods.

For example, you might start with a class called Mammal that has play () and sTeep()

methods. You then create Cat, Monkey, and Dog subclasses to extend the Mammal class. The
subclasses override the play () method from the Mammal class to reflect the habits of those
particular kinds of animals. Monkey implements the play () method to swing from trees; Cat

implements the play () method to pounce at a ball of yarn; Dog implements the pTay ()

method to fetch a ball. Because the sTeep () functionality is similar among the animals, you

would use the superclass implementation. The following procedure demonstrates this

example in Flash.

To use polymorphism in an application:

1.

Create a new ActionScript document and save it as Mammal.as.
This document is the base class for a few different animal classes that you create in
upcoming steps.

. In Mammal.as, type the following ActionScript code into the Script window:
class Mammal {

private var _gender:String;
private var _name:String = "Mammal";

// constructor

public function Mammal(gender:String) {
this._gender = gender;

}

public function toString():String {
return "[object " + speciesName + "1";
}
public function play():String {
return "Chase another of my kind.";
}
public function sleep():String {
return "Close eyes.";
}

public function get gender():String {
return this._gender;

}

public function get speciesName():String ({
return this._name;

}

Using polymorphism in an application

27

public function set speciesName(value:String):Void {
this._name = value;

}
}
The previous class defines two private variables, _gender and _name, which are used to
store the animal’s gender and mammal type. Next, the Mamma1 constructor is defined. The
constructor takes a single parameter, gender, which it uses to set the private _gender
variable defined earlier. Three additional public methods are also specified: toString(),
play(), and sTeep(), each of which returns string objects. The final three methods are
getter and setter methods for the mammal’s _gender and _name properties.

3. Save the ActionScript document.
This class serves as the superclass for the Cat, Dog, and Monkey classes, which you create
shortly. You can use the toString() method of the Mammal class to display a string
representation of any Mammal instance (or any instance that extended the
Mammal class).
4. Create a new ActionScript file and save it as Cat.as in the same directory as the Mammal.as
class file you created in step 1.
5. In Cat.as, type the following ActionScript code into the Script window:
class Cat extends Mammal {
// constructor
public function Cat(gender:String) {
super(gender);
speciesName = "Cat";
}
public function play():String {
return "Pounce a ball of yarn.";
}
}
Notice that you are overriding the play () method in the Mammal superclass. The Cat
class defines only two methods, a constructor and a play () method. Since the Cat class
extends the Mammal class, the Mammal classes’s methods and properties are inherited by
the Cat class. For more information on overriding, see “Overriding methods and
properties” on page 268.
6. Save your changes to the ActionScript document.
7. Create a new ActionScript document and save it as Dog.as in the same directory as the two
previous class files.
272 Inheritance

8. In Dog.as, type the following ActionScript code into the Script window:

class Dog extends Mammal {
// constructor
public function Dog(gender:String) ({
super(gender)
speciesName = "Dog";
}

public function play():String {
return "Fetch a stick.";

}
}
Notice that the Dog class is very similar in structure to the Cat class, except that a few of
the values have changed. Again, the Dog class extends the Mammal class and inherits all
its methods and properties. The Dog constructor takes a single property, gender, which it
passes to the Dog class’s parent class, Mammal. The speciesName variable is also
overridden and set to the string Dog. The play () method is also overridden from the
parent class.

9. Save your changes to the ActionScript document.

10. Create another ActionScript document in the same directory as your other files, and save
it as Monkey.as.

1. In Monkey.as, type the following ActionScript code into the Script window:

class Monkey extends Mammal {
// constructor
public function Monkey(gender:String) ({
super(gender);
speciesName = "Monkey";
}

public function play():String {
return "Swing from a tree.";

}
}
Similar to the previous two classes, Cat and Dog, the Monkey class extends the Mammal
class. The Monkey class’s constructor calls the constructor for the Mammal class, passing
the gender to the Mammal’s constructor, as well as setting speciesName to the string
Monkey. The Monkey class also overrides the behavior of the play () method.

12. Save your changes to the ActionScript document.

13. Now that you’ve created three subclasses of the Mammal class, create a new Flash
document called mammalTest.fla.

Using polymorphism in an application 273

14. In mammalTest.fla, type the following ActionScript code into Frame 1 of the
main Timeline:

var mammals_arr:Array = new Array();
this.createTextField("info_txt", 10, 10, 10, 450, 80);
info_txt.html = true;

info_txt.multiline = true;

info_txt.border = true;

info_txt.wordWrap = true;

createMammals ()
createReport()

function createMammals():Void {
mammals_arr.push(new Dog("Female"));
mammals_arr.push(new Cat("Male"));
mammals_arr.push(new Monkey("Female"));
mammals_arr.push(new Mammal("Male"));

}

function createReport():Void {
var i:Number;
var len:Number = mammals_arr.length;
// Display Mammal info in 4 columns of HTML text using tab stops.
info_txt.htmlText = "<textformat tabstops='[110, 200, 300]1'>";
info_txt.htmlText += "Mammal\tGender\tSleep\tPTay";
for (i =0; i < len; i++) {
info_txt.htmlText += "<p>" + mammals_arr[i].speciesName
+ "\t" + mammals_arr[i].gender
+ "\t" + mammals_arr[iJ].sleep()
+ "\t" + mammals_arr[il.play() + "</p>";
// The trace statement calls the Mammal.toString() method.
trace(mammals_arr[il);
}
info_txt.htmlText += "</textformat>";
}

The mammalTest.fla code is a bit more complex than the previous classes. First it imports
the three animal classes.

15. Save the Flash document, and then select Control > Test Movie to test the document.

You see the Mammal information displayed in a text field on the Stage, and the following
text in the Output panel:

[object Dogl]

Lobject Cat]

[object Monkey]
[object Mammal]

274 Inheritance

CHAPTER 8

Interfaces

In object-oriented programming (OOP), an interface is a document that lets you declare (but
not define) the methods that must appear within a class. When you work in teams of
developers, or build larger applications in Flash, interfaces can be very beneficial during
development. Interfaces allow developers to easily identify the base methods in ActionScript
classes. These methods must be implemented when developers use each interface.

This chapter walks you through a few sample interfaces, and by the end of the chapter you are
able to build your own interface files. If you are not familiar with building classes, make sure
that you read Chapter 6, “Classes,” before you try the tutorials and examples in this chapter.

For more information on working with interfaces, see the following topics:

About interfaceso e 275
Creating interfacesasdatatypes i 280
Understanding inheritance andinterfaces i, 282
Example: Usinginterfaces i 283
Example: Creating a complexinterface............ i .. 285

About interfaces

In object-oriented programming, interfaces are like classes whose methods are not
implemented (defined)—that is, they otherwise don’t “do” anything. Therefore, an interface
consists of “empty” methods. Another class can then implement the methods declared by the
interface. In ActionScript, the distinction between interface and object is only for compile-
time error checking and language rule enforcement.

275

An interface is not a class; however, this is not altogether true in ActionScript at runtime
because an interface is abstract. ActionScript interfaces do exist at runtime to allow type
casting (changing an existing data type to a different type). The ActionScript 2.0 object model
does not support multiple inheritance. Therefore, a class can inherit from a single parent class.
This parent class can be either a core or Flash Player class or a user-defined (custom) class. You
can use interfaces to implement a limited form of multiple inheritance, by which a class

inherits from more than one class.

For example, in C++, the Cat class could extend the Mammal class as well as a Playful class,
which has methods chaseTai1() and eatCatNip(). Like Java, ActionScript 2.0 does not
allow a class to extend multiple classes directly but does allow a class to extend a single class
and implement multiple interfaces. So you could create a Playful interface that declares the
chaseTail() and eatCatNip() methods. A Cat class, or any other class, could then
implement this interface and provide definitions for those methods.

You can also think of an interface as a “programming contract” that you can use to enforce
relationships between otherwise unrelated classes. For example, suppose you are working with
a team of programmers, each of whom is working on a different class within the same
application. While designing the application, you agree on a set of methods that the different
classes use to communicate. You create an interface that declares these methods, their
parameters, and their return types. Any class that implements this interface must provide
definitions for those methods; otherwise, a compiler error results. The interface is like a

communication protocol to which all the classes must adhere.

One way to do this would be to create a class that defines all these methods and then have
each class extend, or inherit from, this superclass. But because the application consists of
classes that are unrelated, it doesn’t make sense to put them all into a common class hierarchy.
A better solution is to create an interface that declares the methods these classes use to
communicate, and then have each class implement (provide its own definitions for) those
methods.

You can usually program successfully without using interfaces. When used appropriately,
however, interfaces can make the design of your applications more elegant, scalable, and
maintainable.

ActionScript interfaces exist at runtime to allow type casting; see Chapter 3, “About casting
objects,” on page 75. An interface is not an object or a class, but the workflow is similar to
working with classes. For more information on the class workflow, see “Writing custom class
files” on page 196. For a tutorial on creating an application with interfaces, see “Example:
Using interfaces” on page 283.

276 Interfaces

For more information on using interfaces, see the following sections:
m “About the interface keyword” on page 277
m “About naming interfaces” on page 277

m “Defining and implementing interfaces” on page 278

About the interface keyword

The interface keyword defines an interface. An interface is similar to a class, with the
following important differences:

m Interfaces contain only declarations of methods, not their implementation. That is, every
class that implements an interface must provide an implementation for each method
declared in the interface.

m Only public members are allowed in an interface definition; static and class members are
not permitted.

m The get and set statements are not allowed in interface definitions.

m To use the interface keyword, you must specify ActionScript 2.0 and Flash Player 6 or
later in the Flash tab of your FLA file’s Publish Settings dialog box.

The interface keyword is supported only when used in external script files, not in scripts
that you write in the Actions panel.

About naming interfaces

Interface names have an uppercase first letter, the same as class names. Interface names are
usually adjectives, such as Printable. The following interface name, IEmployeeRecords,
uses an initial uppercase letter and concatenated words with mixed case:

interface IEmployeeRecords {}

Some developers start interface names with an uppercase “I” to distinguish them from
classes. This is a good practice to adopt because it lets you quickly distinguish between
interfaces and regular classes.

310N

For more information on naming conventions, see Chapter 17, “Best Practices and Coding
Conventions for ActionScript 2.0,” on page 665.

About interfaces 277

Defining and implementing interfaces

The process for creating an interface is the same as for creating a class. Like classes, you can
define interfaces only in external ActionScript files. At a minimum, the workflow for creating
an interface involves the following steps:

m Defining a interface in an external ActionScript file

m Saving the interface file to a designated classpath directory (a location where Flash looks
for classes) or in the same directory as the application’s FLA file

m Creating an instance of the class in another script, either in a Flash (FLA) document or an
external script file, or subinterfaces based on the original interface

m Creating a class that implements the interface in an external script file

You declare an interface using the interface keyword, followed by the interface name, and
then left and right curly braces ({ }), which define the body of the interface, as shown in the
following example:

interface IEmployeeRecords {
// interface method declarations
}
An interface can contain only method (function) declarations, including parameters,
parameter types, and function return types.

For more information on conventions for structuring classes and interfaces, see Chapter 17,
“Best Practices and Coding Conventions for ActionScript 2.0,” on page 665. For a tutorial on
creating an application that uses an interface, see “Example: Using interfaces” on page 283.
For example, the following code declares an interface named IMyInterface that contains two
methods, method1 () and method2 (). The first method, method1 (), has no parameters and
specifies a return type of Void (meaning that it does not return a value). The second method,
method2 (), has a single parameter of type String, and specifies a return type of Boolean.

To create a simple interface:
1. Create a new ActionScript file and save it as IMylnterface.as.
2. Type the following ActionScript code into the Script window:

interface IMyInterface f{

public function methodl():Void;

public function method2(param:String):Boolean;
}

3. Save your changes to the ActionScript file.

In order to use the interface within an application, you first need to create a class that

implements your new interface.

278 Interfaces

4. Create a new ActionScript file and save it as MyClass.as in the same directory as the
IMylnterface.as.

5. In the MyClass class file, type the following ActionScript code into the Script window:

class MyClass {

}

In order to instruct the custom class (MyClass) to use your interface (IMylnterface), you
need to use the implements keyword, which specifies that a class must define all the
methods declared in the interface (or interfaces) that you implement.

6. Modify the ActionScript code in MyClass.as (add the boldface code) so it matches the
following snippet:
class MyClass implements IMyInterface ({
}

You place the implements keyword after the class name.
7. Click the Check Syntax button.

Flash displays an error in the Output panel stating that MyClass must implement method
X from interface IMylInterface. You see this error message because any class that extends an
interface must define each method that’s listed in the interface document.

8. Modify the MyClass document again (add the boldface code), and write ActionScript code
for the method1 () and method2 () methods, as shown in the following snippet:
class MyClass implements IMyInterface {

public function methodl():Void {
/...

}s

public function method2(param:String):Boolean {
/...
return true;

}

}

9. Save the MyClass.as document and click Check Syntax.

The Output panel no longer displays any error messages or warnings because you have
now defined the two methods.

The class file that you create is not limited to the public methods that you define in the
interface file. The interface file only outlines the minimum methods that you must
implement, as well as those methods™ properties and return types. Classes that implement a
particular interface almost always include additional methods, variables, and getter and
setter methods.

About interfaces 279

Interface files cannot contain any variable declarations or assignments. Functions that you
declare in an interface cannot contain curly braces. For example, the following interface does
not compile:

interface IBadInterface {
// Compiler error. Variable declarations not allowed in interfaces.
public var illegalVar:String;

// Compiler error. Function bodies not allowed in interfaces.
public function illegalMethod():Void {
}

// Compiler error. Private methods are not allowed in interfaces.
private function illegalPrivateMethod():Void;

// Compiler error. Getters/setters are not allowed in interfaces.
public function get illegalGetter():String;

}

For a tutorial demonstrating how to create a complex interface, see “Example: Using

interfaces” on page 283.

The rules for naming interfaces and storing them in packages are the same as those for classes;
see “About naming class files” on page 225.

Creating interfaces as data types

Like a class, an interface defines a new data type. You can consider any class that implements
an interface to be of the type that is defined by the interface. This is useful for determining
whether a given object implements a given interface. For example, consider the interface
IMovabTe, which you create in the following example.

To create an interface as a data type:
1. Create a new ActionScript document and save it to your hard disk as IMovable.as.
2. In IMovable.as, type the following ActionScript code into the Script window:

interface IMovable {
public function moveUp():Void;
public function moveDown():Void;
}

3. Save your changes to the ActionScript file.

4. Create a new ActionScript document and save it as Box.as in the same directory as
IMovable.as.

In this document, you create a Box class that implements the IMovable interface that you

created in an earlier step.

280 Interfaces

5. In Box.as, type the following ActionScript code into the Script window:

class Box implements IMovable ({
public var xPos:Number;
public var yPos:Number;

public function Box() {
}

public function moveUp():Void {
trace("moving up");
// method definition

}

public function moveDown():Void ({
trace("moving down");
// method definition

J
6. Save your changes to the ActionScript document.

7. Create a new Flash document named boxTest.fla, and then save it in the same directory as
the two previous ActionScript documents.

8. Select Frame 1 of the Timeline, open the ActionScript editor, and then type the following
ActionScript code into the Actions panel (or Script window):

var newBox:Box = new Box();

This ActionScript code creates an instance of the Box class, which you declare as a variable

of the Box type.

9. Save your changes to the Flash document, and then select Control > Test Movie to test the
SWE file.

In Flash Player 7 and later, you can cast an expression to an interface type or other data
type at runtime. Unlike Java interfaces, ActionScript interfaces exist at runtime, which
allows type casting. If the expression is an object that implements the interface or has a
superclass that implements the interface, the object is returned. Otherwise, nul1 is
returned. This is useful if you want to ensure that a particular object implements a certain
interface. For more information on type casting, see Chapter 3, “About casting objects,”

on page 75.
10. Add the following code at the end of the ActionScript code in boxTest.fla:
if (IMovable(newBox) != null) f{
newBox.moveUp();
}oelse |

trace("box instance is not movable");
}

Creating interfaces as data types 281

1.

This ActionScript code checks whether the newBox instance implements the IMovable
interface before you call the moveUp () method on the object.

Save the Flash document, and then select Control > Test Movie to test the SWF file.

Because the Box instance implements the IMovable interface, the Box.moveUp () method
is called, and the text “moving up” appears in the Output panel.

For more information about casting, see Chapter 3, “About casting objects,” on page 75.

Understanding inheritance and interfaces

You can use the extends keyword to create subclasses of an interface. This can be very useful

in larger projects for which you might want to extend (or subclass) an existing interface and

add additional methods. These methods must be defined by any classes implementing

that interface.

One consideration you need to make when extending interfaces is that you receive error

messages in Flash if multiple interface files declare functions with the same names but have

different parameters or return types.

The following example demonstrates how you can subclass an interface file using the extends

keyword.

To extend an interface:

1.

2.

Create a new ActionScript file, and then save it as Ia.as.
In la.as, type the following ActionScript code into the Script window:

interface Ia {
public function f1():Void;
public function f2():Void;
}

Save your changes to the ActionScript file.

Create a new ActionScript file and save it as Ib.as in the same folder as the Ia.as file you
created in step 1.

In Ib.as, type the following ActionScript code into the Script window:

interface Ib extends Ia {
public function f8():Void;
public function f9():Void;
}

Save your changes to the ActionScript file.

Create a new ActionScript file and save it as ClassA.as in the same directory as the two

previous files.

282 Interfaces

8. In ClassA.as, type the following ActionScript code into the Script window:

class ClassA implements Ib {
// f1() and f2() are defined in interface Ia.
public function f1():Void {
}
public function f2():Void {
}

// f8() and f9() are defined in interface Ib, which extends Ia.
public function f8():Void {
}
public function f9():Void {
}
}

9. Save your class file and click the Check Syntax button above the Script window.

Flash doesnt generate any error messages as long as all four methods are defined and
match the definitions from their respective interface files.

Classes are only able to extend one class in ActionScript 2.0, although you can use
classes to implement as many interfaces as you want.

310N

If you want your ClassA class to implement multiple interfaces in the previous example, you
would simply separate the interfaces with commas. Or, if you had a class that extended a
superclass and implemented multiple interfaces, you would use code similar to the following:

class ClassA extends ClassB implements Ib, Ic, Id {...}.

Example: Using interfaces

In this example you create a simple interface that you can reuse between many
different classes.

To build an interface:

1. Create a new ActionScript file and save it as IDocumentation.as.

2. InIDocumentation.as, type the following ActionScript code into the Script window:

interface IDocumentation {

public function downloadUpdates():Void;

public function checkForUpdates():Boolean;

public function searchHelp(keyword:String):Array;
}

3. Save the changes that you made to the ActionScript interface file.

4. Createa new ActionScript file in the same directory as the IDocumentation.as file, and save
this new file as FlashPaper.as.

Example: Using interfaces 283

10.

. In FlashPaper.as, type the following ActionScript code into the Script window:

class FlashPaper implements IDocumentation ({
}

. Save the changes that you made to the ActionScript file.

Click the Check Syntax button for your ActionScript class.

You see an error that’s similar to the following message:

Error path\FlashPaper.as: Line 1: The class must implement method
‘checkForUpdates' from interface 'IDocumentation'.

class FlashPaper implements IDocumentation {

Total ActionScript Errors: 1 Reported Errors: 1

This error appears because the current FlashPaper class doesn’t define any of the public
methods that you defined in the IDocumentation interface.

Open the FlashPaper.as class file again and modify the existing ActionScript code so that
it matches the following code:

class FlashPaper implements IDocumentation ({
private static var __version:String = "1,2,3,4";
public function downloadUpdates():Void {
by

public function checkForUpdates():Boolean {
return true;

by

public function searchHelp(keyword:String):Array {
return []
by

}

. Save your changes to the ActionScript file, and then click Check Syntax again.

This time you don’t see any errors appear in the Output panel.

You can add as many additional static, public, or private variables or methods as you
want to the FlashPaper class file. The interface file defines only a set of minimum
methods that must appear within any class that implements that interface.

310N

Open the IDocumentation interface document again, and add the following boldface line
of code (below the searchHelp() method):

interface IDocumentation {
public function downloadUpdates():Void;
public function checkForUpdates():Boolean;
public function searchHelp(keyword:String):Array;
public function addComment(username:String, comment:String):Void;

284

Interfaces

1. Save your changes to the interface file, and then reopen the FlashPaper.as document.

12. Click the Check Syntax button, and you see a new error message in the Output panel:

Error path\FlashPaper.as: Line 1: The class must implement method
"addComment' from interface 'IDocumentation'.

class FlashPaper implements IDocumentation {
Total ActionScript Errors: 1 Reported Errors: 1

You see the previous error because the FlashPaper.as class file no longer defines all the
classes that you outlined in the interface file. To fix this error message, you must either add
the addComment () method to the FlashPaper class or remove the method definition from
the IDocumentation interface file.

13. Add the following method in the FlashPaper class:

public function addComment(username:String, comment:String):Void {
/* Send parameters to server-side page, which inserts comment into
database. */
}
14. Save the changes to FlashPaper.as and click the Check Syntax button and you should no

longer receive any errors.

In the previous section, you created a class-based on the IDocumentation interface file. In this
section you create a new class that also implements the IDocumentation interface, although it
adds some additional methods and properties.

This tutorial demonstrates the usefulness of using interfaces because if you want to create
another class that extends the IDocumentation interface, you can easily identify the methods
that are required within the new class.

Example: Creating a complex interface

The following example shows several ways to define and implement interfaces. In this tutorial
you learn how to create a simple interface file and how to write a class that implements
multiple interfaces, as well as how to have interfaces extend other interfaces to create more
complex data structures.

To create a complex interface:

1. Create a new ActionScript document and save it as InterfaceA.as.
2. Create a new folder called complexInterface and save InterfaceA.as to this directory.

You save all of the files you create for this tutorial in this directory.

Example: Creating a complex interface 285

3. In Interface.as, type the following ActionScript code into the Script window:
// filename: InterfaceA.as
interface InterfaceA {
public function k():Number;
public function n(z:Number):Number;
}
4. Save the ActionScript document and then create a new ActionScript document named
ClassB.as and save it in the complexInterface directory.
ClassB.as implements the InterfaceA interface you created previously.
5. In ClassB.as, type the following ActionScript code into the Script window:
// filename: ClassB.as
class ClassB implements InterfaceA {
public function k():Number {
return 25;
}
public function n(z:Number):Number {
return (z + 5);
}
}
6. Save your changes to the ClassB.as document and then create a new Flash document and
save it as classbTest.fla in the complexInterface directory.
This class file tests the ClassB class you created previously.
7. In classbTest.fla, type the following ActionScript code on Frame 1 of the Timeline:
// filename: classbTest.fla
import ClassB;
var myB:ClassB = new ClassB();
trace(myB.k()); // 25
trace(myB.n(7)); // 12
8. Save your changes to the Flash document, and then select Control >Test Movie to test the
Flash document.
The Output panel displays two numbers, 25 and 12, which are the results of the k() and
n() methods in the ClassB class.
9. Create a new ActionScript file and save it as ClassC.as in the complexInterface directory.
This class file implements the InterfaceA interface that you created in step 1.
286 Interfaces

10. In ClassC.as, type the following ActionScript code into the Script window:

1.

12.

13.

14.

15.

// filename: ClassC.as
class ClassC implements InterfaceA {
public function k():Number ({
return 25;
}
// **Error** The class must also implement method 'n' from interface
"InterfaceA’.
}

If you click the Check Syntax button for the ClassC class file, Flash displays an error
message in the Output panel that says the current class must implement the n() method
defined in the InterfaceA interface. When you create classes that implement an interface,
it is important that you define methods for each entry in the interface.

Create a new ActionScript document and save it as InterfaceB.as in the complexInterface
directory.

In InterfaceB.as, type the following ActionScript code into the Script window:

// filename: InterfaceB.as
interface InterfaceB {

public function o():Void;
}

Save your changes to the InterfaceB.as document, and then create a new ActionScript
document and save it in the complexInterface directory as ClassD.as.

This class implements both the InterfaceA interface and the InterfaceB interface you
created in earlier steps. The ClassD class must include method implementations for each
of the methods listed in each of the interface files.

In ClassD.as, type the following ActionScript code into the Script window:

// filename: ClassD.as
class ClassD implements InterfaceA, InterfaceB ({
public function k():Number {
return 15;
}
public function n(z:Number):Number {
return (z * z);
}
public function o():Void {
trace("o");
}
}

Save your changes to the ClassD.as file, and then create a new Flash document and save it
as classdTest.fla.

This Flash document tests the ClassD class that you created previously.

Example: Creating a complex interface 287

16. In classd Test.fla, add the following ActionScript code on Frame 1 of the Timeline:

// filename: classdTest.fla
import ClassD;

var myD:ClassD = new ClassD();
trace(myD.k()); // 15
trace(myD.n(7)); // 49
myD.o(); // o

17. Save your changes to the classd Test.fla file and then select Control > Test Movie to test the

file.

The values 15 and 49 and the letter o should be displayed in the Output panel. These
values are the results of the C1assD. k() method, ClassD.n(), and ClassD.o() methods,
respectively.

18. Create a new ActionScript document and save it as InterfaceC.as.

This interface extends the InterfaceA interface you created earlier, and it adds a new
method definition.

19. In InterfaceC.as, type the following ActionScript code into the Script window:

// filename: InterfaceC.as

interface InterfaceC extends InterfaceA {
public function p():Void;

}

20.Save your changes to the ActionScript file and then create a new ActionScript file and save
it as ClassE.as in the complexInterface directory.

This class implements two interfaces, InterfaceB and InterfaceC.
21. In ClassE.as, type the following ActionScript code into the Script window:

// filename: ClassE.as
class ClassE implements InterfaceB, InterfaceC {
public function k():Number ({
return 15;
}
public function n(z:Number):Number ({
return (z + 5);
}
public function o():Void {
trace("o");
}
public function p():Void {
trace("p");
}
}

22.Save your changes to the ActionScript document, and then create a new Flash document
and save it as classeTest.fla in the complexInterface directory.

288 Interfaces

23.1In classeTest.fla, type the following ActionScript code on Frame 1 of the Timeline:

// filename: classeTest.fla
import ClassE;

var myE:ClassE = new ClassE();
trace(myE.k()); // 15
trace(myE.n(7)); // 12
myE.o(); // o

myE.p(); // p

24.Save the Flash document, and then select Control > Test Movie to test the SWF file.

The values 15, 12, 0, and p display in the Output panel. These values are the values that
return from the ClassE.k(), ClassE.n(),ClassE.o(),and ClassE.p() methods. Since
the ClassE class implemented both the InterfaceB and InterfaceC interfaces, each method
from the two interface files must be defined. Although the InterfaceB and InterfaceC
interfaces only define the o () and p() methods, InterfaceC extends InterfaceA. This
means that all of its defined methods, k() and n(), must also be implemented.

Example: Creating a complex interface 289

290 Interfaces

CHAPTER 9

Handling Events

Events are actions that occur while a SWF file is playing. An event such as a mouse click or a
keypress is called a user event because it occurs as a result of direct user interaction. An event
that Flash Player generates automatically, such as the initial appearance of a movie clip on the
Stage, is called a system event because it isn’t generated directly by the user.

In order for your application to react to events, you must use event handlers—ActionScript

code associated with a particular object and event. For example, when a user clicks a button

on the Stage, you might advance the playhead to the next frame. Or when an XML file

finishes loading over the network, the contents of that file might appear in a text field.

You can handle events in ActionScript in several ways:

m “About ActionScript and events” on page 292

m “Using event listeners” on page 296

m “Using button and movie clip event handlers” on page 300, specifically, on handler and
onClipEvent handler.

m “Broadcasting events from component instances” on page 305

Using event handlers with loadMovie (MovieClip.loadMovie method) can be unpredictable.

If you attach an event handler to a button using on (), or if you create a dynamic handler

using an event handler method such as onPress (MovieClip.onPress handler), and then you

call ToadMovie (), the event handler is not available after the new content is loaded. However,

if you use onClipEvent handler or on handler to attach an event handler to a movie clip, and

then call ToadMovie() on that movie clip, the event handler is still available after the new

content is loaded.

291

For more information on handling events, see the following sections:

About ActionScriptand events e 292
Using eventlisteners i 296
Using event listeners with components.............. i, 298
Using button and movieclipeventhandlers................................ 300
Broadcasting events from componentinstances 305
Creating movie clips with buttonstates................. 305
Eventhandler scope e 306
Scope ofthethiskeyword i 310
Usingthe Delegate class ...t e e e 310

About ActionScript and events

In Flash, ActionScript code is executed when an event occurs: for example, when a movie clip
is loaded, when a keyframe on the timeline is entered, or when the user clicks a button. Events
can be triggered either by the user or by the system. Users click mouse buttons and press keys;
the system triggers events when specific conditions are met or processes completed (the SWF
file loads, the timeline reaches a certain frame, a graphic finishes downloading, and so on).

When an event occurs, you write an event handler to respond to the event with an action.
Understanding when and where events occur will help you to determine how and where you
will respond to the event with an action, and which ActionScript tools to use in each case.

Events can be grouped into a number of categories: mouse and keyboard events, which occur
when a user interacts with your Flash application through the mouse and keyboard; clip
events, which occur within movie clips; and frame events, which occur within frames on

the timeline.

Mouse and keyboard events

A user interacting with your SWF file or application triggers mouse and keyboard events. For
example, when the user rolls over a button, the Button.onRoT10ver or on(rol10ver) event
occurs; when the user clicks a button, the Button.onRelease event occurs; if a key on the
keyboard is pressed, the on(keyPress) event occurs. You can write code on a frame or attach
scripts to an instance to handle these events and add all the interactivity you desire.

292 Handling Events

Clip events

Within a movie clip, you may react to a number of clip events that are triggered when the user
enters or exits the scene or interacts with the scene by using the mouse or keyboard. You
might, for example, load an external SWF file or JPG image into the movie clip when the user

enters the scene, or allow the user’s mouse movements to reposition elements in the scene.

Frame events

On a main or movie clip timeline, a system event occurs when the playhead enters a
keyframe—this is known as a frame evenr. Frame events are useful for triggering actions based
on the passage of time (moving through the timeline) or for interacting with elements that are
currently visible on the Stage. When you add a script to a keyframe, it is executed when the
keyframe is reached during playback. A script attached to a frame is called a frame scripz.

One of the most common uses of frame scripts is to stop the playback when a certain
keyframe is reached. This is done with the stop () function. You select a keyframe and then
add the stop() function as a script element in the Actions panel.

wHBGVERRED

1 stop()s

2 do something

When you've stopped the SWF file at a certain keyframe, you need to take some action. You
could, for example, use a frame script to dynamically update the value of a label, to manage
the interaction of elements on the Stage, and so on.

Using event handler methods

An event handler method is a method of a class that is invoked when an event occurs on an
instance of that class. For example, the MovieClip class defines an onPress event handler that
is invoked whenever the mouse is pressed on a movie clip object. Unlike other methods of a
class, however, you don’t invoke an event handler directly; Flash Player invokes it
automatically when the appropriate event occurs.

Using event handler methods 293

The following ActionScript classes are examples of classes that define event handlers: Button,
ContextMenu, ContextMenultem, Key, LoadVars, LocalConnection, Mouse, MovieClip,
MovieClipLoader, Selection, SharedObject, Sound, Stage, TextField, XML and XMLSocket.
For more information about the event handlers they provide, see the entries for each class

in ActionScript 2.0 Language Reference. The word handler is added in the title of each

event handler.

By default, event handler methods are undefined: when a particular event occurs, its
corresponding event handler is invoked, but your application doesn’t respond further to the
event. To have your application respond to the event, you define a function with the function
statement and then assign that function to the appropriate event handler. The function you
assign to the event handler is then automatically invoked whenever the event occurs.

An event handler consists of three parts: the object to which the event applies, the name of the
object’s event handler method, and the function you assign to the event handler. The
following example shows the basic structure of an event handler:
object.eventMethod = function () {

// Your code here, responding to event.
}
For example, suppose you have a button named next_btn on the Stage. The following code
assigns a function to the button’s onPress event handler; this function advances the playhead

to the next frame in the current timeline:

next_btn.onPress = function () {
nextFrame();
}

Assigning a function reference In the previous code, the nextFrame () function is

assigned to an event handler for onPress. You can also assign a function reference (name) to
an event handler method and later define the function, as shown in the following example:

// Assign a function reference to button's onPress event handler.
next_btn.onPress = goNextFrame;

// Define goNextFrame() function.

function goNextFrame() {
nextFrame();

}

Notice in the following example that you assign the function reference, not the function’s
return value, to the onPress event handler:

// Incorrect!

next_btn.onPress = goNextFrame();

// Correct.
next_btn.onPress = goNextFrame;

294 Handling Events

Receiving passed parameters Some event handlers receive passed parameters that provide
information about the event that occurred. For example, the TextField.onSetFocus event
handler is invoked when a text field instance gains keyboard focus. This event handler receives
a reference to the text field object that previously had keyboard focus.

For example, the following code inserts some text into a text field that no longer has
keyboard focus:
this.createTextField("my_txt", 99, 10, 10, 200, 20);
my_txt.border = true;
my_txt.type = "input";
this.createTextField("myOther_txt", 100, 10, 50, 200, 20);
myOther_txt.border = true;
myOther_txt.type = "input";
myOther_txt.onSetFocus = function(my_txt:TextField) {
my_txt.text = "I just lost keyboard focus";
bs
Event handlers for runtime objects You can also assign functions to event handlers for
objects you create at runtime. For example, the following code creates a new movie clip
instance (newc1ip_mc) and then assigns a function to the clip’s onPress event handler:
this.attachMovie("symbolID", "newclip_mc", 10);
newclip_mc.onPress = function () {

trace("You pressed me");
}

For more information, see “Creating movie clips at runtime” on page 321.

Overriding event handler methods By creating a class that extends an ActionScript class,
you can override event handler methods with the functions that you write. You can define an
event handler in a new subclass that you can then reuse for various objects by linking any
symbol in the library of the extended class to the new subclass. The following code overrides
the MovieClip class’s onPress event handler with a function that decreases the transparency
of the movie clip:

// FadeAlpha class -- sets transparency when you click the movie clip.
class FadeAlpha extends MovieClip {
function onPress() ({
this._alpha -= 10;
}
}

For specific instructions on extending an ActionScript class and linking to a symbol in the
library, see the examples in “Assigning a class to symbols in Flash” on page 239. For
information on writing and working with custom classes, see Chapter 6, “Classes.”

Using event handler methods 295

Using event listeners

Event listeners let an object, called a listener object, receive events broadcast by another object,
called a broadcaster object. The broadcaster object registers the listener object to receive events
generated by the broadcaster. For example, you can register a movie clip object to receive
onRes1ize notifications from the Stage, or a button instance could receive onChanged
notifications from a text field object. You can register multiple listener objects to receive
events from a single broadcaster, and you can register a single listener object to receive events

from multiple broadcasters.

The listener-broadcaster model for events, unlike event handler methods, lets you have
multiple pieces of code listen to the same event without conflict. Event models that do not use
the listener/broadcaster model, such as XML.onLoad (), can be problematic when various
pieces of code are listening to the same event; the different pieces of code have conflicts over
control of that single XML .onLoad callback function reference. With the listener/broadcaster
model, you can easily add listeners to the same event without worrying about code
bottlenecks.

The following ActionScript classes can broadcast events: Key, Mouse, MovieClipLoader,
Selection, Stage, and TextField. To see which listeners are available for a class, see each class
entry in the ActionScript 2.0 Language Reference.

For more information on event listeners, see the following topics:

m “Event listener model” on page 296

m “Event listener example” on page 297

For a sample source file, stagesize.fla, that demonstrates how the Stage.scaleMode property
affects the values of Stage.width and Stage.height when the browser window is resized,
see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/StageSize folder to access
the sample.

Event listener model

The event model for event listeners is similar to the model for event handlers (see “About
ActionScript and events” on page 292), with two main differences:
m You assign the event handler to the listener object, not the object that broadcasts

the event.

m You call a special method of the broadcaster object, addListener (), which registers the

listener object to receive its events.

296 Handling Events

http://www.adobe.com/go/learn_fl_samples

The following code outlines the event listener model:

var listenerObject:0bject = new Object();
listenerObject.eventName = function(eventObj:0bject) {

// Your code here
by
broadcasterObject.addListener(/istenerObject);
The code starts with an object, 1istenerObject, with a property eventName. Your listener
object can be any object, such as an existing object, movie clip, or button instance on the
Stage, or it can be an instance of any ActionScript class. For example, a custom movie clip
could implement the listener methods for Stage listeners. You could even have one object that
listens to several types of listeners.

The eventName property is an event that occurs on broadcasterObject, which then
broadcasts the event to Tistener0Object. You can register multiple listeners to one

event broadcaster.

You assign a function to the event listener that responds to the event in some way.

Last, you call the addListener () method on the broadcaster object, passing the listener
object to the addListener() method.

To unregister a listener object from receiving events, you call the removelistener() method
of the broadcaster object, passing it the name of the event to remove, and the listener object.

broadcasterObject.removelistener(/istenerObject);

Event listener example

The following example shows how to use the onSetFocus event listener in the Selection class
to create a simple focus manager for a group of input text fields. In this case, the border of the
text field that receives keyboard focus is enabled (appears), and the border of the text field that
does not have focus is disabled.

To create a simple focus manager with event listeners:
1. Using the Text tool, create a text field on the Stage.

2. Select the text field, and then in the Property inspector, select Input Text from the Text
Type pop-up menu and click the Show Border Around Text button.

3. Create another input text field below the first one.

Make sure the Show Border Around Text option is not selected for this text field. You can
continue to create input text fields.

4. Select Frame 1 in the Timeline and open the Actions panel (Window > Actions).

Using event listeners 297

5. To create an object that listens for focus notification from the Selection class, enter the
following code in the Actions panel:

// Creates listener object, focusListener.
var focuslListener:0bject = new Object();
// Defines function for Tistener object.
focusListener.onSetFocus = function(oldFocus_txt:TextField,
newFocus_txt:TextField) {
oldFocus_txt.border = false;
newFocus_txt.border = true;
}

This code creates an object named focusListener that defines an onSetFocus property
and assigns a function to the property. The function takes two parameters: a reference to
the text field that does not have focus and one to the text field that has focus. The
function sets the border property of the text field that does not have focus to false, and
sets the border property of the text field that has focus to true.

6. To register the focusListener object to receive events from the Selection object, add the
following code to the Actions panel:
// Registers focusListener with broadcaster.
Selection.addListener(focuslListener);

7. Test the application (Control > Test Movie), click in the first text field, and press the Tab
key to switch focus between fields.

Using event listeners with components

When you work with components, you have a slightly different event-listener syntax.
Components generate events, and you must specifically listen for these events by using either

a listener object or a custom function.

The following example shows how you can use event listeners to monitor the download
progress of a dynamically loaded image.

To listen for Loader component events:

1. Drag an instance of the Loader component onto the Stage from the Components panel.

2. Select the loader, and type my_ldr in the Instance Name text box in the Property inspector.

298 Handling Events

3. Add the following code to Frame 1 of the main Timeline;

System.security.allowDomain("http://www.helpexamples.com");

var loaderlListener:0bject = new Object();

loaderlListener.progress = function(evt_obj:0bject):Void {
trace(evt_obj.type); // progress
trace("\t" + evt_obj.target.byteslLoaded + " of " +
evt_obj.target.bytesTotal + " bytes loaded");

}

loaderListener.complete = function(evt_obj:0bject):Void {
trace(evt_obj.type); // complete

}

my_1ldr.addEventlListener("progress", loaderlListener);
my_ldr.addEventListener("complete", loaderlListener);
my_ldr.load("http://www.helpexamples.com/flash/images/imagel.jpg");

This ActionScript code defines a listener object named 1oaderListener, which listens for
two events: progress and complete. When each of these events are dispatched, their
code is executed, and debugging text is displayed in the Output panel if you test the SWF
file in the authoring tool.

Next you tell the my_1dr instance to listen for each of the two specified events (progress
and complete) and specify the listener object or function to execute when the event is
dispatched. Finally, the Loader.1oad () method is called, which triggers the image to
begin downloading,.

4. Select Control > Test Movie to test the SWF file.

The image downloads into the Loader instance on the Stage, and then several messages are
displayed in the Output panel. Depending on the size of the image you download, and if
the image was cached on the user’s local system, the progress event might be dispatched
numerous times, whereas the complete event is only dispatched after the image is
completely downloaded.

When you work with components and dispatch events, the syntax is slightly different
from the event listeners in previous examples. Most notably, you must use the
addEventListener() method instead of calling addListener (). Secondly, you must
specify the specific event you want to listen for as well as the event listener object

or function.

Using event listeners with components 299

Instead of using a listener object, as in the first procedure under “Using event listeners with
components” on page 298, you can use a custom function. The code in the previous example
could be rewritten as follows:

System.security.allowDomain("http://www.helpexamples.com");

my_ldr.addEventlListener("progress", progressListener);
my_ldr.addEventListener("complete", completelistener);
my_ldr.Toad("http://www.helpexamples.com/flash/images/imagel.png");

function progresslListener(evt_obj:0bject):Void {
trace(evt_obj.type); // progress
trace("\t" + evt_obj.target.byteslLoaded + " of " +
evt_obj.target.bytesTotal + " bytes loaded");

}

function completelistener(evt_obj:0bject):Void {
trace(evt_obj.type); // complete

}

In the previous examples, the event listeners are always added before the
Loader.load() method is called. If you call the Loader.7oad() method before you
specify the event listeners, the load might complete before the event listeners are
fully defined. This means that the content might display and the complete event might
not be caught.

310N

Using button and movie clip event
handlers

You can attach event handlers directly to a button or movie clip instance on the Stage by using
the onClipEvent () and on() event handlers. The onCl1ipEvent() event handler broadcasts
movie clip events, and the on() event handler handles button events.

To attach an event handler to a button or movie clip instance, click the button or movie clip
instance on the Stage to bring it in focus, and then enter code in the Actions panel. The title
of the Actions panel reflects that code will be attached to the button or movie clip: Actions
Panel - Button or Actions Panel - Movie Clip. For guidelines about using code that’s attached
to button or movie clip instances, see “Attaching code to objects” on page 680.

Do not confuse button and movie clip event handlers with component events, such as
SimpleButton.click,UIObject.hide,and UIObject reveal, which must be
attached to component instances and are discussed in Using ActionScript 2.0
Components.

310N

300 Handling Events

You can attach onClipEvent () and on() only to movie clip instances that have been placed
on the Stage during authoring. You cannot attach onC1ipEvent () or on() to movie clip
instances that are created at runtime (using the attachMovie() method, for example). To
attach event handlers to objects created at runtime, use event handler methods or event

listeners. (See “About ActionScript and events” on page 292 and “Using event listeners”

on page 296.)
g Attaching onClipEvent () and on() handlers is not a recommended practice. Instead, you
r_l|1 should put your code in frame scripts or in a class file, as demonstrated throughout this

manual. For more information, see “About ActionScript and events” on page 292 and
“Attaching code to objects” on page 680.

For more information on button and movie clip event handlers, see the following topics:
m “Using on and onClipEvent with event handler methods” on page 301
m “Specifying events for on or onClipEvent methods” on page 303

m “Attaching or assigning multiple handlers to one object” on page 304

Using on and onClipEvent with event handler
methods

You can, in some cases, use different techniques to handle events without conflict. Using the
on() and onClipEvent () methods doesn’t conflict with using event handler methods that
you define.

For example, suppose you have a button in a SWF file; the button can have an on(press)
handler that tells the SWF file to play, and the same button can have an onPress () method,
for which you define a function that tells an object on the Stage to rotate. When you click the
button, the SWF file plays and the object rotates. Depending on when and what kinds of
events you want to invoke, you can use the on() and onClipEvent() methods, event
handler methods, or both techniques of event handling.

However, the scope of variables and objects in on() and onClipEvent () handlers is different
than in event handler and event listeners. See “Event handler scope” on page 306.

You can also use on () with movie clips to create movie clips that receive button events. For
more information, see “Creating movie clips with button states” on page 305. For
information on specifying events for on() and onClipEvent (), see “Specifying events for on
or onClipEvent methods” on page 303.

Using button and movie clip event handlers 301

To use an on handler and onPress event handler:

1. Create a new Flash document and save it as handlers.fla.

2. Select the Rectangle Tool and draw a large square on the Stage.

3. Select the Selection Tool, double-click the square on the Stage, and press F8 to launch the
Convert to Symbol dialog box.

4. Enter a symbol name for the box, set the type to Movie clip and click OK.

5. Give the movie clip on the Stage an instance name of box_mc.

6. Add the following ActionScript directly on the movie clip symbol on the Stage:

on (press) {
trace("on (press) f{...}");
}

7. Add the following ActionScript to Frame 1 of the main Timeline:

box_mc.onPress = function() {
trace("box_mc.onPress = function() {...};");
by
8. Select Control > Test Movie to test the Flash document.
When you click the movie clip symbol on the Stage, the following output is sent to the
Output panel:

on (press) {...}

box_mc.onPress = function() {...};

Attaching onClipEvent () and on() handlers is not a recommended practice. Instead,
you should put your code in frame scripts or in a class file, as demonstrated
throughout this manual. For more information, see “About ActionScript and events”
on page 292 and “Attaching code to objects” on page 680.

310N

302 Handling Events

Specifying events for on or onClipEvent methods

To use an on() or onClipEvent() handler, attach it directly to an instance of a button or
movie clip on the Stage and specify the event you want to handle for that instance. For a
complete list of events supported by the on() and onC1ipEvent () event handlers, see on
handler and onClipEvent handler in the ActionScript 2.0 Language Reference.

For example, the following on () event handler executes whenever the user clicks the button to
which the handler is attached:

on (press) |

trace("Thanks for pressing me.");
}
You can specify two or more events for each on() handler, separated by commas. The
ActionScript in a handler executes when either of the events specified by the handler occurs.
For example, the following on () handler attached to a button executes whenever the mouse
rolls over and then off the button:

on (rollOver, roll0ut) {

trace("You rolled over, or rolled out");
}
You can also add key press events using on () handlers. For example, the following code traces
a string when you press the number 3 on the keyboard. Select a button or movie clip instance,
and add the following code to the Actions panel:

on (keyPress "3") {

trace("You pressed 3")
}
Or, if you want to trace when the Enter key is pressed by a user, you could use the following
code format. Select a button or movie clip instance, and add the following code to the Actions
panel:

on (keyPress "<Enter>") {

trace("Enter Pressed");
}
Select Control > Test Movie, and press the Enter key to see the string trace to the Output
panel. If nothing traces, select Control > Disable Keyboard Shortcuts and try again. For more
information on adding keypress interactivity to your applications, see Key.

Attaching onClipEvent() and on() handlers is not a recommended practice. Instead, you
should put your code in frame scripts or in a class file, as demonstrated throughout this
manual. For more information, see “About ActionScript and events” on page 292 and
“Attaching code to objects” on page 680.

310N

Using button and movie clip event handlers 303

Attaching or assigning multiple handlers to one object

You can also attach more than one handler to an object if you want different scripts to run
when different events occur. For example, you could attach the following onCl1ipEvent ()
handlers to the same movie clip instance. The first executes when the movie clip first loads (or
appears on the Stage); the second executes when the movie clip is unloaded from the Stage.

on (press) {
this.unloadMovie()

}

onClipEvent (load) f
trace("I've loaded");

}

onClipEvent (unload) f{
trace("I've unloaded");

}

Attaching onClipEvent () and on() handlers is not a recommended practice. Instead, you
should put your code in frame scripts or in a class file, as demonstrated throughout this
manual. For more information, see “About ActionScript and events” on page 292 and
“Attaching code to objects” on page 680.

310N

To attach multiple handlers to one object using code that’s placed on the timeline, see the
following example. The code attaches the onPress and onRelease handlers to a movie clip
instance.

To assign multiple handlers to an object:

1. Create a new Flash document, and name it assignMulti.fla.

2. Select Frame 1 of the Timeline, and add the following code in the Actions panel:

this.createEmptyMovieClip("img_mc", 10);
var mclListener:0bject = new Object();
mcllistener.onlLoadInit = function(target_mc:MovieClip) f{
target_mc.onPress function() {
target_mc.startDrag();

by
target_mc.onRelease = function() {
target_mc.stopDrag();
b
}
mcllistener.onlLoadError = function(target_mc:MovieClip) {
trace("error downloading image");
}
var img_mcl:MovieClipLoader = new MovieCliplLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/imagel.jpg",
img_mc);

304 Handling Events

3. Select Control > Test Movie to test the document.

The image loads into the img_mc instance, and the onPress() and onRelease() event
handlers let you drag the image around the Stage.

Broadcasting events from component
instances

For any component instance, you can specify how an event is handled. Component events are
handled differently than events broadcast from native ActionScript objects.

For more information, see Using ActionScript 2.0 Components.

Creating movie clips with button states

When you attach an on() handler to a movie clip, or assign a function to one of the
MovieClip mouse event handlers for a movie clip instance, the movie clip responds to mouse
events in the same way as a button. You can also create automatic button states (Up, Over,
and Down) in a movie clip by adding the frame labels _up, _over, and _down to the movie

clip’s timeline.

When the user moves the mouse over the movie clip or clicks it, the playhead is sent to the
frame with the appropriate frame label. To designate the hit area that a movie clip uses, you
use the hitArea (MovieClip.hitArea property) property.

To create button states in a movie clip:

1. Create a new Flash document and save it as mcbutton.fla.

2. Using the Rectangle Tool, draw a small rectangle (approximately 100 pixels wide by 20
pixels high) on the Stage.

3. Double-click the shape with the Selection tool and press F8 to launch the Convert to
Symbol dialog box.

Enter a symbol name of mcbutton, set the symbol type to movie clip, and click OK.
Double-click the movie clip symbol on the Stage to enter symbol-editing mode.
Create a new layer in the movie clip’s timeline and rename the new layer labels.

Enter a frame label of _up in the Property inspector.

® N o o »

Create a new layer above the default layer and labels layer.

Creating movie clips with button states 305

10.

1.

12.

13.

14.

15.
16.

17

. Rename the new layer actions and add the following ActionScript to Frame 1 of the movie

clip’s timeline:
stop();
Select Frame 10, all three layers, and select Insert > Timeline > Keyframe.

Add a stop() action on Frame 10 of the actions layer, and add a frame label of _over in

frame 10 of the labels layer.

Select the rectangle on Frame 10 and use the Property inspector to select a different

fill color.

Create new keyframes on frame 20 of each of the three layers, and add a frame label of

_down in the Property inspector.

Modify the color of the rectangle in Frame 20 so each of the three button states have a

different color.

Return to the main timeline.

To make the movie clip respond to mouse events, do one of the following:

» Attach an on() event handler to the movie clip instance, as discussed in “Using button
and movie clip event handlers” on page 300).

= Assign a function to one of the movie clip object’s mouse event handlers (onPress,
onRelease, and so forth), as discussed in “About ActionScript and events”
on page 292.

. Select Control > Test Movie to test the Flash document.

Move your mouse pointer over the movie clip instance on the Stage and the movie clip
automatically goes to the movie clip’s _over state. Click the movie clip instance and the

playhead automatically goes to the movie clip’s _down state.

Event handler scope

The scope, or context, of variables and commands that you declare and execute within an

event handler depends on the type of event handler you use: event handlers or event listeners,

oron() and onClipEvent () handlers. If youre defining an event handler in a new

ActionScript class, the scope also depends on how you define the event handler. This section

contains both ActionScript 1.0 and ActionScript 2.0 examples.

ActionScript 1.0 examples Functions assigned to event handler methods and event

listeners (as with all ActionScript functions that you write) define a local variable scope, but

on() and onClipEvent () handlers do not.

306 Handling Events

For example, consider the following two event handlers. The first is an onPress event handler
associated with a movie clip named c1ip_mc. The second is an on() handler attached to the
same movie clip instance.
// Attached to clip_mc's parent clip timeline:
clip_mc.onPress = function () {

var shoeColor; // local function variable

shoeColor = "blue"
}
// on() handler attached to clip_mc:
on (press) {

var shoeColor; // no local variable scope

shoeColor = "blue";
}
Although both event handlers contain the same code, they have different results. In the first
case, the color variable is local to the function defined for onPress. In the second case,
because the on() handler doesn’t define a local variable scope, the variable is defined in the

scope of the timeline of the c11p_mc movie clip.

For on() event handlers attached to buttons, rather than to movie clips, variables (as well as
function and method calls) are invoked in the scope of the timeline that contains the

button instance.

For instance, the following on () event handler produces different results that depend on
whether it’s attached to a button or movie clip object. In the first case, the play () function
call starts the playhead of the timeline that contains the button; in the second case, the
play () function call starts the timeline of the movie clip to which the handler is attached.
// Attached to button.
on (press) {

play(); // Plays parent timeline.
}
// Attached to movie clip.
on (press) {

play(); // Plays movie clip's timeline.
}

When attached to a button object, the play () function applies to the timeline that contains
the button—that is, the button’s parent timeline. But when the on(press) handler is
attached to a movie clip object, the play () function call applies to the movie clip that bears
the handler. If you attach the following code to a movie clip, it plays the parent timeline:

// Attached to movie clip.
on (press) {

_parent.play(); // Plays parent timeline.
}

Event handler scope 307

Within an event handler or event listener definition, the same play () function applies to the
timeline that contains the function definition. For example, suppose you declare the following
my_mc.onPress event handler method on the timeline that contains the my_mc movie

clip instance:

// Function defined on a timeline

my_mc.onPress = function () {

play(); // plays timeline that it is defined on.
by

To play the movie clip that defines the onPress event handler, refer explicitly to that clip
using the this keyword, as follows:

// Function defined on root timeline
my_mc.onPress = function () {

this.play(); // plays timeline of my_mc clip.
by

However, the same code placed on the root timeline for a button instance would instead play
the root timeline:

my_btn.onPress = function () {
this.play(); // plays root timeline
by

For more information about the scope of the this keyword in event handlers, see “Scope of
the this keyword” on page 310.

ActionScript 2.0 example The following TextLoader class is used to load a text file and
display some text after it successfully loads the file.

// Textloader.as
class TextlLoader {
private var params_lv:LoadVars;
public function TextlLoader() {
params_lv = new LoadVars();
params_lv.onlLoad = onlLoadVarsDone;
params_Tlv.load("http://www.helpexamples.com/flash/params.txt");
}
private function onlLoadVarsDone(success:Boolean):Void {
_levelO.createTextField("my_txt", 999, 0, 0, 100, 20);
_levelO.my_txt.autoSize = "left";
_levelO.my_txt.text = params_lv.monthNames; // undefined
}

308 Handling Events

This code cannot work correctly because there is a problem involving scope with the event
handlers, and what this refers to is confused between the onLoad event handler and the class.
The behavior that you might expect in this example is that the onLoadVarsDone () method
will be invoked in the scope of the TextLoader object; but it is invoked in the scope of the
LoadVars object because the method was extracted from the TextLoader object and grafted
onto the LoadVars object. The LoadVars object then invokes the this.onLoad event handler
when the text file is successfully loaded, and the onLoadVarsDone () function is invoked with
this set to LoadVars, not TextLoader. The params_1v object resides in the this scope when
it is invoked, even though the onLoadVarsDone () function relies on the params_1v object by
reference. Therefore, the onLoadVarsDone() function is expecting a params_1v.params_lv
instance that does not exist.

To correctly invoke the onLoadVarsDone() method in the scope of the TextLoader object,
you can use the following strategy: use a function literal to create an anonymous function that
calls the desired function. The owner object is still visible in the scope of the anonymous
function, so it can be used to find the calling TextLoader object.

// Textloader.as
class Textloader {
private var params_lv:LoadVars;
public function TextlLoader() {
params_lv = new LoadVars();
var owner:Textloader = this;
params_lv.onlLoad = function (success:Boolean):Void f{
owner.onlLoadVarsDone(success);
}
params_Tlv.load("http://www.helpexamples.com/flash/params.txt");
}
private function onlLoadVarsDone(success:Boolean):Void f{
_levelO.createTextField("my_txt", 999, 0, 0, 100, 20);
_levelO.my_txt.autoSize = "left";
_levelO.my_txt.text = params_lv.monthNames; //
January,February,March, ...
}

Event handler scope 309

Scope of the this keyword

The this keyword refers to the object in the currently executing scope. Depending on what
type of event handler technique you use, this can refer to different objects.

Within an event handler or event listener function, this refers to the object that defines the
event handler or event listener method. For example, in the following code, this refers to
my_mc:
// onPress() event handler attached to main timeline:
my_mc.onPress = function () {

trace(this); // _levelO.my_mc
}
Within an on() handler attached to a movie clip, this refers to the movie clip to which the
on() handler is attached, as shown in the following code:

// Attached to movie clip named my_mc on main timeline
on (press) {
trace(this); // _levelO.my_mc
}
Within an on() handler attached to a button, this refers to the timeline that contains the
button, as shown in the following code:

// Attached to button on main timeline
on (press) {

trace(this); // _level0
}

Using the Delegate class

The Delegate class lets you run a function in a specific scope. This class is provided so that
you can dispatch the same event to two different functions (see Using ActionScript 2.0
Components), and so that you can call functions within the scope of the containing class.

When you pass a function as a parameter to EventDispatcher.addEventListener(), the
function is invoked in the scope of the broadcaster component instance, not the object in
which it is declared (see Using ActionScript 2.0 Components). You can use
Delegate.create() to call the function within the scope of the declaring object.

The following example shows three methods of listening for events for a Button component
instance. Each way that you add event listeners to a Button component instance results in the
event being dispatched in a different scope.

To use the Delegate class to listen for events:

1. Create a new Flash document and save it as delegate.fla.

310 Handling Events

2. Drag a Button component from the User Interface folder of the Components panel to
the library.

You add and position the button instance on the Stage using ActionScript in a later step.
3. Add the following ActionScript to Frame 1 of the main Timeline:

import mx.controls.Button;
import mx.utils.Delegate;

function clickHandler(eventObj:0bject):Void {
trace("[" + eventObj.type + "] event on " + eventObj.target + "
instance.");
trace("\t this -> " + this);

}

var buttonlListener:0bject = new Object();
buttonListener.click = function(eventObj:0bject):Void {

trace("[" + eventObj.type + "] event on " + eventObj.target + "
instance.");

trace("\t this -> " + this);
by

this.createClassObject(Button, "one_button", 10, {label:"One"});
one_button.move(10, 10);
one_button.addEventListener("click", clickHandler);

this.createClassObject(Button, "two_button", 20, {label:"Two"});
two_button.move(120, 10);
two_button.addEventListener("click", buttonlListener);

this.createClassObject(Button, "three_button", 30, {label:"Three"});

three_button.move(230, 10);

three_button.addEventListener("click", Delegate.create(this,
clickHandler));

The preceding code is separated into six sections (each section is separated by a blank

line). The first section imports the Button class (for the Button component) as well as the

Delegate class. The second section of code defines a function that you call when the user

clicks some of the buttons. The third section of code creates an object that you use as an

event listener, and the object listens for a single event, c11ck.

Using the Delegate class 3N

The remaining three sections of code each create a new Button component instance on
the Stage, reposition the instance, and add an event listener for the c11ick event. The first
button adds an event listener for the c1ick event and passes a reference to a click
handler function directly. The second button adds an event listener for the c1ick event
and passes a reference to a listener object, which contains a handler for the c11ck event.
Finally, the third function adds an event listener for the c11ck event, uses the Delegate
class to dispatch the click event in the this scope (where this equals _Tevel0) and passes
a reference to the c11ick handler function.

4. Select Control > Test Movie to test the Flash document.
5. Click each button instance on the Stage to see which scope in which the event is handled.
a. Click the first button on the Stage to trace the following text in the Output panel:
[click] event on _levelO.one_button instance.
this -> _level0O.one_button
When you click one_button instance, the this scope refers to the button instance
itself.
b. Click the second button on the Stage to trace the following text in the Output panel:
[click] event on _levelO.two_button instance.
this -> [object Object]
When you click the two_button instance, the this scope refers to the
buttonListener object.
c. Click the third button on the Stage to trace the following text in the Output panel:
[click] event on _levelO.three_button instance.
this -> _level0
When you click the three_button instance, the this scope refers to the scope that
you specify in the Delegate.create() method call, or in this case, _Tevel0.
312 Handling Events

CHAPTER 10

Working with Movie Clips

Movie clips are like self-contained SWF files that run independently of each other and the
timeline that contains them. For example, if the main timeline has only one frame and a
movie clip in that frame has ten frames, each frame in the movie clip plays when you play the
main SWF file. A movie clip can, in turn, contain other movie clips, or nested clips. Movie
clips nested in this way have a hierarchical relationship, where the parent clip contains one or

more child clips.

You can name movie clip instances to uniquely identify them as objects that can be controlled
with ActionScript. When you give a movie clip instance an instance name, the instance name
identifies it as an object of the MovieClip class type. You use the properties and methods of
the MovieClip class to control the appearance and behavior of movie clips at runtime.

You can think of movie clips as autonomous objects that can respond to events, send messages
to other movie clip objects, maintain their state, and manage their child clips. In this way,
movie clips provide the foundation of component-based architecture in Flash CS3 Professional.
In fact, the components available in the Components panel (Window > Components) are
sophisticated movie clips that are designed and programmed to look and behave in certain
ways.

For information on using the Drawing API (drawing methods of the MovieClip class), filters,
blends, scripted animation and more, see Chapter 12, “Animation, Filters, and Drawings.”

313

For more information on movie clips, see the following topics:

About controlling movie clips with ActionScript 314
Calling multiple methods on asingle movieclip 316
Loading and unloading SWF files i 316
Changing movie clip position and appearance, 319
Dragging movie ClipS . ..o oot e 320
Creating movieclipsatruntime. i e 321
Adding parameters to dynamically created movieclips....................... 325
Managing movieclipdepths 327
About caching and scrolling movie clips with ActionScript 330
Usingmovieclipsasmasks e 337
Handling movieclipevents. i 339
Assigning aclasstoamovieclipsymbol........... i 339
Initializing class properties e 340

About controlling movie clips with
ActionScript

You can use global ActionScript functions or the methods of the MovieClip class to perform
tasks on movie clips. Some methods of the MovieClip class perform the same tasks as
functions of the same name; other MovieClip methods, such as hitTest () and
swapDepths (), don't have corresponding function names.

The following example shows the difference between using a method and using a function.
Each statement duplicates the instance my_mc, names the new clip new_mc, and places it at a

depth of 5.

my_mc.duplicateMovieClip("new_mc", 5);

duplicateMovieClip(my_mc, "new_mc", 5);

When a function and a method offer similar behaviors, you can select to control movie clips

by using either one. The choice depends on your preference and your familiarity with writing
scripts in ActionScript. Whether you use a function or a method, the target timeline must be
loaded in Flash Player when the function or method is called.

To use a method, activate it by using the target path of the instance name, a dot (.), and then
the method name and parameters, as shown in the following statements:

myMovieClip.play();
parentClip.childClip.gotoAndPlay(3);

314 Working with Movie Clips

In the first statement, play () moves the playhead in the myMovieClip instance. In the
second statement, gotoAndPlay () sends the playhead in chi1dC1ip (which is a child of the
instance parentC1ip) to Frame 3 and continues to move the playhead.

Global functions that control a timeline have a target parameter that let you specify the
target path to the instance that you want to control. For example, in the following script
startDrag() targets the instance the code is placed on and makes it draggable:

my_mc.onPress = function() f{
startDrag(this);

by

my_mc.onRelease = function() {
stopDrag();

by

The following functions target movie clips: ToadMovie(), unloadMovie(),

ToadVariables(), setProperty(), startDrag(), duplicateMovieClip(),and
removeMovieClip(). To use these functions, you must enter a target path for the function’s

target parameter to indicate the target of the function.

The following MovieClip methods can control movie clips or loaded levels and do not have
equivalent functions: MovieClip.attachMovie(), MovieClip.createEmptyMovieClip(),
MovieClip.createTextField(), MovieClip.getBounds(),
MovieClip.getByteslLoaded(), MovieClip.getBytesTotal(),MovieClip.getDepth(),
MovieClip.getInstanceAtDepth(), MovieClip.getNextHighestDepth(),
MovieClip.globalTolLocal(), MovieClip.localToGlobal(),MovieClip.hitTest(),
MovieClip.setMask(), MovieClip.swapDepths().

For more information about these functions and methods, see their entries in the ActionScript
2.0 Language Reference.

For a sample source file, animation.fla, that illustrates scripted animation in Flash, see the
Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/Animation folder to access the sample.
For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download and decompress the Samples zip file and navigate to the
ActionScript2.0/Galleries folder to access these samples:

m gallery_tree.fla

m gallery_tween.fla

These files provide examples of how to use ActionScript to control movie clips dynamically
while loading image files into a SWF file, which includes scripted animation.

About controlling movie clips with ActionScript 315

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Calling multiple methods on a single
movie clip

You can use the with statement to address a movie clip once and then execute a series of
methods on that clip. The with statement works on all ActionScript objects (for example,
Array, Color, and Sound)—not only movie clips.

The with statement takes a movie clip as a parameter. The object you specify is added to the
end of the current target path. All actions nested inside a wi th statement are carried out inside
the new target path, or scope. For example, in the following script, the donut.hole object
passes to the with statement to change the properties of hole:

with (donut.hole) f{

_alpha = 20;
_xscale = 150;
_yscale = 150;

}

The script behaves as if the statements inside the wi th statement were called from the timeline
of the hoTe instance. The preceding code is equivalent to the following example:
donut.hole._alpha = 20;

donut.hole._xscale = 150;
donut.hole._yscale = 150;

The preceding code is also equivalent to the following example:

with (donut) {
hole._alpha = 20;
hole._xscale = 150;
hole._yscale 150;

}

Loading and unloading SWF files

To play additional SWF files without closing Flash Player, or to switch SWF files without
loading another HTML page, you can use one of the following options:

m The global 10adMovie() function or ToadMovie () method of the MovieClip class.

m The 10adClip() method of the MovieClipLoader class. For more information on the
MovieClipLoader class, see MovieClipLoader in the ActionScript 2.0 Language Reference.

316 Working with Movie Clips

You can also use the 1oadMovie() method to send variables to a CGI script, which generates
a SWF file as its CGI output. For example, you might use this procedure to load dynamic
SWF or image files based on specified variables within a movie clip. When you load a SWF
file, you can specify a level or movie clip target into which the SWF file loads. If you load a
SWF file into a target, the loaded SWF file inherits the properties of the targeted movie clip.
After the Flash movie is loaded, you can change those properties.

The unloadMovie() method removes a SWF file previously loaded by the 1oadMovie()
method. Explicitly unloading SWF files with unloadMovie() ensures a smooth transition
between SWF files and can decrease the memory that Flash Player requires. It can be more
efficient in some situations to set the movie clip’s _visible property to false instead of
unloading the clip. If you might reuse the clip at a later time, set the _visible property to
false and then set to true when necessary.

Use 1oadMovie() to do any of the following:

m Play a sequence of banner ads that are SWF files by placing a ToadMovie() function in a
container SWF file that sequentially loads and unloads SWF banner files.

m Develop a branching interface with links that lets the user select among several SWF files
that are used to display a site’s content.

m Build a navigation interface with navigation controls in level 0 that loads content into
other levels. Loading content into levels helps produce smoother transitions between
pages of content than loading new HTML pages in a browser.

For more information on loading SWF files, see “Loading external SWF and image files”
on page 551.

For more information, see the following topics:

m “Specifying a root timeline for loaded SWF files” on page 317

m “Loading image files into movie clips” on page 319

Specifying a root timeline for loaded SWF files

The _root ActionScript property specifies or contains a reference to the root timeline of a
SWE file. If a SWF file has multiple levels, the root timeline is on the level that contains the
currently executing script. For example, if a script in level 1 evaluates _root, _Tevell is
returned. However, the timeline that _root specifies can change, depending on whether a
SWEE file is running independently (in its own level) or was loaded into a movie clip instance
by a ToadMovie() call.

Loading and unloading SWF files 317

In the following example, consider a file named container.swf that has a movie clip instance
named target_mc on its main timeline. The container.swf file declares a variable named
userName on its main timeline; the same script then loads another file called contents.swf into
the target_mc movie clip:

// In container.swf:
_root.userName = "Tim";
target_mc.loadMovie("contents.swf");
my_btn.onRelease = function():Void {
trace(_root.userName);
by
In the following example, the loaded SWF file, contents.swf, also declares a variable named
userName on its root timeline:

// In contents.swf:

_root.userName = "Mary";

After contents.swf loads into the movie clip in container.swf, the value of userName that’s
attached to the root timeline of the hosting SWF file (container.swf) would be set to "Mary"
instead of "Tim". This could cause code in container.swf (as well as contents.swf) to

malfunction.

To force _root to always evaluate to the timeline of the loaded SWF file, rather than the
actual root timeline, use the _lockroot property. You can set this property from within the
SWF file being loaded or in the SWF file that is initiating the loading. When _Tockroot is set
to true on a movie clip instance, that movie clip acts as _root for any SWF file loaded into it.
When _Tockroot is set to true within a SWF file, that SWF file acts as its own root, no
matter what other SWF file loads it. Any movie clip, and any number of movie clips, can set
_lockroot to true. By default, this property is false.

For example, the author of container.swf could put the following code on Frame 1 of the
main Timeline:

// Added to Frame 1 in container.swf:
target_mc._lockroot = true;

This step ensures that any references to _root in contents.swf—or any SWF file loaded into
target_mc—refers to its own timeline, not to the actual root timeline of container.swf. Now
when you click the button, "Tim" appears.

Alternatively, the author of contents.swf could add the following code to its main timeline:

// Added to Frame 1 in contents.swf:
this._lockroot = true;

This would ensure that no matter where contents.swf is loaded, any reference it makes to
_root refers to its own main timeline, not to that of the hosting SWF file.

For more information, see _lockroot (MovieClip._lockroot property).

318 Working with Movie Clips

Loading image files into movie clips

You can use the ToadMovie() function, or the MovieClip method of the same name, to load
image files into a movie clip instance. You can also use the ToadMovieNum() function to load
an image file into a level.

When you load an image into a movie clip, the upper-left corner of the image is placed at the
registration point of the movie clip. Because this registration point is often the center of the
movie clip, the loaded image might not appear centered. Also, when you load an image to a
root timeline, the upper-left corner of the image is placed on the upper-left corner of the
Stage. The loaded image inherits rotation and scaling from the movie clip, but the original

content of the movie clip is removed.

For more information, see 1oadMovie function, loadMovie (MovieClip.loadMovie
method), and ToadMovieNum function in the ActionScript 2.0 Language Reference and
“Loading external SWF and image files” on page 551.

Changing movie clip position and
appearance

To change the properties of a movie clip as it plays, write a statement that assigns a value to a
property or use the setProperty () function. For example, the following code sets the
rotation of instance mc to 45:

my_mc._rotation = 45;

This is equivalent to the following code, which uses the setProperty () function:

setProperty("my_mc", _rotation, 45);

Some properties, called read-only properties, have values that you can read but cannot set.
(These properties are specified as read-only in their ActionScript 2.0 Language Reference
entries.) The following are read-only properties: _currentframe, _droptarget,
_framesloaded, _parent, _target, _totalframes, _url, _xmouse, and _ymouse.

You can write statements to set any property that is not read-only. The following statement
sets the _alpha property of the wheel_mc movie clip instance, which is a child of the

car_mc instance:
car_mc.wheel_mc._alpha = 50;
In addition, you can write statements that get the value of a movie clip property. For example,

the following statement gets the value of the _xmouse property on the current level’s timeline
and sets the _x property of the my_mc instance to that value:

this.onEnterFrame = function() {

Changing movie clip position and appearance 319

my_mc._x = _root._xmouse;
by

This is equivalent to the following code, which uses the getProperty () function:

this.onEnterFrame = function() ({

my_mc._x = getProperty(_root, _xmouse);
b
The _x, _y, _rotation, _xscale, _yscale, _height, _width, _alpha,and _visible
properties are affected by transformations on the movie clip’s parent, and transform the movie
clip and any of the clip’s children. The _focusrect, _highquality, _quality, and
_soundbuftime properties are global; they belong only to the level 0 main timeline. All other
properties belong to each movie clip or loaded level.

For a list of movie clip properties, see the property summary for the MovieClip class in the
ActionScript 2.0 Language Reference.

For a sample source file, animation.fla, that illustrates scripted animation in Flash, see the
Flash Samples page at www.adobe.com/go/learn_{l_samples. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/Animation folder to access the sample.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download and decompress the Samples zip file and navigate to the
ActionScript2.0/Galleries folder to access these samples:

m gallery_tree.fla

m gallery_tween.fla

Dragging movie clips

You can use the global startDrag() function or the MovieClip.startDrag() method to
make a movie clip draggable. For example, you can make a draggable movie clip for games,
drag-and-drop functions, customizable interfaces, scroll bars, and sliders.

A movie clip remains draggable until explicitly stopped by stopDrag() or until another
movie clip is targeted with startDrag(). Only one movie clip at a time can be dragged in a

SWE file.

To create more complicated drag-and-drop behavior, you can evaluate the _droptarget
property of the movie clip being dragged. For example, you might examine the _droptarget
property to see if the movie clip was dragged onto a specific movie clip (such as a “trash can”

movie clip) and then trigger another action, as shown in the following example:

// Drag a piece of garbage.
garbage_mc.onPress = function() f{
this.startDrag(false);

320 Working with Movie Clips

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

b
// When the garbage is dragged over the trashcan, make it invisible.
garbage_mc.onRelease = function() f{

this.stopDrag();

// Convert the slash notation to dot notation using eval.

if (eval(this._droptarget) == trashcan_mc) {

garbage_mc._visible = false;

}
bs
For more information, see startDrag function orsunt[kag(MovieC]ip.startDrag
method) in the ActionScript 2.0 Language Reference.

For a sample source file, gallery_tween.fla, that provides an example of how to use
ActionScript to control movie clips dynamically while loading image files into a SWF file,
which includes making each movie clip draggable, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Galleries folder to access the sample.

Creating movie clips at runtime

In addition to creating movie clip instances in the Flash authoring environment, you can also

create movie clip instances at runtime in the following ways:
m “Creating an empty movie clip” on page 322

m “Duplicating or removing a movie clip” on page 323

m “Attaching a movie clip symbol to the Stage” on page 323

Each movie clip instance you create at runtime must have an instance name and a depth
(stacking, or z-order) value. The depth you specify determines how the new clip overlaps with
other clips on the same timeline. It also lets you overwrite movie clips that reside at the same
depth. (See “Managing movie clip depths” on page 327.)

For a sample source file, gallery_tween.fla, that provides an example of how to use
ActionScript to control movie clips dynamically while loading image files into a SWF file, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Galleries folder to access the sample.

For a sample source file, animation.fla, that creates and removes numerous movie clips at
runtime, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to

access the sample.

Creating movie clips at runtime 321

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

For more information, see the following topics:
m “Creating an empty movie clip” on page 322
m “Duplicating or removing a movie clip” on page 323

m “Attaching a movie clip symbol to the Stage” on page 323

Creating an empty movie clip

To create a new, empty movie clip instance on the Stage, use the createEmptyMovieClip()
method of the MovieClip class. This method creates a movie clip as a child of the clip that
calls the method. The registration point for a newly created empty movie clip is the upper-left

corner.

For example, the following code creates a new child movie clip named new_mc at a depth of
10 in the movie clip named parent_mc:

parent_mc.createEmptyMovieClip("new_mc", 10);

The following code creates a new movie clip named canvas_mc on the root timeline of the
SWE file in which the script is run, and then activates 10adMovie() to load an external JPEG
file into itself:

this.createEmptyMovieClip("canvas_mc", 10);
canvas_mc.loadMovie("http://www.helpexamples.com/flash/images/imagel.jpg");
As shown in the following example, you can load the image2.jpg image into a movie clip and
use the MovieClip.onPress() method to make the image act like a button. Loading an
image using 1oadMovie() replaces the movie clip with the image but doesn’t give you access
to movie clip methods. To get access to movie clip methods, you must create an empty parent
movie clip and a container child movie clip. Load the image into the container and place the
event handler on the parent movie clip.

// Creates a parent movie clip to hold the container.
this.createEmptyMovieClip("my_mc", 0);

// Creates a child movie clip inside of "my_mc".
// This is the movie clip the image will replace.
my_mc.createEmptyMovieClip("container_mc",99);

// Use MovieCliplLoader to load the image.

var my_mcl:MovieCliplLoader = new MovieCliplLoader();

my_mcl.loadClip("http://www.helpexamples.com/flash/images/image2.jpg",
my_mc.container_mc);

// Put event handler on the my_mc parent movie clip.
my_mc.onPress = function():Void {

trace("It works");
by

322 Working with Movie Clips

For more information, see creatcEmptyMovieClip (MovieClip.createEmptyMovieClip
method) in the ActionScript 2.0 Language Reference.

For a sample source file, animation.fla, that creates and removes numerous movie clips at
runtime, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to

access the sample.

Duplicating or removing a movie clip

To duplicate or remove movie clip instances, use the dupTicateMovieClip() or
removeMovieClip() global functions, or the MovieClip class methods of the same name.
The duplicateMovieClip() method creates a new instance of an existing movie clip
instance, assigns it a new instance name, and gives it a depth, or z-order. A duplicated movie
clip always starts at Frame 1, even if the original movie clip was on another frame when
duplicated and is always in front of all previously defined movie clips placed on the timeline.

To delete a movie clip you created with duplicateMovieClip(), use removeMovieClip().
Duplicated movie clips are also removed if the parent movie clip is deleted.

For more information, see duplicateMovieClip function and removeMovieClip
function in the ActionScript 2.0 Language Reference.

For a sample source file, animation.fla, that creates and removes numerous movie clips at
runtime, see the Flash Samples page at www.adobe.com/go/learn_{l_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to
access the sample.

Attaching a movie clip symbol to the Stage

The last way to create movie clip instances at runtime is to use the attachMovie() method.
The attachMovie() method attaches to the Stage an instance of a movie clip symbol in the

SWE files library. The new clip becomes a child clip of the clip that attached it.

To use ActionScript to attach a movie clip symbol from the library, you must export the
symbol for ActionScript and assign it a unique linkage identifier. To do this, you use the
Linkage Properties dialog box.

Creating movie clips at runtime 323

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

By default, all movie clips that are exported for use with ActionScript load before the first

frame of the SWF file that contains them. This can create a delay before the first frame plays.
When you assign a linkage identifier to an element, you can also specify whether this content
should be added before the first frame. If it isn’t added in the first frame, you must include an
instance of it in some other frame of the SWF file; if you don’t, the element is not exported to

the SWF file.

To assign a linkage identifier to a movie clip:

1. Select Window > Library to open the Library panel.

2. Select a movie clip in the Library panel.

3. In the Library panel, select Linkage from the Library panel pop-up menu.
The Linkage Properties dialog box appears.

4. For Linkage, select Export for ActionScript.

5. For Identifier, enter an ID for the movie clip.
By default, the identifier is the same as the symbol name.

You can optionally assign an ActionScript class to the movie clip symbol. This lets the
movie clip inherit the methods and properties of a specified class. (See “Assigning a class to
a movie clip symbol” on page 339.)

6. Ifyou don’t want the movie clip to load before the first frame, deselect the Export in First
Frame option.

If you deselect this option, place an instance of the movie clip on the frame of the timeline
where you want it to be available. For example, if the script you're writing doesn’t reference
the movie clip until Frame 10, place an instance of the symbol at or before Frame 10 on
the Timeline.

7. Click OK.

After you've assigned a linkage identifier to a movie clip, you can attach an instance of the
symbol to the Stage at runtime by using attachMovie().

To attach a movie clip to another movie clip:
1. Assign a linkage identifier to a movie clip library symbol, as described in the

previous example.
2. With the Actions panel open (Window > Actions), select a frame in the Timeline.

3. In the Actions panel’s Script pane, type the name of the movie clip or level to which you

want to attach the new movie clip.

For example, to attach the movie clip to the root timeline, type this.

324 Working with Movie Clips

4. In the Actions toolbox (at the left of the Actions panel), select ActionScript 2.0 Classes >
Movie > MovieClip > Methods, and select attachMovie().

5. Using the code hints that appear as a guide, enter values for the following parameters:
» For idName, specify the identifier you entered in the Linkage Properties dialog box.
= For newName, enter an instance name for the attached clip so that you can target it.
» For depth, enter the level at which the duplicate movie clip will be attached to the

movie clip. Each attached movie clip has its own stacking order, with level 0 as the
level of the originating movie clip. Attached movie clips are always on top of the
original movie clip, as shown in the following example:
this.attachMovie("calif_id", "california_mc", 10);
For more information, see attachMovie (MovieClip.attachMovie method) in the
ActionScript 2.0 Language Reference.

Adding parameters to dynamically
created movie clips

When you use MovieClip.attachMovie() and MovieClip.duplicateMovie() to create or
duplicate a movie clip dynamically, you can populate the movie clip with parameters from
another object. The initObject parameter of attachMovie() and duplicateMovie()
allows dynamically created movie clips to receive clip parameters.

For more information, see attachMovie (MovieClip.attachMovie method) and
duplicateMovieClip (MovieClip.duplicateMovieClip method) in the ActionScript 2.0
Language Reference.

To populate a dynamically created movie clip with parameters from a specified
object:
Do one of the following:
m Use the following syntax with attachMovie():
myMovieClip.attachMovie(idName, newName, depth [, initObject]);
m Use the following syntax with duplicateMovie():
myMovieClip.duplicateMovie(idName, newName, depth [, initObject]);

The initObject parameter specifies the name of the object whose parameters you want to
use to populate the dynamically created movie clip.

To populate a movie clip with parameters by using attachMovie():
1. In a new Flash document, create a movie clip symbol by selecting Insert > New Symbol.

Adding parameters to dynamically created movie clips 325

Type dynamic_mc in the Symbol Name text box, and select the Movie Clip behavior.

3. Inside the symbol, create a dynamic text field on the Stage with an instance name of

1.

name_txt.
Make sure this text field is below and to the right of the registration point.

Select Frame 1 of the movie clip’s Timeline, and open the Actions panel (Window >
Actions).

. Create a new variable called name_str, and assign its value to the text property of

name_txt, as shown in the following example:

var name_str:String;
name_txt.text = name_str;

Select Edit > Edit Document to return to the main Timeline.

Select the movie clip symbol in the library, and select Linkage from the Library pop-up
menu.

The Linkage Properties dialog box appears.

Select the Export for ActionScript option, and Export in first frame.

. Type dynamic_id into the Indentifier text box, and click OK.
10.

Select the first frame of the main Timeline, and add the following code to the Actions
panel’s Script pane:

/* Attaches a new movie clip and moves it to an x and y coordinate of 50
*/

this.attachMovie("dynamic_id", "newClip_mc", 99, {name_str:"Erick",
_x:50, _y:50});

Test the Flash document (Control > Test Movie).

The name you specified in the attachMovie() call appears inside the new movie clip’s

text field.

For a sample source file, gallery_tween.fla, that provides an example of how to use

ActionScript to control movie clips dynamically while loading image files into a SWF file,

which includes making each movie clip draggable, see the Flash Samples page at

www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and

navigate to the ActionScript2.0/Galleries folder to access the sample.

For a sample source file, animation.fla, that creates and removes numerous movie clips at

runtime, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and

decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to

access the sample.

326 Working with Movie Clips

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Managing movie clip depths

Every movie clip has its own z-order space that determines how objects overlap within its
parent SWF file or movie clip. Every movie clip has an associated depth value, which
determines if it renders in front of or behind other movie clips in the same movie clip
timeline. When you create a movie clip at runtime by using attachMovie
(MovieClip.attachMovie method), duplicateMovieClip
(MovieClip.duplicateMovieClip method), or createEmptyMovieClip
(MovieClip.createEmptyMovieClip method), you always specify a depth for the new clip
as a method parameter. For example, the following code attaches a new movie clip to the

timeline of a movie clip named container_mc with a depth value of 10.

container_mc.attachMovie("symbolID", "clipl_mc", 10);

This example creates a new movie clip with a depth of 10 within the z-order space of
container_mc.

The following code attaches two new movie clips to container_mc. The first clip, named
clipl_mc, is rendered behind c1ip2_mc because it was assigned a lower depth value.
container_mc.attachMovie("symbolID", "clipl_mc", 10);
container_mc.attachMovie("symbolID", "clip2_mc", 15);

Depth values for movie clips can range from -16384 to 1048575. If you create or attach a new
movie clip on a depth that already has a movie clip, the new or attached clip overwrites the
existing content. To avoid this problem, use the MovieClip.getNextHighestDepth()
method; however, do not use this method with components that use a different depth-
management system. Instead, use DepthManager class with component instances. For more

information, see ActionScript 2.0 Components Language Reference.

The MovieClip class provides several methods for managing movie clip depths; for more
information, see getNextHighestDepth (MovieClip.getNextHighestDepth method),
getInstanceAtDepth (MovieClip.getInstanceAtDepth method), getDepth
(MovieClip.getDepth method), and swapDepths (MovieClip.swapDepths method) in
the ActionScript 2.0 Language Reference.

For more information on movie clip depths, see the following topics:

m “Determining the next highest available depth” on page 328

m “Determining the instance at a particular depth” on page 328

m “Determining the depth of an instance” on page 329

m “Swapping movie clip depths” on page 329

Managing movie clip depths 327

Determining the next highest available depth

To determine the next highest available depth within a movie clip, use
MovieClip.getNextHighestDepth(). The integer value returned by this method indicates
the next available depth that will render in front of all other objects in the movie clip.

The following code attaches a new movie clip, with a depth value of 10, on the root timeline
named file_mc. It then determines the next highest available depth in that same movie clip
and creates a new movie clip called edit_mc at that depth.

this.attachMovie("menuClip","file_mc", 10, {_x:0, _y:0});
trace(file_mc.getDepth()); // 10

var nextDepth:Number = this.getNextHighestDepth();
this.attachMovie("menuClip", "edit_mc", nextDepth, {_x:200, _y:0});
trace(edit_mc.getDepth()); // 11

In this case, the variable named nextDepth contains the value 11 because that’s the next

highest available depth for the edit_mc movie clip.

Do not use MovieClip.getNextHighestDepth() with components; instead, use the depth
manager. For more information, see “DepthManager class” in Action Script 2.0 Components
Language Reference. For more information on MovieClip.getNextHighestDepth(), see
getNextHighestDepth (MovieClip.getNextHighestDepth method).

To obtain the current highest occupied depth, subtract 1 from the value that
getNextHighestDepth() returns, as shown in the next section.

Determining the instance at a particular depth

To determine the instance at a particular depth, use MovieClip.getInstanceAtDepth().
This method returns a reference to the MovieClip instance at the specified depth.

The following code combines getNextHighestDepth() and getInstanceAtDepth() to
determine the movie clip at the (current) highest occupied depth on the root timeline.

var highestOccupiedDepth:Number = this.getNextHighestDepth() - 1;

var instanceAtHighestDepth:MovieClip =
this.getInstanceAtDepth(highestOccupiedDepth);

For more information, see getInstanceAtDepth (MovieClip.getInstanceAtDepth

method) in the ActionScript 2.0 Language Reference.

328 Working with Movie Clips

Determining the depth of an instance

To determine the depth of a movie clip instance, use MovieClip.getDepth().

The following code iterates over all the movie clips on a SWF file’s main timeline and shows
each clip’s instance name and depth value in the Output panel:

for (var item:String in _root) {
var obj:0bject = _root[item];
if (obj instanceof MovieClip) {
var objDepth:Number = obj.getDepth();
trace(obj._name + ":" + objDepth)
}
}
For more information, see getDepth (MovieClip.getDepth method) in the ActionScript

2.0 Language Reference.

Swapping movie clip depths

To swap the depths of two movie clips on the same timeline, use MovieClip.swapDepths().
The following examples show how two movie clip instances can swap depths at runtime.

To swap movie clip depths:

1. Create a new Flash document called swap.fla.

2. Draw a blue circle on the Stage.

3. Select the blue circle, and then select Modify > Convert to Symbol.

4. Select the Movie clip option, and then click OK.

5. Select the instance on the Stage, and then type first_mc into the Instance Name text box
in the Property inspector.

6. Draw a red circle on the Stage, and then select Modify > Convert to Symbol.

7. Select the Movie clip option, and then click OK.

8. Select the instance on the Stage, and then type second_mc into the Instance Name text box
in the Property inspector.

9. Drag the two instances so that they overlap slightly on the Stage.
10. Select Frame 1 of the Timeline, and then type the following code into the Actions panel:

first_mc.onRelease = function() {
this.swapDepths(second_mc);
by
second_mc.onRelease = function() {
this.swapDepths(first_mc);
by

Managing movie clip depths 329

11. Select Control > Test Movie to test the document.

When you click the instances on the Stage, they swap depths. You'll see the two instances
change which clip is on top of the other clip.

For more information, see swapDepths (MovieClip.swapDepths method) in the
ActionScript 2.0 Language Reference.

About caching and scrolling movie clips
with ActionScript

As your designs in Flash grow in size, whether you are creating an application or complex
scripted animations, you need to consider performance and optimization. When you have
content that remains static (such as a rectangle movie clip), Flash does not optimize the
content. Therefore, when you change the position of the rectangle movie clip, Flash redraws
the entire rectangle in Flash Player 7 and earlier.

In Flash 8 and later, you can cache specified movie clips and buttons to improve the
performance of your SWF file. The movie clip or button is a surface, essentially a bitmap
version of the instance’s vector data, which is data that you do not intend to change much
over the course of your SWF file. Therefore, instances with caching turned on are not
continually redrawn as the SWF file plays, which lets the SWF file render quickly.

You can update the vector data, at which time the surface is recreated. Therefore, the
vector data cached in the surface does not need to remain the same for the entire SWF
file.

310N

You can use ActionScript to enable caching or scrolling and to control backgrounds. You can
use the Property inspector to enable caching for a movie clip instance. To cache movie clips or
buttons without using ActionScript, you can select the Use runtime bitmap caching option in
the Property inspector instead.

330 Working with Movie Clips

The following table contains brief descriptions of the new properties for movie clip instances:

Property

Description

cacheAsBitmap

opaqueBackground

scrollRect

Makes the movie clip instance cache a bitmap representation of itself.
Flash creates a surface object for the instance, which is a cached
bitmap instead of vector data. If you change the bounds of the movie
clip, the surface is recreated instead of resized. For more information
and an example, see “Caching a movie clip” on page 334.

Lets you specify a background color for the opaque movie clip
instance. If you set this property to a numeric value, the movie clip
instance has an opaque (nontransparent) surface. An opaque bitmap
does not have an alpha channel (transparency), and renders faster. For
more information and an example, see “Setting the background of a
movie clip” on page 336.

Lets you quickly scroll movie clip content and have a window for
viewing larger content. The movie clip’s contents are cropped, and the
instance scrolls with a specified width, height, and scroll offsets. This
lets the user quickly scroll movie clip content and have a window that
displays larger content than the Stage area. Text fields and complex
content that you display in the instance can scroll faster because Flash
does not regenerate the entire movie clip vector data. For more
information and an example, see scrol1Rect (MovieClip.scrollRect
property).

These three properties are independent of each other, however, the opaqueBackground and
scrollRect properties work best when an object is cached as a bitmap. You only see
performance benefits for the opaqueBackground and scrollRect properties when you set

cacheAsBitmap to true.

To create a surface that’s also scrollable, you must set the cacheAsBitmap and scrollRect
properties for the movie clip instance. Surfaces can nest within other surfaces. The surface

copies the bitmap onto its parent surface.

For information on alpha channel masking, which requires you to set the cacheAsBitmap

property to true, see “About alpha channel masking” on page 338.

310N

You cannot apply caching directly to text fields. You need to place text within a movie
clip to take advantage of this feature. For a sample file, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file
and navigate to the ActionScript2.0/CacheBitmap folder to access the sample.

About caching and scrolling movie clips with ActionScript 331

http://www.adobe.com/go/learn_fl_samples

For samples about applying bitmap caching to an instance and to scrolling text, see the Flash
Samples page at www.adobe.com/go/learn_{l_samples. The following samples are available:

m cacheBitmap.fla; Download and decompress the Samples zip file and navigate to the
ActionScript2.0/CacheBitmap folder.

m aliasing.fla; Download and decompress the Samples zip file and navigate to the
ActionScript2.0/Advanced Anti-Aliasing folder.

When to enable caching

Enabling caching for a movie clip creates a surface, which has several advantages, such as
helping complex vector animations to render fast. There are several scenarios in which you
will want to enable caching. It might seem as though you will always want to enable caching
to improve the performance of your SWF files; however, there are situations in which
enabling caching does not improve performance, or even decrease it. This section describes

scenarios in which caching should be used, and when to use regular movie clips.

Overall performance of cached data depends on how complex the vector data of your
instances are, how much of the data you change, and whether or not you set the
opaqueBackground property. If you are changing small regions, the difference between using
a surface and using vector data could be negligible. You might want to test both scenarios with
your work before you deploy the application.

For information on alpha channel masking, which requires you to set the cacheAsBitmap
property to true, see “About alpha channel masking” on page 338.

When to use bitmap caching

The following are typical scenarios in which you might see significant benefits when you
enable bitmap caching,.

Complex background image An application that contains a detailed and complex
background image of vector data (perhaps an image where you applied the trace bitmap
command, or artwork that you created in Adobe Illustrator). You might animate characters
over the background, which slows the animation because the background needs to
continuously regenerate the vector data. To improve performance, you can select the content,
store it in a movie clip, and set the opaqueBackground property to true. The background is
rendered as a bitmap and can be redrawn quickly, so that your animation plays much faster.

332 Working with Movie Clips

http://www.adobe.com/go/learn_fl_samples

Scrolling text field An application that displays a large amount of text in a scrolling text
field. You can place the text field in a movie clip that you set as scrollable with scrolling
bounds (the scrol1Rect property). This enables fast pixel scrolling for the specified instance.
When a user scrolls the movie clip instance, Flash shifts the scrolled pixels up and generates
the newly exposed region instead of regenerating the entire text field.

Windowing system An application with a complex system of overlapping windows. Each
window can be open or closed (for example, web browser windows). If you mark each window
as a surface (set the cacheAsBitmap property to true), each window is isolated and cached.

Users can drag the windows so that they overlap each other, and each window doesn’t need to

regenerate the vector content.

All of these scenarios improve the responsiveness and interactivity of the application by

optimizing the vector graphics.

For samples about applying bitmap caching to an instance and to scrolling text, see the Flash

Samples page at www.adobe.com/go/learn_{l_samples. The following samples are available:

m cacheBitmap.fla; Download the Samples zip file and navigate to the ActionScript2.0/
Cachebitmap folder.

m aliasing.fla; Download the Samples zip file and navigate to the ActionScript2.0/Advanced
Anti-Aliasing folder.

When to avoid using bitmap caching

Misusing this feature could negatively affect your SWF file. When you develop a FLA file that
uses surfaces, remember the following guidelines:

m Do not overuse surfaces (movie clips with caching enabled). Each surface uses more
memory than a regular movie clip, which means that you should only enable surfaces
when you need to improve rendering performance.

A cached bitmap can use significantly more memory than a regular movie clip instance.
For example, if the movie clip on Stage is 250 pixels by 250 pixels in size, when cached it
might use 250 KB instead of 1 KB when it’s a regular (uncached) movie clip instance.

m Avoid zooming into cached surfaces. If you overuse bitmap caching, a large amount of

memory is consumed (see previous bullet), especially if you zoom in on the content.

About caching and scrolling movie clips with ActionScript 333

http://www.adobe.com/go/learn_fl_samples

m Use surfaces for movie clip instances that are largely static (nonanimating). You can drag
or move the instance, but the contents of the instance should not animate or change a lot.
For example, if you rotate or transform an instance, the instance changes between the

surface and vector data, which is difficult to process and negatively affects your SWF file.

m If you mix surfaces with vector data, it increases the amount of processing that Flash
Player (and sometimes the computer) needs to do. Group surfaces together as much as

possible; for example, when you create windowing applications.

Caching a movie clip

To cache a movie clip instance, you need to set the cacheAsBitmap property to true. After
you set the cacheAsBitmap property to true, you might notice that the movie clip instance
automatically pixel-snaps to whole coordinates. When you test the SWF file, you should

notice that any complex vector animation renders much faster.

A surface (cached bitmap) is not created, even if cacheAsBitmap is set to true, if one or more

of the following occurs:
m The bitmap is greater than 2880 pixels in height or width.

m The bitmap fails to allocate (out of memory error).

To cache a movie clip:

1. Create a new Flash document, and name the file cachebitmap.fla.
2. Type 24 into the fps text box in the Property inspector (Window > Properties > Properties).
3. Create or import a complex vector graphic into the FLA file.

For a sample source of a complex vector graphic, CacheBitmap, see the Flash Samples
page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate
to the ActionScript2.0/CacheBitmap folder to access the sample.

4. Select the vector graphic, and select Modify > Convert to Symbol.

5. Type star into the Name text box, and then click Advanced (if the dialog box is not already
expanded).

6. Select Export for ActionScript (which also selects Export in first frame).
7. Type star_id into the Identifier text box.

8. Click OK to create the movie clip symbol, with the linkage identifier of Star.

334 Working with Movie Clips

http://www.adobe.com/go/learn_fl_samples

9. Select Frame 1 of the Timeline, and then add the following ActionScript to the
Actions panel:

import mx.transitions.Tween;

var star_array:Array = new Array();
for (var i:Number = 0; i < 20; i++) {
makeStar();
}
function makeStar():Void {
var depth:Number = this.getNextHighestDepth();
var star_mc:MovieClip = this.attachMovie("star_id", "star" + depth,
depth);
star_mc.onkEnterfFrame = function() {
star_mc._rotation += 5;
}
star_mc._y = Math.round(Math.random() * Stage.height - star_mc._height
/ 2);
var star_tween:Tween = new Tween(star_mc,
(Math.random() * 5) + 5, true);
star_tween.onMotionFinished = function():Void {
star_tween.yoyo();

_x", null, 0, Stage.width,

by
star_array.push(star_mc);
}
var mouselistener:0bject = new Object();
mouselListener.onMouseDown = function():Void {
var star_mc:MovieClip;
for (var i:Number = 0; i < star_array.length; i++) {
star_mc = star_arrayl[i];
star_mc.cacheAsBitmap = !star_mc.cacheAsBitmap;
}
}
Mouse.addListener(mouselistener);

10. Select Control > Test Movie to test the document.
1. Click anywhere on the Stage to enable bitmap caching.

You'll notice that the animation changes from appearing to animate at 1 frame per second,
to a smooth animation where the instances animate back and forth across the Stage. When
you click the Stage, it toggles the cacheAsBitmap setting between true and false.

If you toggle caching on and off, as demonstrated in the previous example, it frees the data
that is cached. You can also apply this code for a Button instance. See cacheAsBitmap
(Button.cacheAsBitmap property) in the ActionScript 2.0 Language Reference.

About caching and scrolling movie clips with ActionScript 335

For examples of scrolling movie clips, see scrol1Rect (MovieClip.scrollRect property)
in the ActionScript 2.0 Language Reference. For information on alpha channel masking, which
requires you to set the cacheAsBitmap property to true, see “About alpha channel masking”
on page 338.

For samples about applying bitmap caching to an instance and to scrolling text, see the Flash
Samples page at www.adobe.com/go/learn_{l_samples. The following samples are available:

m cacheBitmap.fla; Download the Samples zip file and navigate to the ActionScript2.0/
CacheBitmap folder.

m aliasing.fla; Download the Samples zip file and navigate to the ActionScript2.0/Advanced
Anti-Aliasing folder.

Setting the background of a movie clip

You can set an opaque background for a movie clip. For example, when you have a
background that contains complex vector art, you can set the opaqueBackground property to
a specified color (typically the same color as the Stage). The background is then treated as a
bitmap, which helps optimize performance.

When you set cacheAsBitmap to true, and also set the opaqueBackground property to a
specified color, the opaqueBackground property allows the internal bitmap to be opaque and
rendered faster. If you do not set cacheAsBitmap to true, the opaqueBackground property
adds an opaque vector-square shape to the background of the movie clip instance. It does not
create a bitmap automatically.

The following example shows how to set the background of a movie clip to optimize

performance.

To set the background of a movie clip:

1. Create a new Flash document called background.fla.

2. Draw a blue circle on the Stage.

3. Select the blue circle, and then select Modify > Convert to Symbol.
4. Select the Movie clip option, and then click OK.
5. Select the instance on the Stage, and then type my_mc into the Instance Name text box in

the Property inspector.
6. Select Frame 1 of the Timeline, and then type the following code into the Actions panel:

/* When you set cacheAsBitmap, the internal bitmap is opaque and renders
faster. */

my_mc.cacheAsBitmap = true;

my_mc.opaqueBackground = O0xFF0000;

336 Working with Movie Clips

http://www.adobe.com/go/learn_fl_samples

7. Select Control > Test Movie to test the document.
The movie clip appears on the Stage with the background color that you specified.

For more information on this property, see opaqueBackground
(MovieClip.opaqueBackground property) in the ActionScript 2.0 Language Reference.

Using movie clips as masks

You can use a movie clip as a mask to create a hole through which the contents of another
movie clip are visible. The mask movie clip plays all the frames in its timeline, the same as a
regular movie clip. You can make the mask movie clip draggable, animate it along a motion
guide, use separate shapes within a single mask, or resize a mask dynamically. You can also use

ActionScript to turn a mask on and off.

You cannot use a mask to mask another mask. You cannot set the _alpha property of a mask
movie clip. Only fills are used in a movie clip that is used as a mask; strokes are ignored.

To create a mask:

1. Create a square on the Stage with the Rectangle tool.

2. Select the square and press F8 to convert it into a movie clip.

This instance is your mask.

3. In the Property inspector, type mask_mc in the Instance Name text box.
The masked movie clip is revealed under all opaque (nontransparent) areas of the movie
clip acting as the mask.

4. Select Frame 1 in the Timeline.

5. Open the Actions panel (Window > Actions) if it isn’t already open.

6. In the Actions panel, enter the following code:
System.security.allowDomain("http://www.helpexamples.com");
this.createEmptyMovieClip("img_mc", 10);
var mclListener:0bject = new Object();
mcllistener.onlLoadInit = function(target_mc:MovieClip):Void {

target_mc.setMask(mask_mc);
}
var my_mcl:MovieCliplLoader = new MovieCliplLoader();
my_mc1.addListener(mclListener);

my_mcl.loadClip("http://www.helpexamples.com/flash/images/imagel.jpg",
img_mc);

Using movie clips as masks 337

7. Select Control > Test Movie to test the document.
An external JPEG image loads into the SWF file at runtime, and is masked by the shape
you drew previously on the Stage.

For detailed information, see setMask (MovieClip.setMask method) in the ActionSeript 2.0
Language Reference.

About masking device fonts

You can use a movie clip to mask text that is set in a device font. In order for a movie clip

mask on a device font to work propetly, the user must have Flash Player 6 (6.0.40.0) or later.
When you use a movie clip to mask text set in a device font, the rectangular bounding box of
the mask is used as the masking shape. That is, if you create a nonrectangular movie clip mask
for device font text in the Flash authoring environment, the mask that appears in the SWF file
is the shape of the rectangular bounding box of the mask, not the shape of the mask itself.

You can mask device fonts only by using a movie clip as a mask. You cannot mask device fonts

by using a mask layer on the Stage.

About alpha channel masking

Alpha channel masking is supported if both the mask and the maskee movie clips use bitmap
caching. This support also lets you use a filter on the mask independently of the filter that is
applied to the maskee itself.

To see an example of alpha masking, download the alpha masking sample file from
www.adobe.com/go/learn_fl_samples.

In this sample file, the mask is an oval (oval_mask) that has alpha of 50% and a blur filter
applied to it. The maskee (f1ower_maskee) has alpha of 100% and no filter applied on it.
Both movie clips have runtime bitmap caching applied in the Property inspector.

In the Actions panel, the following code is placed on Frame 1 of the Timeline:

flower_maskee.setMask(oval_mask);

When you test the document (Control > Test Movie), the maskee is alpha blended by using
the mask.

Mask layers do not support alpha channel masking. You must use ActionScript code to
apply a mask, and use runtime bitmap caching.

310N

338 Working with Movie Clips

http://www.adobe.com/go/learn_fl_samples

Handling movie clip events

Movie clips can respond to user events, such as mouse clicks and keypresses, as well as system-
level events, such as the initial loading of a movie clip on the Stage. ActionScript provides two
ways to handle movie clip events: through event handler methods and onCTipEvent() and
on() event handlers. For more information on handling movie clip events, see Chapter 9,
“Handling Events.”

Assigning a class to a movie clip symbol

Using ActionScript 2.0, you can create a class that extends the behavior of the built-in
MovieClip class and then use the Linkage Properties dialog box to assign that class to a movie
clip library symbol. Whenever you create an instance of the movie clip to which the class is
assigned, it assumes the properties and behaviors defined by the class assigned to it. (For more
information about ActionScript 2.0, see “Example: Writing custom classes” on page 223.)

In a subclass of the MovieClip class, you can provide method definitions for the built-in
MovieClip methods and event handlers, such as onEnterframe and onRelease. In the
following procedure, you'll create a class called MoveRight that extends the MovieClip class;
MoveRight defines an onPress handler that moves the clip 20 pixels to the right whenever
the user clicks the movie clip. In the second procedure, you'll create a movie clip symbol in a

new Flash (FLA) document and assign the MoveRight class to that symbol.

To create a movie clip subclass:

1. Create a new directory called BallTest.

2. Select File > New, and select ActionScript file from the list of document types to create a
new ActionScript file.

3. Enter the following code in your script file:

// MoveRight class -- moves clip to the right when clicked
class MoveRight extends MovieClip ({
public function onPress() {
this._x += 20;
}
}

4. Save the document as MoveRight.as in the BallTest directory.

To assign the class to a movie clip symbol:
1. In Flash, select File > New, select Flash Document from the list of file types, and click OK.

2. Using the Oval tool, draw a circle on the Stage.

3. Select the circle, and select Modify > Convert to Symbol.

Assigning a class to a movie clip symbol 339

4. In the Convert to Symbol dialog box, select Movie Clip as the symbol’s behavior, and enter
ball_mc in the Name text box.

5. Select Advanced to show the options for Linkage, if they aren’t already showing.

6. Select the Export for ActionScript option, and type MoveRight in the Class text box. Click
OK.

7. Save the file as ball.fla in the BallTest directory (the same directory that contains the
MoveRight.as file).

8. Test the Flash document (Control > Test Movie).
Each time you click the ball movie clip, it moves 20 pixels to the right.

If you create component properties for a class and want a movie clip to inherit those
component properties, you need to take an additional step: with the movie clip symbol
selected in the Library panel, select Component Definition from the Library pop-up menu

and enter the new class name in the Class box.

Initializing class properties

In the example presented in the second procedure under “Assigning a class to a movie clip
symbol”, you added the instance of the Ball symbol to the Stage while authoring. As discussed
in “Adding parameters to dynamically created movie clips” on page 325, you can assign
parameters to clips you create at runtime by using the init0bject parameter of
attachMovie() and duplicateMovie(). You can use this feature to initialize properties of

the class you're assigning to a movie clip.

For example, the following class named MoveRightDistance is a variation of the MoveRight
class (see “Assigning a class to a movie clip symbol” on page 339). The difference is a new
property named distance, whose value determines how many pixels a movie clip moves each

time it is clicked.

To pass arguments to a custom class:

1. Create a new ActionScript document and save it as MoveRightDistance.as.
2. Type the following ActionScript into the Script window:

// MoveRightDistance class -- moves clip to the right every frame.
class MoveRightDistance extends MovieClip {

// Distance property determines how many

// pixels to move clip for each mouse press.

var distance:Number;

340 Working with Movie Clips

function onPress() ({
this._x += this.distance;
}
}

3. Save your progress.

4. Create a new Flash document, and save it as MoveRightDistance.fla in the same directory
as the class file.

5. Create a movie clip symbol that contains a vector shape, such as an oval, and then delete
any content from the Stage.
You only need a movie clip symbol in the library for this example.

6. In the Library panel, right-click (Windows) or Control-click (Macintosh) the symbol and
select Linkage from the context menu.

7. Assign the linkage identifier Ball to the symbol.

8. Type MoveRightDistance into the AS 2.0 Class text box.

9. Add the following code to Frame 1 of the Timeline:
this.attachMovie("Ball", "ball50_mc", 10, {distance:50});
this.attachMovie("Ball", "balll25_mc", 20, {distance:125});
This code creates two new instances of the symbol on the root timeline of the SWF file.
The first instance, named ba1150_mc, moves 50 pixels each time it is clicked; the second,
named bal1125_mc, moves 125 pixels each time it is clicked.

10. Select Control > Test Movie to test the SWF file.

Initializing class properties 341

342 Working with Movie Clips

CHAPTER M

Working with Text

and Strings

Many of the applications, presentations, and graphics that you create with Flash include some
kind of text. You can use many different kinds of text. You might use static text in your
layouts, but dynamic text for longer passages of text. Or you might use input text to capture
user input, and text in an image for your background design. You can create text fields with
the Flash authoring tool, or use ActionScript.

One way to display text is to use code to manipulate how strings appear before they are loaded
and displayed on the Stage at runtime. You can work with strings in an application in several
ways, such as sending them to a server and retrieving a response, parsing strings in an array, or
validating strings that the user types into a text field.

This chapter describes several ways to use text and strings in your applications, focusing on
using code to manipulate text.

The following list describes terminology used in this chapter.

Alias Aliased text does not use color variations to make its jagged edges appear smoother,
unlike anti-aliased text (see following definition).

Anti-alias You use advanced anti-aliasing to smooth text so the edges of characters that
appear onscreen look less jagged. The Anti-Alias option in Flash makes text more legible by
aligning text outlines along pixel boundaries, and is particularly effective for clearly rendering
smaller font sizes.

Characters Characters are letters, numerals, and punctuation that you combine to make
up strings.

Device fonts Device fonts are special fonts in Flash that are not embedded in a SWF file.
Instead, Flash Player uses whatever font on the local computer that most closely resembles the
device font. Because font outlines are not embedded, a SWF file size is smaller than using
embedded font outlines. However, because device fonts are not embedded, the text that you
create with these fonts looks different than expected on computer systems that do not have a
font installed that corresponds to the device font. Flash includes three device fonts: _sans
(similar to Helvetica and Arial), _serif (similar to Times Roman), and _typewriter (similar

to Courier).

343

Fonts Sets of characters with a similar font face, style, and size.

String A sequence of characters.

Text A series of one or more strings that can be displayed in a text field, or within a user
interface component.

Text fields A visual element on the Stage that lets you display text to a user. Similar to an
input text field or text area form control in HTML, Flash lets you set text fields as editable
(read-only), allow HTML formatting, enable multiline support, password masking, or apply a
CSS stylesheet to your HTML formatted text.

Text formatting You can apply formatting to a text field, or certain characters within a text
field. Some examples of text formatting options that can be applied to text are: alignment,
indenting, bold, color, font size, margin widths, italics, and letter spacing.

For more information on text, see the following topics:

Abouttextfieldso e 344
Usingthe TextFieldclass ... e e 346
About loading text and variables intotextfields 353
UsiNg foNts. ..o e 359
About font rendering and anti-aliastext i 367
About text layout and formatting. 375
Formatting text with Cascading Style Sheetstyles 382
Creatingastylesheetobject i i 385
Using HTML-formattedtext i i, 397
Example: Creatingscrollingtext i 410

About text fields

A dynamic or input text field is a TextField object (an instance of the TextField class). When
you create a text field in the authoring environment, you can assign it an instance name in the
Property inspector. You can use the instance name in ActionScript statements to set, change,
and format the text field and its content by using the TextField and TextFormat classes.

You can use the user interface to create several kinds of text fields, or you can use ActionScript

to create text fields. You can create the following kinds of text fields in Flash:

Static text Use static text to display characters that do not need to change, to display small
amounts of text, or to display special fonts that are not available on most computers. You can

also display uncommon fonts by embedding characters for dynamic text fields.

Dynamic text Use dynamic text fields when you need to display characters that are updated
or that change at runtime. Also, you can load text into dynamic text fields.

344 Working with Text and Strings

Input text Use input text fields when you need to capture user input. Users can type in
these text fields.

Text components You can use TextArea or TextInput components to display or capture
text in your applications. The TextArea component is similar to a dynamic text field with
built-in scroll bars. The TextInput component is similar to an input text field. Both
components have additional functionality over their text field equivalents; however, they add

more file size to your application.

All text fields support Unicode. For information on Unicode, see “About strings and the
String class” on page 411

310N

The methods of the TextField class let you set, select, and manipulate text in a dynamic or
input text field that you create during authoring or at runtime. For more information, see
“Using the TextField class” on page 346. For information on debugging text fields at runtime,
see Using Flash.

ActionScript also provides several ways to format your text at runtime. The TextFormat class
lets you set character and paragraph formatting for TextField objects (see “Using the
TextFormat class” on page 380). Flash Player also supports a subset of HTML tags that you
can use to format text (see “Using HTML-formatted text” on page 397). Flash Player 7 and
later supports the img HTML tag, which lets you embed not just external images but also
external SWF files as well as movie clips that reside in the library (see “Image tag”

on page 400).

In Flash Player 7 and later, you can apply Cascading Style Sheet (CSS) styles to text fields
using the TextField.StyleSheet class. You can use CSS styles to style built-in HTML tags,
define new formatting tags, or apply styles. For more information on using CSS, see
“Formatting text with Cascading Style Sheet styles” on page 382.

You can also assign HTML formatted text, which might optionally use CSS styles, directly to
a text field. In Flash Player 7 and later, HTML text that you assign to a text field can contain
embedded media (movie clips, SWF files, and JPEG files). In Flash Player 8 and later, you can
also dynamically load PNG, GIF, and progressive JPEG images (Flash Player 7 does not
support progressive JPEG images). The text wraps around the embedded media similar to
how a web browser wraps text around media embedded in an HTML document. For more
information, see “Image tag” on page 400.

For information on the terminology that compares text, strings, and more, see the
introduction for this chapter, “Working with Text and Strings” on page 343.

About text fields 345

Using the TextField class

The TextField class represents any dynamic or input (editable) text field you create using the
Text tool in Flash. You use the methods and properties of this class to control text fields at
runtime. TextField objects support the same properties as MovieClip objects, with the
exception of the _currentframe, _droptarget, _framesloaded, and _totalframes
properties. You can get and set properties and invoke methods for text fields dynamically.

To use ActionScript to control a dynamic or input text field, you must assign the text field an
instance name in the Property inspector. You can then reference the text field with the
instance name, and use the methods and properties of the TextField class to control the
contents or basic appearance of the text field.

You can also create TextField objects at runtime, and assign them instance names, using the
MovieClip.createTextField() method. For more information, see “Creating text fields at
runtime” on page 349.

For more information on using the TextField class, see the following topics:

m “Assigning text to a text field at runtime” on page 346

m “About text field instance and variable names” on page 348

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/ TextFields folder to access these samples:

m textfieldsA.fla

m textfieldsB.fla

Assigning text to a text field at runtime

When you build applications with Flash, you may want to load text from an external source,
such as a text file, an XML file, or even a remote web service. Flash provides a great deal of
control over how you create and display text on the Stage, such as supporting text that is
HTML formatted, plain text, XML formatted text, and external style sheets. Or you can use
ActionScript to define a stylesheet.

To assign text to a text field, you can do one of the following: use the text or heml TEXT
properties; create a variable name for the text field in the Var: field in the Properties inspector
and assign text to that; assign a value by binding the text field to a text field in another

component.

346 Working with Text and Strings

http://www.adobe.com/go/learn_fl_samples

The following exercise assigns text to a text field at runtime.

To assign text to a text field at runtime:

1. Using the Text tool, create a text field on the Stage.

2. With the text field selected, in the Property inspector (Window > Properties > Properties),
select Input Text from the Text Type pop-up menu, and enter headline_txt in the Instance
Name text box.

Instance names must consist only of letters, numbers, underscores (_), and dollar
signs ($).

3. Select Frame 1 of the Timeline, and open the Actions panel (Window > Actions).

4. Type the following code in the Actions panel:

headline_txt.text = "New articles available on Developer Center";
5. Select Control > Test Movie to test the Flash document.

You can also create a text field with ActionScript, and then assign text to it. Type the following
ActionScript on Frame 1 of the Timeline:

this.createTextField("headline_txt", this.getNextHighestDepth(), 100, 100,
300, 20);

headline_txt.text = "New articles available on Developer Center";

This code creates a new text field with the instance name headline_txt. The text field is

created at the next highest depth, at the x and y coordinates of 100, 100, with a text field

width of 200 pixels and a height of 20 pixels. When you test the SWF file (Control > Test

Movie), the text “New articles available on Developer Center” appears on the Stage.

To create an HTML-formatted text field:
Use one of the following two steps to enable HTML formatting for the text field:
m Select a text field and click the Render Text as HTML button in the Property inspector.

m Set the text fields htm] property to true by using ActionScript (see the following
code sample).

To apply HTML formatting to a text field by using ActionScript, type the following
ActionScript on Frame 1 of the Timeline:

this.createTextField("headline_txt", this.getNextHighestDepth(), 100, 100,
300, 20);

headline_txt.html = true;

headline_txt.htmlText = "New articles available on <i>Developer Center</
i>.";

About text fields 347

The preceding code dynamically creates a new text field, enables HTML formatting, and
displays the text “New articles available on Developer Center” on the Stage, with the word
“Developer Center” appearing in italics.

When you use HTML formatted text with a text field (not components) on the Stage, you
must assign the text to the text field’s htm1Text property instead of the text property.

NOILNVD

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

m textfieldsA.fla
m textfieldsB.fla

About text field instance and variable names

In the Instance Name text box in the Property inspector, you must assign an instance name to
a text field to invoke methods and get and set properties on that text field.

In the Var text box in the Property inspector, you can assign a variable name to a dynamic or
input text field. You can then assign values to the variable. This is a deprecated functionality
that you might use when you create applications for older versions of Flash Player (such as
Flash Player 4). When you target newer players, target the text of a text field by using its
instance name and ActionScript.

Do not confuse a text field’s instance name with its variable name, however. A text field’s
variable name is a variable reference to the text contained by that text field; it is not a reference
to an object.

For example, if you assigned a text field the variable name myTextVar, you can use the
following code to set the contents of the text field:

var myTextVar:String = "This is what will appear in the text field";
However, you can't use the variable name myTextVar to set the text field’s text property. You
have to use the instance name, as shown in the following code:

// This won't work.
myTextVar.text = "A text field variable is not an object reference";

// For input text field with instance name "myField", this will work.
myField.text = "This sets the text property of the myField object";

348 Working with Text and Strings

http://www.adobe.com/go/learn_fl_samples

Use the TextField. text property to control the contents of a text field, unless youre
targeting a version of Flash Player that doesn’t support the TextField class. This reduces the

chances of a variable name conflict, which could result in unexpected behavior at runtime.

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/ TextFields folder to access these samples:

m textfieldsA.fla
m textfieldsB.fla

Creating text fields at runtime

You can use the createTextField() method of the MovieClip class to create an empty text
field on the Stage at runtime. The new text field is attached to the timeline of the movie clip

that calls the method.

To dynamically create a text field using ActionScript:

1. Select File > New and then select Flash Document to create a new FLA fil