
LEARNING ACTIONSCRIPT™ 2.0
IN FLASH®

© 2007 Adobe Systems Incorporated. All rights reserved.

Learning ActionScript 2.0 in Adobe® Flash®

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is
furnished under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any
such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note
that the content in this guide is protected under copyright law even if it is not distributed with software that includes an end user
license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability
for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright
law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright
owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any
actual organization.

Adobe®, Flash®, FlashHelp®, Flash® Player, JRun™, Macromedia® and Shockwave® are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Macintosh® is a trademark of Apple Computer, Inc., registered in the United States and other countries. Windows® is either a
registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks
are the property of their respective owners.

Portions of this product contain code licensed from Nellymoser. (www.nellymoser.com).

Sorenson Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.

Flash CS3 video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc.

All Rights Reserved. http://www.on2.com.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users. The
Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial
Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48
C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as
applicable, the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S.
Government end users (a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant
to the terms and conditions herein. Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems
Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with
all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended, Section
402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation
Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action
clause and regulations contained in the preceding sentence shall be incorporated by reference.

3

Contents

Introduction . 9

Intended audience .9
System requirements. 10
Updating Flash XML files . 10
About the documentation .11
Additional resources . 14

Chapter 1: What’s New in Flash ActionScript 19

New in ActionScript 2.0 and Flash Player 9.x . 19
New in ActionScript 2.0 and
Flash Player 8 . 20
Changes to security model for locally installed SWF files. 28

Chapter 2: About ActionScript . 31

What is ActionScript . 32
About choosing between ActionScript 1.0 and ActionScript 2.0 . . . 33
Understanding ActionScript and Flash Player 34

Chapter 3: Data and Data Types. 35

About data . 35
About data types. 36
About variables . 50
Organizing data in objects .72
About casting .74

Chapter 4: Syntax and Language Fundamentals 77

About syntax, statements, and expressions .78
About dot syntax and target paths . 82
About language punctuators . 88
About constants and keywords . 99
About statements .103
About arrays .125
About operators . 137

4 Contents

Chapter 5: Functions and Methods . 163

About functions and methods. 163
Understanding methods . 184

Chapter 6: Classes . 187

About object-oriented programming and Flash 188
Writing custom class files . 196
About working with custom classes in an application 199
Example: Writing custom classes .223
Example: Using custom class files in Flash .236
Assigning a class to symbols in Flash .239
Compiling and exporting classes . 240
Understanding classes and scope .243
About top-level and built-in classes .246
About working with built-in classes .256

Chapter 7: Inheritance . 263

About inheritance .263
About writing subclasses in Flash .265
Using polymorphism in an application . 271

Chapter 8: Interfaces . 275

About interfaces. .275
Creating interfaces as data types. 280
Understanding inheritance and interfaces .282
Example: Using interfaces .283
Example: Creating a complex interface .285

Chapter 9: Handling Events . 291

About ActionScript and events .292
Using event handler methods .293
Using event listeners. .296
Using event listeners with components .298
Using button and movie clip event handlers . 300
Broadcasting events from component instances. 305
Creating movie clips with button states . 305
Event handler scope . 306
Scope of the this keyword . 310
Using the Delegate class . 310

Contents 5

Chapter 10: Working with Movie Clips . 313

About controlling movie clips with ActionScript 314
Calling multiple methods on a single movie clip 316
Loading and unloading SWF files .316
Changing movie clip position and appearance 319
Dragging movie clips . 320
Creating movie clips at runtime .321
Adding parameters to dynamically created movie clips. 325
Managing movie clip depths . 327
About caching and scrolling movie clips with ActionScript 330
Using movie clips as masks . 337
Handling movie clip events. 339
Assigning a class to a movie clip symbol. 339
Initializing class properties . 340

Chapter 11: Working with Text and Strings 343

About text fields . 344
About loading text and variables into text fields 353
Using fonts . 359
About font rendering and anti-alias text . 367
About text layout and formatting. 375
Formatting text with Cascading Style Sheet styles 382
Using HTML-formatted text . 397
Example: Creating scrolling text .410
About strings and the String class . 411

Chapter 12: Animation, Filters, and Drawings 429

Scripting animation with ActionScript 2.0 . 430
About bitmap caching, scrolling, and performance 440
About the Tween and TransitionManager classes 441
Using filter effects. 456
Working with filters using ActionScript . 463
Manipulating filter effects with code . 489
Creating bitmaps with the BitmapData class . 493
About blending modes . 496
About operation order . 498
Drawing with ActionScript . 499
Understanding scaling and slice guides .514

6 Contents

Chapter 13: Creating Interaction with ActionScript 519

About events and interaction . 520
Controlling SWF file playback . 520
Creating interactivity and visual effects . 524
Creating runtime data bindings using ActionScript537
Deconstructing a sample script .546

Chapter 14: Working with Images, Sound, and Video 549

About loading and working with external media 550
Loading external SWF and image files. 551
About loading and using external MP3 files . 555
Assigning linkage to assets in the library . 559
About using FLV video. 560
About creating progress animations for media files. 580

Chapter 15: Working with External Data 589

Sending and loading variables . 590
Using HTTP to connect to server-side scripts 594
About file uploading and downloading . 600
About XML . 608
Sending messages to and from Flash Player . 617
About the External API . 621

Chapter 16: Understanding Security . 631

About compatibility with previous Flash Player security models . . . 631
About local file security and Flash Player. .633
Restricting networking APIs .648
About domains, cross-domain security, and SWF files 650
Server-side policy files for permitting access to data657
HTTP to HTTPS protocol access between SWF files662

Chapter 17: Best Practices and Coding Conventions for
ActionScript 2.0 . 665

Naming conventions .666
Using comments in your code . 677
ActionScript coding conventions. .679
ActionScript and Flash Player optimization . 695
Formatting ActionScript syntax .697

Contents 7

Appendix A: Error Messages . 707

Appendix B: Deprecated Flash 4 operators 713

Appendix C: Keyboard Keys and Key Code Values 715

Appendix D: Writing Scripts for Earlier Versions of Flash Player . .
721

About targeting earlier versions of Flash Player 721
Using Flash to create content for Flash Player 4 722

Appendix E: Object-Oriented Programming with ActionScript 1.0.
725

About ActionScript 1.0 . 726
Creating a custom object in ActionScript 1.0 . 728
Assigning methods to a custom object in ActionScript 1.0. 729
Defining event handler methods in ActionScript 1.0 730
Creating inheritance in ActionScript 1.0 . 732
Adding getter/setter properties to objects in ActionScript 1.0 734
Using Function object properties in ActionScript 1.0 735

Index .737

8 Contents

9

Introduction

Adobe Flash CS3 Professional is the professional standard authoring tool for producing high-
impact web experiences. ActionScript is the language you use to add interactivity to Flash
applications, whether your applications are simple animated SWF files or more complex rich
Internet applications. You don’t have to use ActionScript to use Flash, but if you want to
provide basic or complex user interactivity, work with objects other than those built into Flash
(such as buttons and movie clips), or otherwise turn a SWF file into a more robust user
experience, you’ll probably want to use ActionScript.

For more information, see the following topics:
Intended audience . 9

Updating Flash XML files . 10

System requirements. 10

About the documentation . 11

Additional resources . 14

Intended audience
This manual assumes that you have already installed Flash and know how to use the user
interface.You should know how to place objects on the Stage and manipulate them in the
Flash authoring environment. If you have used a scripting language before, ActionScript will
seem familiar. But if you’re new to programming, ActionScript basics are easy to learn. You
can start with simple commands and build more complexity as you progress. You can add a lot
of interactivity to your files without having to learn (or write) a lot of code.

10 Introduction

System requirements
ActionScript 2.0 does not have any system requirements in addition to Flash.

Flash CS3 Professional introduces ActionScript 3.0. Flash Player 9 and ActionScript 3.0 are
the default publishing settings for Flash. This manual provides information on how to use
ActionScript 2.0 with Flash. You must change the publishing settings for your Flash files to
Flash Player 9 and ActionScript 2.0. If you do not change the default settings, explanations
and code samples in the documentation might not work correctly. If you develop applications
for earlier versions of Flash Player, see Appendix D, “Writing Scripts for Earlier Versions of
Flash Player,” on page 721.

Updating Flash XML files
It is important that you always have the latest Flash XML files installed. Adobe sometimes
introduces features in dot releases (minor releases) of Flash Player. When such a release is
available, you should update your version of Flash to get the latest XML files. Otherwise, the
Flash compiler might generate errors if you use new properties or methods that were
unavailable in the version of Flash Player that came with your Flash installation.

For example, Flash Player 7 (7.0.19.0) contained a new method for the System object,
System.security.loadPolicyFile. To access this method, you must use the Player
Updater installer to update all the Flash players that are installed with Flash. Otherwise, the
Flash compiler displays errors.

Remember that you can install a Player Updater that is one or more major versions ahead of
your version of Flash. By doing this, you will get the XML files that you need but shouldn’t
have any compiler errors when you publish to older versions of Flash Player. Sometimes new
methods or properties are available to older versions, and having the latest XML files
minimizes the compiler errors you get when you try to access older methods or properties.

About the documentation 11

About the documentation
This manual provides an overview of ActionScript syntax and information on how to use
ActionScript when working with different types of objects. For details on the syntax and usage
of every language element, see the ActionScript 2.0 Language Reference.

For more information, see the following topics:

■ “Learning ActionScript 2.0 book overview” on page 11
■ “About the sample files” on page 14
■ “Terms used in this document” on page 13
■ “Copy and paste code” on page 13

Learning ActionScript 2.0 book overview
The following list summarizes the contents of this manual:

■ Chapter 1, “What’s New in Flash ActionScript,” describes features that are new in
ActionScript, changes to the compiler and debugger, and the new programming model for
the ActionScript 2.0 language.

■ Chapter 2, “About ActionScript,” outlines what the ActionScript language is and details
how to choose between which version of ActionScript to use.

■ Chapter 3, “Data and Data Types,” describes the terminology and basic concepts about
data, data types, and variables. You use these concepts throughout the manual.

■ Chapter 4, “Syntax and Language Fundamentals,” describes the terminology and basic
concepts of the ActionScript language. You use these concepts throughout the manual.

■ Chapter 5, “Functions and Methods,” describes how to write different kinds of functions
and methods and how to use them in your application.

■ Chapter 6, “Classes,” describes how to create custom classes and objects in ActionScript.
This chapter also lists the built-in classes in ActionScript and provides a brief overview of
how you use them to access powerful features in ActionScript.

■ Chapter 7, “Inheritance,” describes inheritance in the ActionScript language and describes
how to extend built-in or custom classes.

■ Chapter 8, “Interfaces,” describes how to create and work with interfaces in ActionScript.
■ Chapter 9, “Handling Events,” describes a few different ways to handle events: event

handler methods, event listeners, and button and movie clip event handlers.
■ Chapter 10, “Working with Movie Clips,” describes movie clips and the ActionScript you

can use to control them.

12 Introduction

■ Chapter 11, “Working with Text and Strings,” describes the different ways you can
control text and strings in Flash and includes information on text formatting and
advanced anti-aliasing.

■ Chapter 12, “Animation, Filters, and Drawings,” describes how to create code-based
animation and images, add filters to objects, and draw using ActionScript.

■ Chapter 13, “Creating Interaction with ActionScript,” describes some simple ways in
which you can create more interactive applications, including controlling when SWF files
play, creating custom pointers, and creating sound controls.

■ Chapter 14, “Working with Images, Sound, and Video,” describes how to import external
media files, such as bitmap images, MP3 files, Flash Video (FLV) files, and other SWF
files, in your Flash applications. This chapter also provides an overview of how to work
with video in your applications, and how to create progress bar loading animations.

■ Chapter 15, “Working with External Data,” describes how to process data from external
sources using server- or client-side scripts in your applications. This chapter describes how
to integrate data with your applications.

■ Chapter 16, “Understanding Security,” explains security in Flash Player, as it pertains to
working with SWF files locally on your hard disk. This chapter also explains cross-domain
security issues, and how to load data from servers, or across domains.

■ Chapter 17, “Best Practices and Coding Conventions for ActionScript 2.0,” explains the
best practices for using Flash and writing ActionScript. This chapter also lists standardized
coding conventions, such as naming variables, and other conventions.

■ Appendix A, “Error Messages,” lists the error messages that the Flash compiler can
generate.

■ Appendix B, “Deprecated Flash 4 operators,” lists all the deprecated Flash 4 operators and
their associativity.

■ Appendix C, “Keyboard Keys and Key Code Values,” lists all the keys on a standard
keyboard and the corresponding ASCII key code values that are used to identify the keys
in ActionScript.

■ Appendix D, “Writing Scripts for Earlier Versions of Flash Player,” provides guidelines to
help you write scripts that are syntactically correct for the player version you are targeting.

■ Appendix E, “Object-Oriented Programming with ActionScript 1.0,” provides
information on using the ActionScript 1.0 object model to write scripts.

This manual explains how to use the ActionScript language. For information on the language
elements themselves, see the ActionScript 2.0 Language Reference.

About the documentation 13

Typographical conventions
This manual uses the following typographical conventions:

■ Code font indicates ActionScript code.
■ Bold code font, typically within a procedure, indicates code that you need to modify or

add to code you have already added to your FLA file. In some case, it might be used to
highlight code to look at.

■ Boldface text indicates data you need to type into the user interface, such as a filename or
instance name.

■ Italic text indicates a new term defined in the text that follows. In a file path, it might
indicate a value that should be replaced (for example, with a directory name on your own
hard disk).

Terms used in this document
The following terms are used in this manual:

■ You refers to the developer who is writing a script or application.
■ The user refers to the person who is running your scripts and applications.
■ Compile time is the time at which you publish, export, test, or debug your document.
■ Runtime is the time at which your script is running in Flash Player.

Copy and paste code
When you paste ActionScript from the Help panel into your FLA or ActionScript file, you
have to be careful about special characters. Special characters include special quotation marks
(also called curly quotation marks or smart quotation marks). These characters are not
interpreted by the ActionScript editor, so your code throws an error if you try to compile it
in Flash.

You can determine that your quotation mark characters are special characters if they do not
color-code correctly. That is, if all your strings do not change in color in the code editor, you
need to replace the special characters with regular straight quotation mark characters. If you
type a single or double quotation mark character directly into the ActionScript editor, you
always type a straight quotation mark character. The compiler (when you test or publish a
SWF file) throws an error and lets you know if there are the wrong kind (special quotation
marks or curly quotation marks) of characters in your code.

N
O

T
E

You might also encounter special quotation marks if you paste ActionScript from other
locations, such as a web page or a Microsoft Word document.

14 Introduction

Be cautious of proper line breaks when you copy and paste code. If you paste your code from
some locations, the line of code might break in an improper location. Make sure that the color
coding of your syntax is correct in the ActionScript editor if you think line breaks might be a
problem. You might want to compare your code in the Actions panel to that in the Help panel
to see if it matches. Try turning on Word Wrap in the ActionScript editor to help solve
surplus line breaks in your code (select View > Word Wrap in the Script window, or Word
Wrap from the Actions panel pop-up menu.)

Additional resources
In addition to this manual about ActionScript, there are manuals on other Flash topics, such
as components and Adobe Flash Lite. You can access each manual in the Help panel (Help >
Flash Help), by viewing the default Table of Contents. Click the Clear button to see each
manual that’s available; for more information, see “Where to find documentation on other
subjects” on page 17.

For more information about other available resources, see the following topics:

■ “About the sample files” on page 14
■ “Where to find PDF files or printed documentation” on page 15
■ “About LiveDocs” on page 15
■ “Additional online resources” on page 16
■ “Where to find documentation on other subjects” on page 17

About the sample files
There are numerous ActionScript-based sample files available that install with Flash. These
sample files show you how code works in a FLA file; this is often a useful learning tool. The
chapters in this manual often reference these files, but we recommend that you also check out
the sample files folder on your hard disk.

The sample files include application FLA files that use common Flash functionality installed
with Flash. These applications were designed to introduce new Flash developers to the
capabilities of Flash applications, as well as show advanced developers how Flash features work
in context.

Additional resources 15

For samples of ActionScript-focused sample source files, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0 folder to access the samples. For components-focused sample
files, navigate to the ComponentsAS2 folder.

Where to find PDF files or printed documentation
If you prefer to read documentation in printed format, the PDF versions of each Help manual
are available for downloading. Go to www.adobe.com/support/documentation/ and select the
product you’re interested in. You can view or download the PDF or link to the LiveDocs
version of the manual.

Often, you can also purchase printed documentation. For updated information, go to the
Documentation support site.

About LiveDocs
You can access documentation at the LiveDocs website, in addition to accessing it from the
Help panel. The LiveDocs website contains all of the Flash Help pages and might contain
comments that clarify, update, or correct parts of the documentation. Click View Comments
on LiveDocs at the bottom of a page in the Help panel to display the equivalent page on the
LiveDocs website. Go to http://livedocs.macromedia.com to see a list of all of the available
documentation in the LiveDocs format.

Technical writers monitor the LiveDocs website. One of the advantages of LiveDocs is seeing
comments that clarify the documentation or correct any errata or issues that arise after a
software release. LiveDocs is not the place to make help requests, such as asking questions
about your code that doesn’t work, comment on problems with software or installation, or ask
how to create something with Flash. It is the correct place to provide feedback about the
documentation (for example, you notice a sentence or paragraph that could be clarified).

When you click the button to add a comment on LiveDocs, there are several points about the
kinds of comments that are acceptable on the system. Please read these guidelines closely, or
your comment might be removed from the website.

If you have a question about Flash, please ask it on the Adobe web forums: www.adobe.com/
support/forums/. The web forums are the best place to ask questions, because there are many
Adobe employees, Team Adobe volunteers, Adobe user group managers and members, and
even technical writers who monitor these forums.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/support/documentation/
http://www.adobe.com/support/documentation/
http://livedocs.macromedia.com/
http://www.adobe.com/support/forums/
http://www.adobe.com/support/forums/

16 Introduction

Engineers do not monitor the LiveDocs system but do monitor the Flash wish list. If you
think you have found a bug in the software, or you would like to request an enhancement to
Flash, please fill out the wishform at www.adobe.com/go/wish. If you report your bug or
enhancement request on LiveDocs, it will not be officially added to the bug database. You
must use the wishform instead, if you want an engineer to see your bug or request.

Remember to be careful about special characters and line breaks when you paste from the
web, including LiveDocs. Adobe has made every effort to remove all special characters from
code samples, but if you have problems pasting code, see “Copy and paste code” on page 13.

Additional online resources
There are several resources online that offer a wealth of instruction, help, and guidance to help
you learn Flash. Check the following websites often for updates:

The Adobe Developer Center website (www.adobe.com/devnet) is updated regularly with
the latest information on Flash, plus advice from expert users, advanced topics, examples, tips,
tutorials (including multipart tutorials), and other updates. Check the website often for the
latest news on Flash and how to get the most out of the program.

The Adobe Flash Support Center (www.adobe.com/support/flash) provides TechNotes,
documentation updates, and links to additional resources in the Flash community.

The Adobe Weblogs website (http://weblogs.macromedia.com) provides a list of both
Adobe employee and community weblogs (also known as blogs).

The Adobe web forums (http://www.adobe.com/support/forums/) provides numerous
forums for asking specific questions about Flash, your applications, or the ActionScript
language. The forums are monitored by Team Adobe volunteers and often visited by Adobe
employees as well. If you’re not sure where to go, or how to solve a problem, a Flash forum is
a good place to start.

The Adobe Community website (www.adobe.com/community) regularly hosts a series of live
presentations on a variety of topics by Adobe employees or community members. Check the
website often for updates.

http://www.adobe.com/go/wish/
http://www.adobe.com/devnet
http://www.adobe.com/support/flash
http://weblogs.macromedia.com
http://www.adobe.com/support/forums/
http://www.adobe.com/support/forums/
http://www.adobe.com/community/

Additional resources 17

Where to find documentation on other subjects
The following manuals offer additional information on subjects commonly associated with
ActionScript 2.0:

■ For information about the elements that compose the ActionScript language, see the
ActionScript 2.0 Language Reference.

■ For information about working in the Flash authoring environment, see How to Use Help.
■ For information about working with components, see Using ActionScript 2.0 Components.

18 Introduction

19

1
CHAPTER 1

What’s New in Flash
ActionScript

Adobe Flash CS3 Professional provides several enhancements that make it easy for you to
write robust scripts using the ActionScript language. The new features, which are discussed in
this chapter, include new language elements (see “Additions to the ActionScript language in
Flash Player 8” on page 22), improved editing tools (see “ActionScript editing changes”
on page 27), changes to the security model, and other ActionScript-related improvements to
the authoring tool.

For more information, see the following topics:
New in ActionScript 2.0 and Flash Player 9.x . 19

New in ActionScript 2.0 and Flash Player 8 . 20

Changes to security model for locally installed SWF files. 28

New in ActionScript 2.0 and Flash Player
9.x
Flash Player 9.x allows a user to switch the Flash Player into and out of fullscreen mode. The
following items support this new feature:

■ Stage.displayState property
■ Stage.onFullScreen event handler
■ allowFullScreen parameter in the object and embed HTML tags

For more information, see ActionScript 2.0 Language Reference.

Flash Player 9.x also introduces a new FileReference event, onUploadCompleteData. This
event can be invoked after a server receives a successful upload. For more information on this
new item, see ActionScript 2.0 Language Reference.

20 What’s New in Flash ActionScript

New in ActionScript 2.0 and
Flash Player 8
The ActionScript language has grown and developed since its introduction several years ago.
With each new release of Flash, additional keywords, objects, methods, and other language
elements were added to ActionScript. There are also ActionScript-related improvements to
the Flash 8 authoring environments. Flash Basic 8 and Flash Professional 8 introduced several
new language elements for expressive features, such as filters and blending modes, and
application development, such as JavaScript integration (ExternalInterface) and file input and
output (FileReference and FileReferenceList).

This section provides an overview of the ActionScript language elements and classes that are
new or changed in Flash 8 and ActionScript-related improvements to the authoring tool. For
a list of specific additions to ActionScript 2.0, see “Additions to the ActionScript language in
Flash Player 8” on page 22. To use any of the new language elements in your scripts, you must
target Flash Player 8 when you publish your documents.

The following features were added to both Flash Basic 8 and Flash Professional 8 (unless
noted otherwise):

■ ActionScript editor enhancements let you show hidden characters in your scripts. For
more information, see “Display hidden characters” in Using Flash.

■ Debug options are now available in the Script window, as well as the Actions panel, for
ActionScript files.

■ The Configuration directory that includes XML files and Class files is reorganized. See
“Configuration folders installed with Flash” in Using Flash for details.

■ You can set a preference to reload modified script files when working on an application,
which helps you avoid working with older versions of script files, and overwriting newer
script files. For more information, see “Set ActionScript preferences” in Using Flash.

■ The Script window feature is available in Flash. That means you can now create an
ActionScript file in either program.

■ Script Assist (similar to Normal Mode in earlier editions of Flash) helps you code without
needing to understand syntax. For more information on Script Assist, see “About Script
Assist mode” in Using Flash.

■ You can load new kinds of image files at runtime, which include progressive JPEG images,
and non-animated GIF and PNG files. If you load an animated file, the first frame of the
animation appears.

■ You can assign linkage identifiers to bitmap and sound files stored in the Library, which
means that you can attach images to the Stage or work with these assets in shared libraries.

New in ActionScript 2.0 and Flash Player 8 21

■ Bitmap caching lets you improve the performance of your applications at runtime by
caching a bitmap representation of your instances. You can use ActionScript code to access
this property. For more information, see “About bitmap caching, scrolling, and
performance” on page 440.

■ 9-slice scaling lets you scale movie clip instances without widening the strokes that outline
the movie clip. You can use ActionScript code to access this feature in Flash. For more
information, see “Working with 9-slice scaling in ActionScript” on page 516. For
information about accessing 9-slice scaling in the authoring tool, see Using Flash.

■ You can now add metadata information to your FLA files in the Document Properties
dialog box. You can add a name and description to your FLA file using the dialog box to
help increase online search visibility.

■ The Strings panel is improved to include multiline support in the String field and a
language XML file. For more information, see “panel” on page 413.

■ A new garbage collector is built into Flash Player, which uses an incremental collector to
improve performance.

■ The workflow for creating accessible applications is improved. Flash Player 8 no longer
requires developers to add all objects to the tab index for content to be read correctly by a
screen reader. For more information on tab index, see tabIndex (Button.tabIndex
property), tabIndex (MovieClip.tabIndex property), and tabIndex
(TextField.tabIndex property) in the ActionScript 2.0 Language Reference.

■ Flash Player has improved local file security, for additional safety when running SWF files
on your hard disk. For information on local file security, see “About local file security and
Flash Player” on page 633.

■ Using ActionScript code, you can use the Drawing API to control the line style of strokes
that you draw. For information on new line styles, see “Using line styles” on page 506.

■ Using ActionScript code, you can use the Drawing API to create more complex gradients
that you fill shapes with. For information on gradient fills, see “Using complex gradient
fills” on page 505.

■ You can use ActionScript code to apply many filters to objects on the Stage (such as movie
clip instances). For information on filters and ActionScript, see “Working with filters
using ActionScript” on page 463.

■ You can use the FileReference and FileReferenceList API to upload files to a server. For
more information, see “About file uploading and downloading” on page 600.

■ You can use ActionScript code to access new and advanced ways of applying and
manipulating colors. For more information, see “Setting color values” on page 530 and
ColorTransform (flash.geom.ColorTransform) in the ActionScript 2.0 Language
Reference.

22 What’s New in Flash ActionScript

■ Numerous improvements are made to text handling, including new options, properties,
and parameters in the TextField and TextFormat classes. For more information, see
TextField and TextFormat in the ActionScript 2.0 Language Reference.

■ You can use ActionScript code to access advanced anti-aliasing features. For more
information, see “About font rendering and anti-alias text” on page 367.

■ You can delete ASO files when you test your application. Select Control > Delete ASO
files or Control > Delete ASO files and Test Movie in the authoring tool. For information,
see “Using ASO files” on page 242.

For a list of specific classes, language elements, methods, and properties added to ActionScript
2.0 in Flash 8, see “Set ActionScript preferences” in Using Flash.

Additions to the ActionScript language in Flash
Player 8
The following classes and language elements are new additions or newly supported in Flash
Player 8.

The following classes were added to ActionScript 2.0 in Flash 8:

■ The BevelFilter class (in flash.filters package) lets you add bevel effects to objects.
■ The BitmapData class (in flash.display package) lets you create and manipulate arbitrarily

sized transparent or opaque bitmap images.
■ The BitmapFilter class (in flash.display package) is a base class for filter effects.
■ The BlurFilter class lets you apply blurs to objects in Flash.
■ The ColorMatrixFilter class (in flash.filters package) lets you apply transformations to

ARGB colors and alpha values.
■ The ColorTransform class (in the flash.geom package) lets you adjust color values in

movie clips. The Color class is deprecated in favor of this class.
■ The ConvolutionFilter class (in the flash.filters package) lets you apply matrix

convolution filter effects.
■ The DisplacementMapFilter class (in the flash.filters package) lets you use pixel values

from a BitmapData object to perform displacement on an object.
■ The DropShadowFilter class (in the flash.filters package) lets you add drop shadows

to objects.
■ The ExternalInterface class (in the flash.external package) lets you communicate by using

ActionScript with the Flash Player container (the system holding the Flash application,
such as a browser with JavaScript, or the desktop application).

New in ActionScript 2.0 and Flash Player 8 23

■ The FileReference class (in the flash.net package) lets you upload and download files
between the user’s computer and a server.

■ The FileReferenceList class (in the flash.net package) lets you select one or more files
to upload.

■ The GlowFilter class (in the flash.filters package) lets you add glow effects to objects.
■ The GradientBevelFilter class (in the flash.filters package) lets you add gradient bevels

to objects.
■ TheGradientGlowFilter class (in the flash.filters package) lets you add gradient glow

effects to objects.
■ The IME class (in the System class) lets you manipulate the operating system’s input

method editor (IME) within Flash Player.
■ The Locale class (in the mx.lang package) lets you control how multilanguage text appears

in a SWF file.
■ The Matrix class (in the flash.geom package) represents a transformation matrix that

determines how to map points from one coordinate space to another.
■ The Point class (in the flash.geom package) represents a location in a two-dimensional

coordinate system (x represents the horizontal axis, and y represents the vertical axis).
■ The Rectangle class (in the flash.geom package) lets you create and modify Rectangle

objects.
■ The TextRenderer class (in the flash.text package) provides functionality for advanced

anti-aliased embedded fonts.
■ The Transform class (in the flash.geom package) collects data about color transformations

and coordinates manipulations that you apply to a MovieClip instance.

New language elements, methods, and functions added to existing classes in ActionScript
include:

■ The showRedrawRegions global function provides the ability for the debugger player to
outline the regions of the screen that are being redrawn (that is, dirty regions that are
being updated). The function has the player show what was redrawn, but does not let you
control redraw regions.

■ The blendMode property in the Button class, which sets the blending mode for the
button instance.

■ The cacheAsBitmap property in the Button class, which lets you cache the object as an
internal bitmap representation of the instance.

N
O

T
E

Official support is added for the AsBroadcaster class in Flash 8.

24 What’s New in Flash ActionScript

■ The filters property in the Button class, which is an indexed array that contains each
filter object associated with the button.

■ The scale9Grid property in the Button class, which is the rectangular region that defines
nine scaling regions for the instance.

■ The hasIME property in the System.capabilities class, which indicates if the system has an
IME installed.

■ The getUTCYear property in the Date class, which returns the year of this date, according
to universal time.

■ The isAccessible() method in the Key class returns a Boolean value that indicates
whether the last key pressed may be accessed by other SWF files, depending on
security restrictions.

■ The onHTTPStatus event handler of the LoadVars class returns the status code that’s
returned from the server (for example, the value 404 for page not found). For more
information, see HTTPStatus (LoadVars.onHTTPStatus handler) in the ActionScript
2.0 Language Reference.

■ The attachBitmap() method of the MovieClip class, which attaches a bitmap image to a
movie clip. For information, see BitmapData (flash.display.BitmapData) in the
ActionScript 2.0 Language Reference.

■ The beginBitmapFill() method of the MovieClip class, which fills a movie clip with a
bitmap image.

■ The spreadMethod, interpolationMethod, and focalPointRatio parameters of the
beginGradientFill() method in the MovieClip class. This method fills a drawing area
with a bitmap image, and the bitmap can be repeated or tiled to fill the area.

■ The blendMode property of the MovieClip class, which lets you set the blending mode for
the instance.

■ The cacheAsBitmap property of the MovieClip class, which lets you cache the object as
an internal bitmap representation of the instance.

■ The filters property of the MovieClip class, which is an indexed array that contains
each filter object that’s currently associated with the instance.

■ The getRect() method of the MovieClip class, which returns properties that are the
minimum and maximum coordinate values of the specified instance.

■ The lineGradientStyle() method of the MovieClip class, which specifies a gradient
line style that Flash uses when drawing a path.

■ The pixelHinting, noScale, capsStyle, jointStyle, and miterLimit parameters of
the lineStyle() method in the MovieClip class. These parameters specify kinds of line
styles you can use when drawing lines.

New in ActionScript 2.0 and Flash Player 8 25

■ The opaqueBackground property of the MovieClip class, which sets the color of the
movie clip’s opaque (not transparent) background to the color that the RGB hexadecimal
value specifies.

■ The scale9Grid property of the MovieClip class, which is the rectangular region that
defines nine scaling regions for the instance.

■ The scrollRect property of the MovieClip class, which lets you quickly scroll movie clip
content and have a window viewing larger content.

■ The transform property of the MovieClip class, which lets you make settings regarding a
movie clip’s matrix, color transform, and pixel bounds. For more information, see
Transform (flash.geom.Transform) in ActionScript 2.0 Language Reference.

■ The status parameter of the MovieClipLoader.onLoadComplete event handler returns
the status code that’s returned from the server (for example, the value 404 for page not
found). For more information, see onLoadComplete (MovieClipLoader.onComplete
event listener) in ActionScript 2.0 Language Reference.

■ The onLoadError event handler of the MovieClipLoader class is invoked when a file
loaded with MovieClipLoader.loadClip() fails to load.

■ The secure parameter of the SharedObject.getLocal() method determines whether
access to this shared object is restricted to SWF files delivered over an HTTPS connection.
For more information, see getLocal (SharedObject.getlocal method) in
ActionScript 2.0 Language Reference.

■ The sandboxType property of the System.security class indicates the type of security
sandbox in which the calling SWF file is operating. For more information, see
sandboxType (security.sandboxType property) in ActionScript 2.0 Language
Reference.

■ The antiAliasType property in the TextField class, which sets the type of advanced anti-
aliasing that you use for the TextField instance.

■ The filters property in the TextField class, which is an indexed array that contains each
filter object that’s currently associated with the TextField instance.

■ The gridFitType property in the TextField class, which sets the type of grid fitting that
you use for the instance. For information on grid fitting and TextField.gridFitType, see
gridFitType (TextField.gridFitType property) in ActionScript 2.0 Language
Reference.

■ The sharpness property in the TextField class, which sets the sharpness of the glyph
edges for the TextField instance. You must set the antiAliasType() method to advanced
if you use this property.

26 What’s New in Flash ActionScript

■ The thickness property in the TextField class, which sets the thickness of the glyph edges
in the TextField instance. You must set the antiAliasType() method to advanced if you
use this property.

■ The justify value for the align property of the TextFormat class, which lets you justify
a specified paragraph.

■ The indent property of the TextFormat class, which lets you use negative values.
■ The kerning property in the TextFormat class, which lets you turn kerning on or off for

the TextFormat object.
■ The leading property of the TextFormat class, which lets you use negative leading, so the

space between lines is less than the text height. This lets you put lines of text close together
in your applications.

■ The letterSpacing property in the TextFormat class, which lets you specify the amount
of space that is uniformly distributed between characters.

■ The _alpha property in the Video class, which is the specified amount of transparency for
the video object.

■ The _height property in the Video class, which indicates the height of the video instance.
■ The _name property in the Video class, which indicates the instance name of the video.
■ The _parent property in the Video class, which indicates the movie clip instance or

object that contains the video instance.
■ The _rotation property in the Video class, which lets you set the amount of rotation of

the video instance in degrees.
■ The _visible property in the Video class, which lets you set the visibility of a

video instance.
■ The _width property in the Video class, which lets you set the width of the

video instance.
■ The _x property in the Video class, which lets you set the x coordinate of the

video instance.
■ The _xmouse property in the Video class, which lets you set the x coordinate of the mouse

pointer position.
■ The _xscale property in the Video class, which lets you set the horizontal scale

percentage of the video instance.
■ The _y property in the Video class, which lets you set the y coordinate of the

video instance.
■ The _ymouse property in the Video class, which lets you set the y coordinate of the mouse

pointer position.

New in ActionScript 2.0 and Flash Player 8 27

■ The _yscale property in the Video class, which lets you set the vertical scale percentage
of the video instance.

■ The onHTTPStatus event handler in the XML class returns the status code that’s returned
from the server (for example, the value 404 for page not found). For more information,
see onHTTPStatus (XML.onHTTPStatus handler) in ActionScript 2.0 Language
Reference.

■ The localName property of the XMLNode class, which returns the full name of the XML
node object (including both the prefix and the local name).

■ The namespaceURI property of the XMLNode class, which reads the URI of the
namespace to which the XML node’s prefix resolves. For more information, see
namespaceURI (XMLNode.namespaceURI property) in ActionScript 2.0 Language
Reference.

■ The prefix property of the XMLNode class, which reads the prefix of the node name.
■ The getNamespaceForPrefix() method of the XMLNode class, which returns the

namespace URI associated with the specified prefix for the node.
■ The getPrefixForNamespace method of the XMLNode class, which returns the prefix

associated with a specified namespace URI for the node.

About deprecated language elements
Some language elements are deprecated in Flash Player 8. For a list of deprecated language
elements, and alternatives to use in Flash Player 8, see the following sections in ActionScript
2.0 Language Reference:

■ Deprecated Class summary

■ Deprecated Function summary

■ Deprecated Property summary

■ Deprecated Operator summary

ActionScript editing changes
The ActionScript editor in the Actions panel and Script window has been updated in several
ways to make it more robust and easier to use than earlier versions of the tool. The changes are
summarized in this section.

View hidden characters You can now use the Options pop-up menu in the Script pane,
Debugger panel, and Output panel to view or hide hidden characters when you’re writing
script files in the Actions panel or Script window. For information on this feature,
see Using Flash.

28 What’s New in Flash ActionScript

Script assist added to Actions panel In previous versions of Flash, you could work in the
Actions panel either in normal mode, in which you filled in options and parameters to create
code, or in expert mode, in which you added commands directly into the Script pane. These
options were not available in Flash MX 2004 or Flash MX Professional 2004. However, in
Flash Basic 8 and Flash Professional 8, you can work in Script Assist mode, which is similar to
(and more robust than) normal mode. For information and a tutorial on Script Assist, see
Using Flash.

Reload modified files You can reload modified script files when working on an application.
A warning message appears, prompting you to reload the modified script files associated with
the application you’re working on. This feature is particularly beneficial to teams working on
applications at the same time, in that it helps you avoid working with outdated scripts, or
overwriting newer versions of a script. If a script file was moved or deleted, a warning message
appears and prompts you to save the files as necessary. For more information, see “Set
ActionScript preferences” in Using Flash.

Changes to security model for locally
installed SWF files
Flash Player 9.x introduces support for a new HTML tag, allowNetworking. For more
information, see the Security chapter in Programming ActionScript 3.0.

Flash Player 8 introduced a new, improved security model in which Flash applications and
SWF files on a local computer can communicate with the Internet and the local file system,
rather than run from a remote web server. When you develop a Flash application, you must
indicate whether a SWF file is allowed to communicate with a network or with a local file
system.

In previous versions of Flash Player, local SWF files could interact with other SWF files and
load data from any remote or local computer without configuring security settings. In Flash
Player 8 and later, a SWF file cannot make connections to the local file system and the
network (such as the Internet) in the same application without making a security setting. This
is for your safety, so a SWF file cannot read files on your hard disk and then send the contents
of those files across the Internet.

N
O

T
E

In this description, a local SWF file is a SWF file that is locally installed on a user’s
computer, not served from a website, and does not include projector (EXE) files.

Changes to security model for locally installed SWF files 29

This security restriction affects all locally deployed content, whether it’s legacy content (a FLA
file created in an earlier version of Flash) or created in Flash 8 and later. Using the Flash MX
2004 or earlier authoring tool, you could test a Flash application that runs locally and also
accesses the Internet. In Flash Player 8 and later, this application now prompts the user for
permission to communicate with the Internet.

When you test a file on your hard disk, there are several steps to determine whether the file is
a local trusted (safe) document or a potentially untrusted (unsafe) document. If you create the
file in the Flash authoring environment (for example, when you select Control > Test Movie),
your file is trusted because it is in the test environment.

In Flash Player 7 and earlier, local SWF files had permissions to access both the local file
system and the network. In Flash Player 8 and later, local SWF files can have three levels of
permission:

■ Access the local file system only (the default level). The local SWF file can read from the
local file system and universal naming convention (UNC) network paths and cannot
communicate with the Internet.

■ Access the network only. The local SWF file can access the network only (such as the
Internet) and not the local file system where the SWF file is installed.

■ Access to both the local file system and the network. The local SWF file can read from the
local file system where the file is installed, read from and write to any server that grants it
permission, and can cross-script other SWF files on either the network or the local file
system that grant it permission.

For more details about each level of permission, see “About local file security and Flash Player”
on page 633.

There are also minor changes to System.security.allowDomain and improvements to
System.security.allowInsecureDomain. For more information on local file security, see
Chapter 16, “Understanding Security.”

30 What’s New in Flash ActionScript

31

2
CHAPTER 2

About ActionScript

The object-oriented programming (OOP) features in ActionScript 2.0 are based on the
ECMAScript 4 Draft Proposal currently in development by ECMA TC39-TG1 (see
www.mozilla.org/js/language/es4/index.html). Because the ECMA-4 proposal is not yet a
standard, and because it is still changing, ActionScript 2.0 is loosely based on this
specification.

ActionScript 2.0 supports all the standard elements of the ActionScript language; it lets you
write scripts that more closely adhere to standards used in other object-oriented languages,
such as Java. ActionScript 2.0 should be of interest primarily to intermediate or advanced
Flash developers who are building applications that require the implementation of classes and
subclasses. ActionScript 2.0 also lets you declare the object type of a variable when you create
it (see “About assigning data types and strict data typing” on page 45) and provides
significantly improved compiler errors (see Appendix A, “Error Messages,” on page 707).

Key facts about ActionScript 2.0 include the following points:

■ Scripts that use ActionScript 2.0 to define classes or interfaces must be stored as external
script files, with a single class defined in each script; that is, classes and interfaces cannot
be defined in the Actions panel.

■ You can import individual class files implicitly (by storing them in a location specified by
global or document-specific search paths and then using them in a script) or explicitly (by
using the import command); you can import packages (collections of class files in a
directory) by using wildcards.

■ Applications developed with ActionScript 2.0 are supported by Flash Player 6 and later.

C
A

U
T

IO
N

The default publish setting for new files created in Flash CS3 is ActionScript 3.0. If
you plan to modify an existing FLA file with ActionScript 1.0 or ActionScript 2.0 to
use ActionScript 2.0 syntax, ensure that the FLA file specifies ActionScript 2.0 in its
publish settings. If it does not, your file will compile incorrectly, although Flash will not
necessarily generate compiler errors.

http://www.mozilla.org/js/language/es4/index.html

32 About ActionScript

For more information on using ActionScript 2.0 to write object-oriented programs in Flash,
see Chapter 6, “Classes,” on page 187.

Although Adobe recommends that you use ActionScript 3.0, you can continue to use
ActionScript 1.0 and ActionScript 2.0 syntax.

What is ActionScript
The main features of ActionScript 2.0 include the following:

Familiar object-oriented programming (OOP) model The primary feature of
ActionScript 2.0 is a familiar model for creating object-oriented programs. ActionScript 2.0
implements several object-oriented concepts and keywords such as class, interface, and
packages that will be familiar to you if you’ve programmed with Java.

The OOP model provided by ActionScript 2.0 is a “syntactic formalization” of the prototype
chaining method used in previous versions of Flash to create objects and establish inheritance.
With ActionScript 2.0, you can create custom classes and extend Flash’s built-in classes.

Strict data typing ActionScript 2.0 also lets you explicitly specify data types for variables,
function parameters, and function return types. For example, the following code declares a
variable named userName of type String (a built-in ActionScript data type, or class).
var userName:String = "";

Compiler warnings and errors The previous two features (OOP model and strict data
typing) enable the authoring tool and compiler to provide compiler warnings and error
messages that help you find bugs in your applications faster than was previously possible
in Flash.

When you use ActionScript 2.0, make sure that the publish settings for the FLA file specify
ActionScript 2.0 (the default for Flash CS3 is ActionScript 3.0). Additionally, if you open an
older FLA file that uses ActionScript 1.0 and begin rewriting it in ActionScript 2.0, change
the publish settings of the FLA file to ActionScript 2.0. If you don’t, your FLA file will not
compile correctly, and errors won’t be generated.

About choosing between ActionScript 1.0 and ActionScript 2.0 33

About choosing between ActionScript
1.0 and ActionScript 2.0
When you start a new document or application in Flash, you must decide how to organize its
associated files. You might use classes in some projects, such as when you are building
applications or complex FLA files, but not all documents use classes. For example, many short
examples in the documentation do not use classes. Using classes to store functionality is not
the easiest or best solution for small applications or simple FLA files. It is often more efficient
to put ActionScript inside the document. In this case, try to put all your code on the Timeline
on as few frames as possible, and avoid placing code on or in instances (such as buttons or
movie clips) in a FLA file.

When you build a small project, it is often more work and effort to use classes or external code
files to organize ActionScript instead of adding ActionScript within the FLA file. Sometimes
it is easier to keep all the ActionScript code within the FLA file, rather than placing it within a
class that you import. This does not mean that you should necessarily use ActionScript 1.0.
You might decide to put your code inside the FLA file by using ActionScript 2.0 with its strict
data typing and its new methods and properties. ActionScript 2.0 also offers a syntax that
follows standards in other programming languages. This makes the language easier and more
valuable to learn. For example, you will feel familiar with ActionScript if you have
encountered another language that’s based on the same structure and syntax standards. Or,
you can apply this knowledge to other languages you learn in the future. ActionScript 2.0 lets
you use an object-oriented approach to developing applications by using an additional set of
language elements, which can be advantageous to your application development.

In some cases, you cannot choose which version of ActionScript to use. If you are building a
SWF file that targets an old version of Flash Player, such as a mobile device application, you
must use ActionScript 1.0, which is compatible with Flash Player for a number of devices.

Remember, regardless of the version of ActionScript, you should follow good practices. Many
of these practices, such as remaining consistent with case sensitivity, using code completion,
enhancing readability, avoiding keywords for instance names, and keeping a consistent
naming convention, apply to both versions.

If you plan to update your application in future versions of Flash, or make it larger and more
complex, you should use ActionScript 2.0 and classes, to make it easier to update and modify
your application.

34 About ActionScript

Understanding ActionScript and
Flash Player
If you compile a SWF file that contains ActionScript 2.0 with publish settings set to Flash
Player 6 and ActionScript 1.0, your code functions as long as it does not use ActionScript 2.0
classes. No case sensitivity is involved with the code, only Flash Player. Therefore, if you
compile your SWF file with Publish Settings set to Flash Player 7 and later and ActionScript
1.0, Flash enforces case sensitivity.

Data type annotations (strict data types) are enforced at compile time for Flash Player 7 and
later when you have publish settings set to ActionScript 2.0.

ActionScript 2.0 compiles to ActionScript 1.0 bytecode when you publish your applications,
so you can target Flash Player 6 and later while working with ActionScript 2.0.

35

3
CHAPTER 3

Data and Data Types

This chapter is the first of several chapters that outline and demonstrate some fundamental
concepts of ActionScript. You’ll practice some basic coding techniques to learn how to create
complex applications. In this chapter, you’ll also learn about how to work with data in a FLA
file, and what kinds of data you can work with. In the next chapter, Chapter 4, “Syntax and
Language Fundamentals,” you’ll discover how to use ActionScript syntax and form
statements. Following this, Chapter 5, “Functions and Methods” demonstrates how to use
functions and methods in the ActionScript language.

For more information about data and data types, see the following sections:
About data . 35

About data types. 36

About variables . 50

Organizing data in objects . 72

About casting . 74

About data
Data refers to the numbers, strings, and other information that you can manipulate within
Flash. Using data is usually essential when you create applications or websites. You also use
data when you create advanced graphics and script-generated animation, and you might have
to manipulate values that you use to drive your effects.

You can define data in variables within Flash, or you can load data from external files or sites
using XML, web services, built-in ActionScript classes, and so on. You can store data in a
database, and then represent that information in several ways in a SWF file. This can include
displaying the information in text fields or components, or displaying images in movie
clip instances.

36 Data and Data Types

Some of the most common kinds of data include strings (a sequence of characters, such as
names and passages of text), numbers, objects (such as movie clips), Boolean values (true and
false), and so on. In this chapter, you’ll also learn about the data types in Flash and how to
use them.

For information on types of data, see “About data types” on page 36. For information on
variables, see “About variables” on page 50.

About data types
A data type describes a piece of data and the kinds of operations that you can perform on it.
You store data in a variable. You use data types when creating variables, object instances, and
function definitions to assign the type of data you’re working with. You use many different
data types when you write ActionScript.

ActionScript 2.0 defines several commonly used data types. Data types describe the kind of
value that a variable or ActionScript element can contain. A variable that is assigned a data
type can only hold a value within that data type’s set of values. For information on variables,
see “About variables” on page 50.

ActionScript has numerous basic data types that you will probably use frequently in your
applications. See the table in “About primitive and complex data types” on page 37 for more
information.

ActionScript also has core classes, such as Array and Date, that are considered complex or
reference data types. For more info on complex and reference data types, see “About primitive
and complex data types” on page 37. In addition, all data types and classes are fully defined in
ActionScript 2.0 Language Reference.

You can also create custom classes for your applications. Any class that you define using the
class declaration is also considered a data type. For more information on core and other built-
in classes, see “About top-level and built-in classes” on page 246. For more information on
creating custom classes, see Chapter 6, “Classes,” on page 187.

In ActionScript 2.0, you can assign data types to variables when you declare them. The data
types you assign can be any of the core types or can represent a custom class that you created.
For more information, see “About assigning data types and strict data typing” on page 45.

When you debug scripts, you might need to determine the data type of an expression or
variable to understand why it is behaving a certain way. You can do this with the instanceof
and typeof operators (see “About determining data type” on page 49).

About data types 37

You can convert one data type to another at runtime using one of the following conversion
functions: Array(), Boolean(), Number(), Object(), String().

For a sample of the datatypes.fla file, which shows you how to use data types in an
application, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download
and decompress the Samples zip file and navigate to the ActionScript2.0/DataTypes folder to
access the sample.

About primitive and complex data types
You can divide all the different data type values into two main categories: primitive or complex.

A primitive value (or primitive data type) is a value that ActionScript stores at the lowest level
of abstraction, which means that operations on the primitive data types are generally faster
and more efficient than operations carried out on complex data types. The following data
types all define a set of one or more primitive values: Boolean, null, Number, String, and
undefined.

A complex value (or complex data type) is a value that is not a primitive value and that
references the primitive values. Often, these are called reference data types. Complex values
belong to the Object data type or a data type that is based on the Object data type. Data types
that define sets of complex values include Array, Date, Error, Function, and XML. For more
information on these complex data types, see their entries in the ActionScript 2.0 Language
Reference.

Variables that contain primitive data types behave differently in certain situations than those
containing complex types. For more information, see “Using variables in a project”
on page 69.

ActionScript has the following basic data types that you can use in your applications:

Data type Description

Boolean Primitive. The Boolean data type consists of two values: true and false.
No other values are valid for variables of this type. The default value of
Boolean variable that has been declared but not initialized is false. For
more information, see “Boolean data type” on page 38.

MovieClip Complex. The MovieClip data type lets you control movie clip symbols
using the methods of the MovieClip class. For more information, see
“MovieClip data type” on page 40.

http://www.adobe.com/go/learn_fl_samples

38 Data and Data Types

For a sample of the datatypes.fla file, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download and decompress the Samples zip file and navigate to the
ActionScript2.0/DataTypes folder to access the sample.

Boolean data type
A Boolean value is one that is either true or false. ActionScript also converts the values
true and false to 1 and 0 when appropriate. Boolean values are most often used with logical
operators in ActionScript statements that make comparisons to control the flow of a script.

null Primitive. The null data type contains the value null. This value means
no value—that is, a lack of data. You can assign the null value in a
variety of situations to indicate that a property or variable does not have
a value assigned to it. The null data type is the default data type for all
classes that define complex data types. An exception to this rule is the
Object class, which defaults to undefined. For more information, see
“null data type” on page 41.

Number Primitive. This data type can represent integers, unsigned integers, and
floating point numbers. To store a floating point number, you should
include a decimal point in the number. Without the decimal point, the
number is stored as an integer. The Number data type can store values
from Number.MAX_VALUE (very high) to Number.MIN_VALUE (very low). For
more information, see ActionScript 2.0 Language Reference and
“Number data type” on page 42.

Object Complex. The Object data type is defined by the Object class. The
Object class serves as the base class for all class definitions in
ActionScript, and it lets you arrange objects inside each other (nested
objects). For more information, see “Object data type” on page 42.

String Primitive. The String data type represents a sequence of 16-bit
characters that might include letters, numbers, and punctuation marks.
Strings are stored as Unicode characters, using the UTF-16 format. An
operation on a String value returns a new instance of the string. For
more information, see “String data type” on page 43.

undefined Primitive. The undefined data type contains one value: undefined. This is
the default value for instances of the Object class. You can only assign a
value of undefined to variables that belong to the Object class. For more
information, see “undefined data type” on page 44.

Void Complex. The Void data type contains only one value: void. You use this
data type to designate functions that don’t return a value. Void is a
complex data type that references the primitive Void data type. For
more information, see “Void data type” on page 44.

Data type Description

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

About data types 39

The following example loads a text file into a SWF file, and displays a message in the Output
panel if the text file does not load correctly, or the parameters if it does load successfully. See
the comments in the code example for more details.
var my_lv:LoadVars = new LoadVars();
//success is a Boolean value
my_lv.onLoad = function(success:Boolean) {

//if success is true, trace monthNames
if (success) {

trace(my_lv.monthNames);
//if success is false, trace a message
} else {

trace("unable to load text file");
}

};
my_lv.load("http://www.helpexamples.com/flash/params.txt");

The following example checks that users enter values into two TextInput component
instances. Two Boolean variables are created, userNameEntered and isPasswordCorrect,
and if both variables evaluate to true, a welcome message is assigned to the titleMessage
String variable.
// Add two TextInput components, a Label, and a Button component on the

Stage.
// Strict data type the three component instances
var userName_ti:mx.controls.TextInput;
var password_ti:mx.controls.TextInput;
var submit_button:mx.controls.Button;
var welcome_lbl:mx.controls.Label;

//Hide the label
welcome_lbl.visible = false;

// Create a listener object, which is used with the Button component.
// When the Button is clicked, checks for a user name and password.
var btnListener:Object = new Object();
btnListener.click = function(evt:Object) {

// Checks that the user enters at least one character in the TextInput
// instances and returns a Boolean true/false.
var userNameEntered:Boolean = (userName_ti.text.length > 0);
var isPasswordCorrect:Boolean = (password_ti.text == "vertigo");
if (userNameEntered && isPasswordCorrect) {

var titleMessage:String = "Welcome " + userName_ti.text + "!";
welcome_lbl.text = titleMessage;
//display the label
welcome_lbl.visible = true;

}
};
submit_button.addEventListener("click", btnListener);

40 Data and Data Types

For more information, see “Using functions in Flash” on page 176 and “About logical
operators” on page 155.

MovieClip data type
Movie clips are symbols that can play animation in a Flash application. They are the only data
type that refers to a graphic element. The MovieClip data type lets you control movie clip
symbols using the methods of the MovieClip class.

You do not use a constructor to call the methods of the MovieClip class. You can create a
movie clip instance on the Stage or create an instance dynamically. Then you simply call the
methods of the MovieClip class using the dot (.) operator.

Working with movie clips on the Stage The following example calls the startDrag() and
getURL() methods for different movie clip instances that are on the Stage:
my_mc.startDrag(true);
parent_mc.getURL("http://www.adobe.com/support/" + product);

The second example returns the width of a movie clip called my_mc on the Stage. The targeted
instance must be a movie clip, and the returned value must be a numeric value.
function getMCWidth(target_mc:MovieClip):Number {

return target_mc._width;
}
trace(getMCWidth(my_mc));

Creating movie clips dynamically Using ActionScript to create movie clips dynamically is
useful when you want to avoid manually creating movie clips on the Stage or attaching them
from the library. For example, you might create an image gallery with a large number of
thumbnail images that you want to organize on the Stage. Using
MovieClip.createEmptyMovieClip() lets you create an application entirely using
ActionScript.

To dynamically create a movie clip, use MovieClip.createEmptyMovieClip(), as shown in
the following example:
// Creates a movie clip to hold the container.
this.createEmptyMovieClip("image_mc", 9);
// Loads an image into image_mc.
image_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");

About data types 41

The second example creates a movie clip called square_mc that uses the Drawing API to draw
a rectangle. Event handlers and the startDrag() and stopDrag() methods of the MovieClip
class are added to make the rectangle draggable.
this.createEmptyMovieClip("square_mc", 1);
square_mc.lineStyle(1, 0x000000, 100);
square_mc.beginFill(0xFF0000, 100);
square_mc.moveTo(100, 100);
square_mc.lineTo(200, 100);
square_mc.lineTo(200, 200);
square_mc.lineTo(100, 200);
square_mc.lineTo(100, 100);
square_mc.endFill();
square_mc.onPress = function() {

this.startDrag();
};
square_mc.onRelease = function() {

this.stopDrag();
};

For more information, see Chapter 10, “Working with Movie Clips,” on page 313 and the
MovieClip entry in the ActionScript 2.0 Language Reference.

null data type
The null data type has only one value, null. This value means no value—that is, a lack of data.
You can assign the null value in a variety of situations to indicate that a property or variable
does not yet have a value assigned to it. For example, you can assign the null value in the
following situations:

■ To indicate that a variable exists but has not yet received a value
■ To indicate that a variable exists but no longer contains a value
■ As the return value of a function, to indicate that no value was available to be returned by

the function
■ As a parameter to a function, to indicate that a parameter is being omitted

Several methods and functions return null if no value has been set. The following example
demonstrates how you can use null to test if form fields currently have form focus:
if (Selection.getFocus() == null) {

trace("no selection");
}

42 Data and Data Types

Number data type
The Number data type is a double-precision floating-point number. The minimum value of a
number object is approximately 5e-324. The maximum is approximately 1.79E+308.

You can manipulate numbers using the arithmetic operators addition (+), subtraction (-),
multiplication (*), division (/), modulo (%), increment (++), and decrement (--). For more
information, see “Using numeric operators” on page 149.

You can also use methods of the built-in Math and Number classes to manipulate numbers.
For more information on the methods and properties of these classes, see the Math and
Number entries in ActionScript 2.0 Language Reference.

The following example uses the sqrt() (square root) method of the Math class to return the
square root of the number 100:
Math.sqrt(100);

The following example traces a random integer between 10 and 17 (inclusive):
var bottles:Number = 0;
bottles = 10 + Math.floor(Math.random() * 7);
trace("There are " + bottles + " bottles");

The following example finds the percent of the intro_mc movie clip that is loaded and
represents it as an integer:
var percentLoaded:Number = Math.round((intro_mc.getBytesLoaded() /

intro_mc.getBytesTotal()) * 100);

Object data type
An object is a collection of properties. A property is an attribute that describes the object. For
example, the transparency of an object (such as a movie clip) is an attribute that describes its
appearance. Therefore, _alpha (transparency) is a property. Each property has a name and a
value. The value of a property can be any Flash data type—even the Object data type.
This lets you arrange objects inside each other, or nest them.

To specify objects and their properties, you use the dot (.) operator. For example, in the
following code, hoursWorked is a property of weeklyStats, which is a property of
employee:
employee.weeklyStats.hoursWorked

The ActionScript MovieClip object has methods that let you control movie clip symbol
instances on the Stage. This example uses the play() and nextFrame() methods:
mcInstanceName.play();
mc2InstanceName.nextFrame();

About data types 43

You can also create custom objects to organize information in your Flash application. To add
interactivity to an application with ActionScript, you need many pieces of information: for
example, you might need a user’s name, age, and phone number; the speed of a ball; the
names of items in a shopping cart; the number of frames loaded; or the key that the user
pressed last. Creating custom objects lets you organize this information into groups, simplify
your scripting, and reuse your scripts.

The following ActionScript code shows an example of using custom objects to organize
information. It creates a new object called user and creates three properties, name, age, and
phone, which are String and Numeric data types.
var user:Object = new Object();
user.name = "Irving";
user.age = 32;
user.phone = "555-1234";

For more information, see “Example: Writing custom classes” on page 223.

String data type
A string is a sequence of characters such as letters, numbers, and punctuation marks. You
enter strings in an ActionScript statement by enclosing them in single (') or double (")
quotation marks.

A common way that you use the string type is to assign a string to a variable. For example, in
the following statement, "L7" is a string assigned to the variable favoriteBand_str:
var favoriteBand_str:String = "L7";

You can use the addition (+) operator to concatenate, or join, two strings. ActionScript treats
spaces at the beginning or end of a string as a literal part of the string. The following
expression includes a space after the comma:
var greeting_str:String = "Welcome, " + firstName;

To include a quotation mark in a string, precede it with a backslash character (\). This is called
escaping a character. There are other characters that cannot be represented in ActionScript
except by special escape sequences. The following table lists all the ActionScript escape
characters:

Escape sequence Character

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Line-feed character (ASCII 10)

\r Carriage return character (ASCII 13)

44 Data and Data Types

Strings in ActionScript are immutable, just as they are in Java. Any operation that modifies a
string returns a new string.

The String class is a built-in ActionScript class. For information on the methods and
properties of the String class, see the String entry in the ActionScript 2.0 Language Reference.

undefined data type
The undefined data type has one value, undefined, and is automatically assigned to a variable
to which a value hasn’t been assigned, either by your code or user interaction.

The value undefined is automatically assigned; unlike null, you don’t assign undefined to a
variable or property. You use the undefined data type to check if a variable is set or defined.
This data type lets you write code that executes only when the application is running, as
shown in the following example:
if (init == undefined) {

trace("initializing app");
init = true;

}

If your application has multiple frames, the code does not execute a second time because the
init variable is no longer undefined.

Void data type
The Void data type has one value, void, and is used in a function definition to indicate that
the function does not return a value, as shown in the following example:
//Creates a function with a return type Void
function displayFromURL(url:String):Void {}

\t Tab character (ASCII 9)

\" Double quotation mark

\' Single quotation mark

\\ Backslash

\000 - \377 A byte specified in octal

\x00 - \xFF A byte specified in hexadecimal

\u0000 - \uFFFF A 16-bit Unicode character specified in hexadecimal

Escape sequence Character

About data types 45

About assigning data types and strict data typing
You use variables in Flash to hold values in your code. You can explicitly declare the object
type of a variable when you create the variable, which is called strict data typing.

If you do not explicitly define an item as holding either a number, a string, or another data
type, at runtime Flash Player will try to determine the data type of an item when it is assigned.
If you assign a value to a variable, as shown in the following example, Flash Player evaluates at
runtime the element on the right side of the operator and determines that it is of the Number
data type:
var x = 3;

Because x was not declared using strict data typing, the compiler cannot determine the type;
to the compiler, the variable x can have a value of any type. (See “Assigning a data type”
on page 46.) A later assignment might change the type of x; for example, the statement
x = "hello" changes the type of x to String.

ActionScript always converts primitive data types (such as Boolean, Number, String, null, or
undefined) automatically when an expression requires the conversion and the variables aren’t
strictly typed.

Strict data typing offers several benefits at compile time. Declaring data types (strict data
typing) can help prevent or diagnose errors in your code at compile time. To declare a variable
using strict data typing, use the following format:
var variableName:datatype;

Because data type mismatches trigger compiler errors, strict data typing helps you find bugs in
your code at compile time and prevents you from assigning the wrong type of data to an
existing variable. During authoring, strict data typing activates code hinting in the
ActionScript editor (but you should still use instance name suffixes for visual elements).

Using strict data typing helps ensure that you don’t inadvertently assign an incorrect type of
value to a variable. Flash checks for typing mismatch errors at compile time, and displays an
error message if you use the wrong type of value. Therefore, using strict typing also helps to
ensure that you do not attempt to access properties or methods that are not part of an object’s
type. Strict data typing means the ActionScript editor automatically shows code hints
for objects.

N
O

T
E

Strict data typing is sometimes called strong typing a variable.

46 Data and Data Types

For more information on creating variables, see “About variables” on page 50. For
information on naming variables, see “About naming variables” on page 55. For more
information on assigning data types, and the types you can assign, see “Assigning a data type”
on page 46.

For a sample of the datatypes.fla file, which shows you how to use data types in an
application, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download
and decompress the Samples zip file and navigate to the ActionScript2.0/DataTypes folder to
access the sample.

Assigning a data type
You need to assign data types whenever you define a variable, whether you declare a variable
using the var keyword, create a function argument, set function return type, or define a
variable to use within a for or for..in loop. To assign a data type, you use post-colon syntax,
which means you follow the variable name with a colon and then the data type:
var my_mc:MovieClip;

There are many possibilities for data types, ranging from the native data types such as
Number, String, Boolean, or built-in classes that are included in Flash Player 8, such as
BitmapData, FileReference, or even custom classes that you or other developers have written.
The most common types of data types you might need to specify are the built-in data types
such as Number, String, Boolean, Array, or Object, which are shown in the following
code examples.

To assign a specific data type to an item, specify its type using the var keyword and post-
colon syntax, as shown in the following example:
// Strict typing of variable or object
var myNum:Number = 7;
var birthday:Date = new Date();

// Strict typing of parameters
function welcome(firstName:String, age:Number) {
}

// Strict typing of parameter and return value
function square(myNum:Number):Number {
 var squared:Number = myNum * myNum;
 return squared;
}

http://www.adobe.com/go/learn_fl_samples

About data types 47

You can declare the data type of objects based on built-in classes (Button, Date, and so on) as
well as classes and interfaces that you create. In the following example, if you have a file
named Student.as in which you define the Student class, you can specify that objects you
create are of type Student:
var myStudent:Student = new Student();

For this example, suppose you type the following code:
// in the Student.as class file
class Student {
 public var status:Boolean; // property of Student objects
}

// in the FLA file
var studentMaryLago:Student = new Student();
studentMaryLago.status = "enrolled"; /* Type mismatch in assignment

statement: found String where Boolean is required. */

When Flash compiles this script, a type mismatch error is generated because the SWF file
expects a Boolean value.

If you write a function that doesn’t have a return type, you can specify a return type of Void
for that function. Or if you create a shortcut to a function, you can assign a data type of
Function to the new variable. To specify that objects are of type Function or Void, see the
following example:
function sayHello(name_str:String):Void {

trace("Hello, " + name_str);
}
sayHello("world"); // Hello, world
var greeting:Function = sayHello;
greeting("Augustus"); // Hello, Augustus

Another advantage of strict data typing is that Flash automatically shows code hints for built-
in objects when they are strictly typed. For more information, see “About assigning data types
and strict data typing” on page 45.

Files published using ActionScript 1.0 do not respect strict data typing assignments at compile
time, so assigning the wrong type of value to a variable that you have strictly typed doesn’t
generate a compiler error.
var myNum:String = "abc";
myNum = 12;
/* No error in ActionScript 1.0, but type mismatch error in ActionScript 2.0

*/

48 Data and Data Types

The reason for this is that when you publish a file for ActionScript 1.0, Flash interprets a
statement such as var myNum:String = "abc" as slash syntax rather than as strict typing.
(ActionScript 2.0 doesn’t support slash syntax.) This behavior can result in an object that is
assigned to a variable of the wrong type, causing the compiler to let illegal method calls and
undefined property references pass through unreported.

Files published using ActionScript 2.0 can optionally use data typing. Therefore, if you
implement strict data typing in your code, make sure you set your publish settings to
ActionScript 2.0. You can specify the publish settings and define which version of
ActionScript you want to publish your files as by modifying the publish settings from the
main menu (File > Publish Settings) or by clicking the Settings button in the Property
inspector (make sure no instances are selected). To use a specific version of ActionScript or the
Flash Player, select the Flash tab in the Publish Settings dialog box, and make a selection from
the ActionScript version pop-up menu.

For information on type checking, see “About type checking” on page 48.

About type checking
Type checking refers to verifying that the type of a variable and an expression are compatible.
Therefore, Flash checks that the type you specify for a variable matches the value(s) that you
assign to it. For more information on strict data types and assigning data types, see “About
assigning data types and strict data typing” on page 45 and “Assigning a data type”
on page 46.

Type checking can occur at either compile time or runtime. If you use strict data typing, type
checking occurs at compile time. Because ActionScript is a dynamically typed language,
ActionScript can also type checking at runtime.

For example, the following code does not specify the data type of the parameter xParam. At
runtime, you use the parameter to hold a value of type Number and then a value of type
String. The dynamicTest() function then uses the typeof operator to test whether the
parameter is of type String or Number.
function dynamicTest(xParam) {

if (typeof(xParam) == "string") {
var myStr:String = xParam;
trace("String: " + myStr);

} else if (typeof(xParam) == "number") {
var myNum:Number = xParam;
trace("Number: " + myNum);

}
}
dynamicTest(100);
dynamicTest("one hundred");

About data types 49

You do not need to explicitly add data type information in your ActionScript. The
ActionScript compiler lets you use properties and invoke methods that do not exist at compile
time. This lets you create properties or assign dynamically methods at runtime.

An example of the flexibility afforded by dynamic type checking involves the use of properties
and methods that are not known at compile time. Because the code is less restrictive, it can
lead to benefits in some coding situations. For example, the following code creates a function
named runtimeTest() that invokes a method and returns a property, neither of which is
known to the compiler. The code will not generate a compile-time error, but if the property or
method is not accessible at runtime, then a runtime error will occur.
function runtimeTest(myParam) {

myParam.someMethod();
return myParam.someProperty;

}

About determining data type
While testing and debugging your programs, you might discover problems that seem to be
related to the data types of different items. Or if you use variables that are not explicitly
associated with a data type, you might find it useful to know the data type of a given variable.
Using ActionScript, you can determine an item’s data type. You can use the typeof operator
to return information about data.

Use the typeof operator to get the data types, but remember that typeof does not return
information about the class to which an instance belongs.

The following example shows how you can use the typeof operator to return the kind of
object that you trace:
// Create a new instance of LoadVars class.
var my_lv:LoadVars = new LoadVars();

/* typeof operator doesn't specify class, only specifies that my_lv is an
object */

var typeResult:String = typeof(my_lv);
trace(typeResult); // object

In this example, you create a new String variable named myName, and then convert it into a
Number data type:
var myName:String = new String("17");
trace(myName instanceof String); // true
var myNumber:Number = new Number(myName);
trace(myNumber instanceof Number); // true

50 Data and Data Types

For more information about these operators, see typeof operator and instanceof
operator in the ActionScript 2.0 Language Reference. For more information on testing and
debugging, see Using Flash. For more information on inheritance and interfaces, see Chapter
7, “Inheritance,” on page 263. For more information on classes, see Chapter 6, “Classes,” on
page 187.

About variables
A variable is a container that holds information. The following ActionScript shows what a
variable looks like in ActionScript:
var myVariable:Number = 10;

This variable holds a numerical value. The use of :Number in the previous code assigns the
type of value that variable holds, called data typing. For more information on data typing, see
“About assigning data types and strict data typing” on page 45 and “Assigning a data type”
on page 46.

The container (represented by the variable name) is always the same throughout your
ActionScript, but the contents (the value) can change. You can change the value of a variable
in a script as many times as you want. When you change the value of a variable while the SWF
file plays, you can record and save information about what the user has done, record values
that change as the SWF file plays, or evaluate whether a condition is true or false. You
might need the variable to continually update while the SWF file plays, such as when a
player’s score changes in a Flash game. Variables are essential when you create and handle user
interaction in a SWF file.

It’s a good idea to assign a value to a variable the first time you declare the variable. Assigning
an initial value is called initializing the variable, and it’s often done on Frame 1 of the
Timeline or from within a class that loads when the SWF file begins to play. There are
different kinds of variables, which are affected by scope. For more information on different
kinds of variables and scope, see “About variables and scope” on page 60.

T
IP Initializing a variable helps you track and compare the variable’s value as the SWF file

plays.

N
O

T
E

Flash Player 7 and later evaluate uninitialized variables differently than Flash Player 6
and earlier. If you have written scripts for Flash Player 6 and plan to write or port scripts
for Flash Player 7 or later, you should be understand these differences to avoid
unexpected behavior.

About variables 51

Variables can hold different types of data; for more information, see “About data types”
on page 36. The type of data that a variable contains affects how the variable’s value changes
when you assign that value in a script.

Typical types of information that you can store in a variable include a URL (String type), a
user’s name (String type), the result of a mathematical operation (Number type), the number
of times an event occurred (Number type), or whether a user has clicked a particular button
(Boolean type). Each SWF file and object instance (such as a movie clip) has a set of variables,
with each variable having a value independent of variables in other SWF files or movie clips.

To view the value of a variable, use the trace() statement to send the value to the Output
panel. Then, the value displays in the Output panel when you test the SWF file in the test
environment. For example, trace(hoursWorked) sends the value of the variable
hoursWorked to the Output panel in the test environment. You can also check and set the
variable values in the Debugger in the test environment.

For more information on variables, see the following topics:

■ “About declaring variables” on page 51
■ “About assigning values” on page 52
■ “About naming variables” on page 55
■ “Using variables in an application” on page 56
■ “About variables and scope” on page 60
■ “About default values” on page 52
■ “About operators and variables” on page 54
■ “About loading variables” on page 64
■ “Using variables in a project” on page 69

About declaring variables
You can declare variables on a frame in the timeline, directly on an object, or within an
external class file.

Define variables using the var keyword and follow the variable naming conventions. You can
declare a variable called firstName, as shown in the following example:
var firstName:String;

When you declare a variable, you assign a data type to the variable. In this case, you assign the
String data type to the firstName variable. For more information on assigning data types, see
“About assigning data types and strict data typing” on page 45.

52 Data and Data Types

About default values
A default value is the value that a variable contains before you set its value. You initialize a
variable when you set its value for the first time. If you declare a variable, but do not set its
value, that variable is uninitialized. The value of an uninitialized variable defaults to the value
undefined. For more information on creating and using variables, see “About variables”
on page 50.

About assigning values
You can define a value as the current contents of a variable. The value can be a strings,
numbers, arrays, objects, XML, dates, or even custom classes that you create. Remember, you
declare a variable in Flash using the var keyword. When you declare the variable, you also
assign a data type to the variable. You can also assign a value to a variable, as long as the value
matches the data type you assign to the variable.

The following example shows how you might create a variable called catName:
var catName:String;

After you declare the variable, you can assign a value to it. You might follow the previous line
of ActionScript with this line:
catName = "Pirate Eye";

This example assigns the value of Pirate Eye to the catName variable. When you declare the
variable, you can also assign a value to it instead of assigning it afterwards (as in the previous
examples). You could set the catName variable when you declare it, as shown in the
following example:
var catName:String = "Pirate Eye";

If you want to display the value of the catName variable in the test environment, you can use
the trace() statement. This statement sends the value to the Output panel. You can trace the
value of the catName variable and see that the actual value doesn’t include the quotation
marks by using the following ActionScript:
var catName:String = "Pirate Eye";
trace(catName); // Pirate Eye

N
O

T
E

Because Pirate Eye is a string, the value needs to be enclosed in straight quotes
(quotation marks).

About variables 53

Remember that the value you assign must match the data type that you assign to it (in this
case, String). If you later try to assign a number to the catName variable, such as catName =
10, you will see the following error in the Output panel when you test the SWF file:
Type mismatch in assignment statement: found Number where String is

required.

This error tells you that you attempted to set the wrong data type to a specified variable.

When you assign a numeric value to a variable, the quotation marks aren’t necessary, as shown
in the following code:
var numWrinkles:Number = 55;

If you want to change the value of numWrinkles later in your code, you can assign a new
value using the following ActionScript:
numWrinkles = 60;

When you reassign a value to an existing variable, you don’t need to use the var keyword or
define the variable’s data type (in this case, :Number).

If the value is numeric or Boolean (true or false), the value doesn’t use straight quotes
(quotation marks). Examples of numeric and Boolean values are shown in the
following snippet:
var age:Number = 38;
var married:Boolean = true;
var hasChildren:Boolean = false;

In the previous example, the variable age contains an integer (nondecimal) value, although
you could also use a decimal or floating-point value such as 38.4. Boolean variables (such as
married or hasChildren) have only two possible values, true or false.

If you want to create an array and assign values to it, the format is slightly different, as shown
in the following code:
var childrenArr:Array = new Array("Pylon", "Smithers", "Gil");

There is an alternative (shorthand) syntax for creating an array using array access operators,
which use the bracket ([]) punctuators. You can rewrite the previous example as follows:
var childrenArr:Array = ["Pylon", "Smithers", "Gil"];

For more information on creating arrays and the array access operators, see “About arrays”
on page 125 and “About using dot syntax to target an instance” on page 82.

54 Data and Data Types

Similarly, you can create a new object called myObj. You can use either of the following ways
to create a new object. The first (and longer) way to code an array is as follows:
var myObj:Object = new Object();
myObj.firstName = "Steve";
myObj.age = 50;
myObj.childrenArr = new Array("Mike", "Robbie", "Chip");

The second, shorthand way you can code the myObj array is as follows:
var myObj:Object = {firstName:"Steve", age:50, childrenArr:["Mike",

"Robbie", "Chip"]};

As you see in this example, using the shorthand method can save a lot of typing and time,
especially when you define instances of objects. It is important to be familiar with this
alternate syntax because you will encounter it if you work in teams or when you work with
third-party ActionScript code that you find, for example, on the Internet or in books.

About operators and variables
You might wonder about the mathematical symbols in your code. These symbols are called
operators in ActionScript. Operators calculate a new value from one or more values, and you
use an operator to assign a value to a variable in your code. You use the equality (=) operator
to assign a value to a variable:
var username:String = "Gus";

Another example is the addition (+) operator, which you use to add two or more numeric
values to produce a new value. If you use the + operator on two or more string values, the
strings will be concatenated. The values that operators manipulate are called operands.

When you assign a value, you use an operator to define a value to a variable. For example, the
following script uses the assignment operator to assign a value of 7 to the variable
numChildren:
var numChildren:Number = 7;

If you want to change the value of the numChildren variable, use the following code:
numChildren = 8;

N
O

T
E

Not all variables need to be explicitly defined. Some variables are created by Flash
automatically for you. For example, to find the dimensions of the Stage, you could use
the values of the following two predefined values: Stage.width and Stage.height.

N
O

T
E

You don’t need to use var because the variable has previously been defined.

About variables 55

For more information on using operators in your ActionScript, see “About operators”
on page 137.

About naming variables
Be careful when you start naming variables, because although they can have nearly any name,
there are some rules. A variable’s name must follow these rules:

■ A variable must be an identifier.

■ A variable cannot be a keyword or an ActionScript literal such as true, false, null, or
undefined. For more information on literals, see “About literals” on page 94.

■ A variable must be unique within its scope (see “About variables and scope” on page 60).
■ A variable should not be any element in the ActionScript language, such as a class name.

If you don’t follow the rules when you name a variable, you might experience syntax errors or
unexpected results. In the following example, if you name a variable new and then test your
document, Flash will generate a compiler error:
// This code works as expected.
var helloStr:String = new String();
trace(helloStr.length); // 0
// But if you give a variable the same name as a built-in class...
var new:String = "hello"; //error: Identifier expected
var helloStr:String = new String();
trace(helloStr.length); // undefined

The ActionScript editor supports code hints for built-in classes and for variables that are based
on these classes. If you want Flash to provide code hints for a particular object type that you
assign to a variable, you can strictly type the variable. Code hints provide tooltip-style syntax
hints and a pop-up menu that helps you write your code quickly.

For example, type the following code:
var members:Array = new Array();
members.

As soon as you type the period (.) in the Actions panel, Flash displays a list of methods and
properties available for Array objects.

For recommended coding conventions for naming variables, see “Naming variables”
on page 670.

N
O

T
E

An identifier is the name of a variable, property, object, function, or method. The first
character of an indentifier must be a letter, underscore (_), or dollar sign ($). Each
subsequent character can be a number, letter, underscore, or dollar sign.

56 Data and Data Types

Using variables in an application
In this section, you use variables in short code snippets of ActionScript. You need to declare
and initialize a variable in a script before you can use it in an expression. Expressions are
combinations of operands and operators that represent a value. For example, in the expression
i+2, i and 2 are operands, and + is an operator.

If you do not initialize a variable before you use it in an expression, the variable is undefined
and may cause unexpected results. For more information on writing expressions, see Chapter
4, “Syntax and Language Fundamentals,” on page 77.

If you use an undefined variable, as shown in the following example, the variable’s value in
Flash Player 7 and later will be NaN, and your script might produce unintended results:
var squared:Number = myNum * myNum;
trace(squared); // NaN
var myNum:Number = 6;

In the following example, the statement that declares and initializes the variable myNum comes
first, so squared can be replaced with a value:
var myNum:Number = 6;
var squared:Number = myNum * myNum;
trace(squared); // 36

Similar behavior occurs when you pass an undefined variable to a method or function, as
shown next.

To compare undefined and defined variables being passed to a function:

1. Drag a Button component to the Stage from the Components panel.

2. Open the Property inspector and type bad_button into the Instance Name text box.

3. Type the following code on Frame 1 of the Timeline.
// Does not work
function badClickListener(evt:Object):Void {

getURL(targetUrl);
var targetUrl:String = "http://www.adobe.com";

}
bad_button.addEventListener("click", badClickListener);

4. Select Control > Test Movie, and notice that the button does not work (it doesn’t open the
web page).

5. Drag another Button component onto the Stage. Select the button.

6. Open the Property inspector, and type good_button into the Instance Name text box.

About variables 57

7. Add the following ActionScript to Frame 1 of the Timeline (following the previous
ActionScript you added):
// Works
function goodClickListener(evt:Object):Void {

var targetUrl:String = "http://www.adobe.com";
getURL(targetUrl);

}
good_button.addEventListener("click", goodClickListener);

8. Select Control > Test Movie and click the second button you added to the Stage.

This button properly opens the web page.

The type of data that a variable contains affects how and when the variable’s value changes.
Primitive data types, such as strings and numbers, are passed by value, which means the current
value of the variable is used rather than a reference to that value. Examples of complex data
types include the Array and Object data types.

In the following example, you set myNum to 15 and copy the value into otherNum. When you
change myNum to 30 (in line 3 of the code), the value of otherNum remains 15 because
otherNum doesn’t look to myNum for its value. The otherNum variable contains the value of
myNum that it receives (in line 2 of the code).

To use variables in your ActionScript:

1. Create a new Flash document, and save it as var_example.fla.

2. Select Frame 1 of the Timeline, and type the following code into the Actions panel:
var myNum:Number = 15;
var otherNum:Number = myNum;
myNum = 30;
trace(myNum); // 30
trace(otherNum); // 15

When you change myNum to 30 (in line 3 of the code), the value of otherNum remains 15
because otherNum doesn’t look to myNum for its value. The otherNum variable contains the
value of myNum that it receives (in line 2 of the code).

3. Select Control > Test Movie to see the values display in the Output panel.

58 Data and Data Types

4. Now add the following ActionScript after the code you added in step 2:
function sqr(myNum:Number):Number {

myNum *= myNum;
return myNum;

}
var inValue:Number = 3;
var outValue:Number = sqr(inValue);
trace(inValue); // 3
trace(outValue); // 9

In the this code, the variable inValue contains a primitive value, 3, so the value passes to
the sqr() function, and the returned value is 9. The value of the variable inValue does
not change, although the value of myNum in the function changes.

5. Select Control > Test Movie to see the values display in the Output panel.

The Object data type can contain such a large amount of complex information that a variable
with this type doesn’t hold an actual value; it holds a reference to a value. This reference is
similar to an alias that points to the contents of the variable. When the variable needs to know
its value, the reference asks for the contents and returns the answer without transferring the
value to the variable.

For information on passing a variable by reference, see “Passing a variable by reference”
on page 58.

Passing a variable by reference
Because the Array and Object data types hold a reference to a value instead of containing its
actual value, you need be careful when you work with arrays and objects.

The following example shows how to pass an object by reference. When you create a copy of
the array, you actually create only a copy of the reference (or alias) to the array’s contents.
When you edit the contents in the second array, you modify both the contents of the first and
second array because they both point to the same value.

To pass an object by reference:

1. Select File > New and then select Flash Document to create a new FLA file, and save it as
copybyref.fla.

2. Select Frame 1 of the Timeline, and type the following code into the Actions panel:
var myArray:Array = new Array("tom", "josie");
var newArray:Array = myArray;
myArray[1] = "jack";
trace(myArray); // tom,jack
trace(newArray); // tom,jack

About variables 59

3. Select Control > Test Movie to test the ActionScript.

This ActionScript creates an Array object called myArray that has two elements. You
create the variable newArray and pass a reference to myArray. When you change the
second element of myArray to jack, it affects every variable with a reference to it. The
trace() statement sends tom,jack to the Output panel.

In the following example, myArray contains an Array object, so you pass the array to function
zeroArray() by reference. The function zeroArray() accepts an Array object as a
parameter and sets all the elements of that array to 0. It can modify the array because the array
is passed by reference.

To pass an array by reference:

1. Select File > New and then select Flash Document to create a new FLA file, and save it as
arraybyref.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
function zeroArray (theArr:Array):Void {
 var i:Number;
 for (i = 0; i < theArr.length; i++) {
 theArr[i] = 0;
 }
}

var myArr:Array = new Array();
myArr[0] = 1;
myArr[1] = 2;
myArr[2] = 3;
trace(myArr); // 1,2,3
zeroArray(myArr);
trace(myArr); // 0,0,0

3. Select Control > Test Movie to test your ActionScript.

The first trace() statement in this ActionScript displays the original contents of the
myArray array (1,2,3). After you call the zeroArray() function and pass a reference to
the myArray array, each of the array’s values are overwritten and set to zero. The
subsequent trace() statement displays the new contents of the myArray array (0,0,0).
Because you pass the array by reference and not by value, you don’t need to return the
updated contents of the array from within the zeroArray() function.

For more information on arrays, see “About arrays” on page 125.

N
O

T
E

Flash uses a zero-based index, which means that 0 is the first item in the array, 1 is
the second, and so on.

60 Data and Data Types

About variables and scope
A variable’s scope refers to the area in which the variable is known (defined) and can be
referenced. The area in which the variable is known might be within a certain timeline or
inside a function, or it might be globally known throughout the entire application.For more
information about scope, see “About scope and targeting” on page 87.

Understanding variable scope is important when you develop Flash applications with
ActionScript. Scope indicates not only when and where you can refer to variables but also for
how long a particular variable exists in an application. When you define variables in the body
of a function, they cease to exist as soon as the specified function ends. If you try to refer to
objects in the wrong scope or to variables that have expired, you get errors in your Flash
documents, which lead to unexpected behavior or broken functionality.

There are three types of variable scopes in ActionScript:

■ Global variables and functions are visible to every timeline and scope in your document.
Therefore, a global variable is defined in all areas of your code.

■ Timeline variables are available to any script on that timeline.
■ Local variables are available within the function body in which they are declared

(delineated by curly braces). Therefore, local variables are only defined in a part of
your code.

For guidelines on using scope and variables, see Chapter 4, “About scope and targeting,” on
page 87.

You cannot strict type global variables. For information and a workaround, see “Global
variables” on page 60.

Global variables
Global variables and functions are visible to every timeline and scope in your document. To
declare (or create) a variable with global scope, use the _global identifier before the variable
name and do not use the var = syntax. For example, the following code creates the global
variable myName:
var _global.myName = "George"; // Incorrect syntax for global variable
_global.myName = "George"; // Correct syntax for global variable

N
O

T
E

ActionScript 2.0 classes that you create support public, private, and static variable
scopes. For more information, see “About class members” on page 211 and “Controlling
member access in your classes” on page 233.

About variables 61

However, if you initialize a local variable with the same name as a global variable, you don’t
have access to the global variable while you are in the scope of the local variable, as shown in
the following example:
_global.counter = 100; // Declares global variable
trace(counter); // Accesses the global variable and displays 100
function count():Void {

for (var counter:Number = 0; counter <= 2; counter++) { // Local variable
trace(counter); // Accesses local variable and displays 0 through 2

}
}
count();
trace(counter); // Accesses global variable and displays 100

This example simply shows that the global variable is not accessed in the scope of the count()
function. However, you could access the global-scoped variable if you prefix it with _global.
For example, you could access it if you prefix the counter with _global as shown in the
following code:
trace(_global.counter);

You cannot assign strict data types to variables that you create in the _global scope, because
you have to use the var keyword when you assign a data type. For example, you couldn't do:
_global.foo:String = "foo"; //syntax error
var _global.foo:String = "foo"; //syntax error

The Flash Player version 7 and later security sandbox enforces restrictions when accessing
global variables from SWF files loaded from separate security domains. For more information,
see Chapter 16, “Understanding Security,” on page 631.

Timeline variables
Timeline variables are available to any script on that particular timeline. To declare timeline
variables, use the var statement and initialize them in any frame in the timeline. The variable
is available to that frame and all following frames, as shown in the following example.

To use timeline variables in a document:

1. Create a new Flash document, and name it timelinevar.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var myNum:Number = 15; /* initialized in Frame 1, so it's available to

all frames */

3. Select Frame 20 of the Timeline.

4. Select Insert > Timeline > Blank Keyframe.

5. With the new keyframe selected, type the following ActionScript into the Actions panel:
trace(myNum);

62 Data and Data Types

6. Select Control > Test Movie to test the new document.

The value 15 appears in the Output panel after approximately a second. Because Flash
documents loop by default, the value 15 continually traces in the Output panel every time
the playhead reaches Frame 20 in the Timeline. To stop the looping action, add stop();
after the trace() statement.

You must declare a timeline variable before trying to access it in a script. For example, if you
put the code var myNum:Number = 15; in Frame 20, any scripts attached to a frame before
Frame 20 cannot access myNum and are undefined instead of containing the value 15.

Local variables
When you use the var statement inside a function block, you declare local variables. When
you declare a local variable within a function block (also called function definition), it is
defined within the scope of the function block, and expires at the end of the function block.
Therefore, the local variable only exists within that function.

For example, if you declare a variable named myStr within a function named localScope,
that variable will not be available outside of the function.
function localScope():Void {

var myStr:String = "local";
}
localScope();
trace(myStr); // Undefined, because myStr is not defined globally

If the variable name you use for your local variable is already declared as a timeline variable,
the local definition takes precedence over the timeline definition while the local variable is in
scope. The timeline variable will still exist outside of the function. For example, the following
code creates a timeline string variable named str1, and then creates a local variable of the
same name inside the scopeTest() function. The trace statement inside the function
generates the local definition of the variable, but the trace statement outside the function
generates the timeline definition of the variable.
var str1:String = "Timeline";
function scopeTest():Void {

var str1:String = "Local";
trace(str1); // Local

}
scopeTest();
trace(str1); // Timeline

In the next example, you can see how certain variables live only for the life of a specific
function and can generate errors if you try to refer to the variable outside the scope of
that function.

About variables 63

To use local variables in an application:

1. Create a new Flash document.

2. Open the Actions panel (Window > Actions) and add the following ActionScript to Frame
1 of the Timeline:
function sayHello(nameStr:String):Void {

var greetingStr:String = "Hello, " + nameStr;
trace(greetingStr);

}
sayHello("world"); // Hello, world
trace(nameStr); // undefined
trace(greetingStr); // undefined

3. Select Control > Test Movie to test the document.

Flash displays the string “Hello, world” in the Output panel and displays undefined for
the values of nameStr and greetingStr because the variables are no longer available in
the current scope. You can only reference nameStr and greetingStr in the execution of
the sayHello function. When the function exits, the variables cease to exist.

The variables i and j are often used as loop counters. In the following example, you use i as a
local variable; it exists only inside the initArray() function:
var myArr:Array = new Array();
function initArray(arrayLength:Number):Void {
 var i:Number;
 for(i = 0; i < arrayLength; i++) {
 myArr[i] = i + 1;
 }
}
trace(myArr); // <blank>
initArray(3);
trace(myArr); // 1,2,3
trace(i); // undefined

This example displays undefined in the Flash test environment because the variable i isn’t
defined in the main timeline. It exists only in the initArray() function.

You can use local variables to help prevent name conflicts, which can cause unexpected results
in your application. For example, if you use age as a local variable, you could use it to store a
person’s age in one context and the age of a person’s child in another context. There is no
conflict in this situation because you are using these variables in separate scopes.

N
O

T
E

It’s also common to see the following syntax for a for loop: for (var i:Number = 0;
i < arrayLength; i++) {...}.

64 Data and Data Types

It’s good practice to use local variables in the body of a function so the function can act as an
independent piece of code. You can change a local variable only within its own block of code.
If an expression in a function uses a global variable, code or events outside the function can
change its value, which changes the function.

You can assign a data type to a local variable when you declare it, which helps prevent
assigning the wrong type of data to an existing variable. For more information, see “About
assigning data types and strict data typing” on page 45.

About loading variables
In the following sections, you load variables from the server in different ways or into a
document from a URL string or FlashVars (you can use FlashVars to pass variables into Flash)
in your HTML code. These practices demonstrate that there are several ways to use variables
outside a SWF file.

You can find more information on loading variables (such as name/value pairs) in Chapter 15,
“Working with External Data,” on page 589.

You can use variables in different ways in a SWF file, depending on what you need the
variables for. For more information, see the following topics:

■ “Using variables from the URL” on page 64
■ “Using FlashVars in an application” on page 67
■ “Loading variables from a server” on page 68

Using variables from the URL
When you develop an application or simple example in Flash, you might want to pass values
from an HTML page into your Flash document. The passed values are sometimes known as
the query string, or URL-encoded variables. URL variables are useful if you want to create a
menu in Flash, for example. You can initialize the menu to show the correct navigation by
default. Or you can build an image viewer in Flash and define a default image to show on
the website.

To use URL variables in a document:

1. Create a Flash document, and name it urlvariables.fla.

2. Select File > Save As, and save the document on your desktop.

3. Select Frame 1 of the Timeline, and add the following code in the Actions panel:
this.createTextField("myTxt", 100, 0, 0, 100, 20);
myTxt.autoSize = "left";
myTxt.text = _level0.myURL;

About variables 65

4. Select Control > Test Movie to test the SWF file in Flash Player.

The text field displays undefined. If you want to make sure the variables are properly
defined before you proceed, you need to check for the existence of the variables in Flash.
You can do this by checking to see if they are undefined.

5. To check to see if the variable is defined, modify the ActionScript you added to the Actions
panel in step 3 to match the following code. Add the code that appears in bold:
this.createTextField("myTxt", 100, 0, 0, 100, 20);
myTxt.autoSize = "left";
if (_level0.myURL == undefined) {

myTxt.text = "myURL is not defined";
} else {

myTxt.text = _level0.myURL;
}

When you publish your Flash document, an HTML document is created by default in the
same directory as the SWF file. If an HTML file was not created, select File > Publish
settings, and make sure you select HTML in the Formats tab. Then publish your
document again.
The following code demonstrates the HTML in the document that is responsible for
embedding a Flash document in an HTML page. You need to look at this HTML to
understand how URL variables work in the following step (where you add additional code
for URL variables).
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0" width="550" height="400"
id="urlvariables" align="middle">

<param name="allowScriptAccess" value="sameDomain" />
<param name="movie" value="urlvariables.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<embed src="urlvariables.swf" quality="high" bgcolor="#ffffff"

width="550" height="400" name="urlvariables" align="middle"
allowScriptAccess="sameDomain" type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer" />

</object>

6. To pass variables from the generated HTML document to your Flash document, you can
pass variables after the path and filename (urlvariables.swf). Add the bold text to the
HTML file that was generated on your desktop.
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0" width="550" height="400"
id="urlvariables" align="middle">

66 Data and Data Types

<param name="allowScriptAccess" value="sameDomain" />
<param name="movie" value="urlvariables.swf?myURL=http://

weblogs.macromedia.com" />
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<embed src="urlvariables.swf?myURL=http://weblogs.macromedia.com"

quality="high" bgcolor="#ffffff" width="550" height="400"
name="urlvariables" align="middle" allowScriptAccess="sameDomain"
type="application/x-shockwave-flash" pluginspage="http://
www.adobe.com/go/getflashplayer" />

</object>

7. If you want to pass multiple variables to Flash, you need to separate the name/values pairs
with an ampersand (&). Find the following code from step 6:
?myURL=http://weblogs.macromedia.com

Replace it with the following text:
?myURL=http://weblogs.macromedia.com&myTitle=adobe+News+Aggregator

Remember, you need to make the same changes to both the object tag and the embed tag
to maintain consistency between all browsers. You might notice that the words are
separated by + punctuators. The words are separated this way because the values are URL-
encoded and the + punctuator represents a single blank space.

Because the ampersand (&) serves as a delimiter for different name/value pairs, if the values
you are passing contain ampersands, unexpected results might occur. Given the nature of
name/value pairs and parsing, if you had the following values being passed to Flash:
my.swf?name=PB+&+J&flavor=strawberry+rhubarb

Flash would build the following variables (and values) into the root scope:
'name': 'PB ' (note space at end of value)
' J': '' (note space at beginning of variable name and an empty value)
'flavor': 'strawberry rhubarb'

To avoid this, you need to escape the ampersand (&) character in the name/value pair with
its URL-encoded equivalent (%26).

8. Open the urlvariables.html document, and find the following code:
?myURL=http://weblogs.macromedia.com&myTitle=Adobe+News+Aggregator

Replace it with the following code:
?myURL=PB+%26+J&flavor=strawberry+rhubarb

N
O

T
E

For a list of common URL-encoded special characters, see the Flash TechNote,
URL Encoding: Reading special characters from a text file.

http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_14143

About variables 67

9. Save the revised HTML, and test your Flash document again.

You see that Flash created the following name/value pairs.
'name': 'PB & J'
'flavor': 'strawberry rhubarb'

Using FlashVars in an application
Using FlashVars to pass variables into Flash is similar to passing variables along the URL in
the HTML code. With FlashVars, instead of passing variables after the filename, variables are
passed in a separate param tag as well as in the embed tag.

To use FlashVars in a document:

1. Create a new Flash document, and name it myflashvars.fla.

2. Select File > Publish Settings and make sure that HTML is selected, and then click OK to
close the dialog box.

3. Add the following ActionScript to Frame 1 of the main Timeline:
this.createTextField("myTxt", 100, 0, 0, 100, 20);
myTxt.autoSize = "left";
if (_level0.myURL == undefined) {

myTxt.text = "myURL is not defined";
} else {

myTxt.text = _level0.myURL;
}

4. Select File > Publish to publish the SWF and HTML files.

5. Open the directory containing the published files (where you saved myflashvars.fla on your
hard drive) and open the HTML document (myflashvars.html by default) in an HTML
editor such as Dreamweaver or Notepad.

6. Add the code that appears in bold below, so your HTML document matches the following:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0" width="550" height="400" id="myflashvars"
align="middle">

N
O

T
E

All browsers will support string sizes as large as 64K (65535 bytes) in length.
FlashVars must be assigned in both the object and embed tags in order to work on
all browsers.

N
O

T
E

By default, HTML code publishes to the same location as myflashvars.fla.

68 Data and Data Types

<param name="allowScriptAccess" value="sameDomain" />
<param name="movie" value="myflashvars.swf" />
<param name="FlashVars" value="myURL=http://weblogs.adobe.com/">
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<embed src="myflashvars.swf" FlashVars="myURL=http://weblogs.adobe.com/"

quality="high" bgcolor="#ffffff" width="550" height="400"
name="myflashvars" align="middle" allowScriptAccess="sameDomain"
type="application/x-shockwave-flash" pluginspage="http://
www.adobe.com/go/getflashplayer" />

</object>

This code passes a single variable called myURL, which contains the string
http://weblogs.macromedia.com. When the SWF file loads, a property named myURL
is created in the _level0 scope. One of the advantages of using FlashVars or passing
variables along the URL is that the variables are immediately available in Flash when the
SWF file loads. This means you don’t have to write any functions to check if the variables
have finished loading, which you would need to do if you loaded variables using LoadVars
or XML.

7. Save your changes to the HTML document, and then close it.

8. Double click myflashvars.html to test the application.

The text http://weblogs.macromedia.com, a variable in the HTML file, appears in the
SWF file.

Loading variables from a server
There are several ways to load variables into Flash from external sources (such as text files,
XML documents, and so on). You can find much more information on loading variables,
including name/value pairs, in Chapter 15, “Working with External Data,” on page 589.

In Flash, you can easily load variables using the LoadVars class, as shown in the next example.

N
O

T
E

All browsers will support string sizes as large as 64K (65,535 bytes) in length.
FlashVars must be assigned in both the object and embed tags in order to work on
all browsers.

About variables 69

To load variables from a server:

1. Create a new Flash document.

2. Select Frame 1 of the Timeline, and add the following ActionScript in the Actions panel:
var my_lv:LoadVars = new LoadVars();
my_lv.onLoad = function(success:Boolean):Void {

if (success) {
trace(this.dayNames); // Sunday,Monday,Tuesday,...

} else {
trace("Error");

}
}
my_lv.load("http://www.helpexamples.com/flash/params.txt");

This code loads a text file from a remote server and parses its name/value pairs.

3. Select Control > Test Movie to test the document.

If the file successfully loads, the complete event is called and the Output panel displays
the value of dayNames. If the text file cannot be downloaded, the success argument is set
to false and the Output panel displays the text Error.

Using variables in a project
When you build animations or applications with Flash, there are very few situations in which
you don’t need to use any kind of variable in your project. For example, if you build a login
system, you might need variables to determine whether the user name and password are valid,
or whether they are filled in at all.

You can find more information on loading variables (such as name/value pairs) in Chapter 15,
“Working with External Data,” on page 589.

In the following example, you use variables to store the path of an image you are loading with
the Loader class, a variable for the instance of the Loader class, and a couple of functions that
are called depending on whether the file is successfully loaded or not.

T
IP Download or view the text file (http://www.helpexamples.com/flash/params.txt) in a

browser if you want to know how the variables are formatted.

http://www.helpexamples.com/flash/params.txt

70 Data and Data Types

To use variables in a project:

1. Create a new Flash document, and save it as imgloader.fla.

2. Select Frame 1 of the Timeline, and add the following ActionScript to the Actions panel:
/* Specify default image in case there wasn't a value passed using

FlashVars. */
var imgUrl:String = "http://www.helpexamples.com/flash/images/

image1.jpg";
if (_level0.imgURL != undefined) {

// If image was specified, overwrite default value.
imgUrl = _level0.imgURL;

}

this.createEmptyMovieClip("img_mc", 10);
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip):Void {

target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;

}
mclListener.onLoadError = function(target_mc:MovieClip):Void {

target_mc.createTextField("error_txt", 1, 0, 0, 100, 20);
target_mc.error_txt.autoSize = "left";
target_mc.error_txt.text = "Error downloading specified image;\n\t" +
target_mc._url;

}
var myMCL:MovieClipLoader = new MovieClipLoader();
myMCL.addListener(mclListener);
myMCL.loadClip(imgUrl, img_mc);

The first line of code specifies the image that you want to dynamically load into your
Flash document. Next, you check whether a new value for imgURL was specified using
FlashVars or URL-encoded variables. If a new value was specified, the default image URL
is overwritten with the new value. For information on using URL variables, see “Using
variables from the URL” on page 64. For information on FlashVars, see “Using FlashVars
in an application” on page 67.
The next couple of lines of code define the MovieClip instance, and a Listener object for
the future MovieClipLoader instance. The MovieClipLoader’s Listener object defines two
event handlers, onLoadInit and onLoadError. The handlers are invoked when the image
successfully loads and initializes on the Stage, or if the image fails to load. Then you create
a MovieClipLoader instance, and use the addListener() method to add the previously
defined listener object to the MovieClipLoader. Finally, the image is downloaded and
triggered when you call the MovieClipLoader.loadClip() method, which specifies the
image file to load and the target movie clip to load the image into.

About variables 71

3. Select Control > Test Movie to test the document.

Because you’re testing the Flash document in the authoring tool, no value for imgUrl will
be passed by FlashVars or along the URL, and therefore the default image displays.

4. Save the Flash document and select File > Publish to publish the file as a SWF and HTML
document.

5. If you test your document in the Flash tool (select Control > Test Movie) or in a local
browser (File > Publish Preview > HTML), you will see that the image centers itself both
vertically and horizontally on the Stage.

6. Edit the generated HTML document in an editor (such as Dreamweaver or Notepad), and
modify the default HTML to match the following text:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0" width="550" height="400" id="imgloader"
align="middle">

<param name="allowScriptAccess" value="sameDomain" />
<param name="movie" value="imgloader.swf" />
<param name="FlashVars" value="imgURL=http://www.helpexamples.com/flash/

images/image2.jpg">
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<embed src="imgloader.swf" quality="high" FlashVars="imgURL=http://

www.helpexamples.com/flash/images/image2.jpg" bgcolor="#ffffff"
width="550" height="400" name="imgloader" align="middle"
allowScriptAccess="sameDomain" type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer" />

</object>

7. Test the HTML document to see the changes. An image that you specify in the HTML
code appears in the SWF file.

To modify this example to use your own images, you would modify the FlashVars value
(the string inside the double quotes).

N
O

T
E

Make sure that Flash and HTML are both selected in the Publish Settings dialog box.
Select File > Publish Settings and then click the Formats tab. Then, select both
options.

72 Data and Data Types

Organizing data in objects
You might already be used to objects that you place on the Stage. For example, you might
have a MovieClip object on the Stage, and this object contains other movie clips inside it. Text
fields, movie clips, and buttons are often called objects when you place them on the Stage.

Objects, in ActionScript, are collections of properties and methods. Each object has its own
name, and it is an instance of a particular class. Built-in objects are from classes that are
predefined in ActionScript. For example, the built-in Date class provides information from
the system clock on the user’s computer. You can use the built-in LoadVars class to load
variables into your SWF file.

You can also create objects and classes using ActionScript. You might create an object to hold
a collection of data, such as a person’s name, address. and telephone number. You might create
an object to hold color information for an image. Organizing data in objects can help keep
your Flash documents more organized. For general information on creating a custom class to
hold a collection of methods and properties, see “Writing custom class files” on page 196. For
detailed information on both built-in and custom classes, see Chapter 6, “Classes,” on
page 187.

There are several ways to create an object in ActionScript. The next example creates simple
objects in two different ways, and then loops over the contents of those objects.

To create simple objects in Flash:

1. Create a new Flash document, and save it as simpleObjects.fla.

2. Select Frame 1 of the Timeline, and type the following ActionScript into the Actions panel:
// The first way
var firstObj:Object = new Object();
firstObj.firstVar = "hello world";
firstObj.secondVar = 28;
firstObj.thirdVar = new Date(1980, 0, 1); // January 1, 1980

This code, which is one way to create a simple object, creates a new object instance and
defines a few properties within the object.

3. Now enter the following ActionScript after the code you entered in step 2.
// The second way
var secondObj:Object = {firstVar:"hello world", secondVar:28,

thirdVar:new Date(1980, 0, 1)};

This is another way of creating an object. Both objects are equivalent. This code above
creates a new object and initializes some properties using the object shorthand notation.

Organizing data in objects 73

4. To loop over each of the previous objects and display the contents of objects, add the
following ActionScript on Frame 1 of the Timeline (after the code you’ve already entered):
var i:String;
for (i in secondObj) {

trace(i + ": " + secondObj[i]);
}

5. Select Control > Test Movie, and the following text appears in the Output panel:
firstVar: hello world
secondVar: 28
thirdVar: Tue Jan 1 00:00:00 GMT-0800 1980

You can also use arrays to create objects. Instead of having a series of variables such as
firstname1, firstname2, and firstname3 to represent a collection of variables, you can
make an array of objects to represent the same data. This technique is demonstrated next.

To use an array to create an object:

1. Create a new Flash document, and save it as arrayObject.fla.

2. Select Frame 1 of the Timeline, and type the following ActionScript into the Actions panel:
var usersArr:Array = new Array();
usersArr.push({firstname:"George"});
usersArr.push({firstname:"John"});
usersArr.push({firstname:"Thomas"});

The benefit of organizing variables into arrays and objects is that it becomes much easier
to loop over the variables and see the values, as shown in the following step.

3. Type the following code after the ActionScript you added in step 2.
var i:Number;
for (i = 0; i < usersArr.length; i++) {

trace(usersArr[i].firstname); // George, John, Thomas
}

4. Select Control > Test Movie, and the following text appears in the Output panel:
George
John
Thomas

N
O

T
E

The variables might not necessarily appear in this order in the Output panel. You
cannot guarantee the ordering when you use a for..in loop; the player returns the
contents of an object in an unpredictable order.

74 Data and Data Types

The following example presents another way to loop over objects. In this example, an object is
created and looped over using a for..in loop, and each property appears in the Output
panel:
var myObj:Object = {var1:"One", var2:"Two", var3:18, var4:1987};
var i:String;
for (i in myObj) {

trace(i + ": " + myObj[i]);
}
//outputs the following:
/*
 var1: One
 var2: Two
 var3: 18
 var4: 1987
*/

For information on creating for loops, see Chapter 4, “Using for loops,” on page 119. For
information on for..in loops, see “Using for..in loops” on page 120. For more information on
objects, see Chapter 6, “Classes,” on page 187.

About casting
ActionScript 2.0 lets you cast one data type to another. Casting an object to a different type
means you convert the value that the object or variable holds to a different type.

The results of a type cast vary depending on the data types involved. To cast an object to a
different type, you wrap the object name in parentheses (()) and precede it with the name of
the new type. For example, the following code takes a Boolean value and casts it to an integer.
var myBoolean:Boolean = true;
var myNumber:Number = Number(myBoolean);

For more information on casting, see the following topics:

■ “About casting objects” on page 75

About casting 75

About casting objects
The syntax for casting is type(item), where you want the compiler to behave as if the data
type of the item is type. Casting is essentially a function call, and the function call returns
null if the cast fails at runtime (this occurs in files published for Flash Player 7 or later; files
published for Flash Player 6 do not have runtime support for failed casts). If the cast succeeds,
the function call returns the original object. However, the compiler cannot determine whether
a cast will fail at runtime and won’t generate compile-time errors in those cases.

The following code shows an example:
// Both the Cat and Dog classes are subclasses of the Animal class
function bark(myAnimal:Animal) {

var foo:Dog = Dog(myAnimal);
foo.bark();

}
var curAnimal:Animal = new Dog();
bark(curAnimal); // Will work
curAnimal = new Cat();
bark(curAnimal); // Won't work

In this example, you asserted to the compiler that foo is a Dog object, and therefore the
compiler assumes that foo.bark(); is a legal statement. However, the compiler doesn’t know
that the cast will fail (that is, that you tried to cast a Cat object to an Animal type), so no
compile-time error occurs. However, if you include a check in your script to make sure that
the cast succeeds, you can find casting errors at runtime, as shown in the following example.
function bark(myAnimal:Animal) {
 var foo:Dog = Dog(myAnimal);
 if (foo) {
 foo.bark();
 }
}

You can cast an expression to an interface. If the expression is an object that implements the
interface or has a base class that implements the interface, the cast succeeds. If not, the cast
fails.

You can’t override primitive data types that have a corresponding global conversion function
with a cast operator of the same name. This is because the global conversion functions have
precedence over the cast operators. For example, you can’t cast to Array because the Array()
conversion function takes precedence over the cast operator.

N
O

T
E

Casting to null or undefined returns undefined.

76 Data and Data Types

This example defines two string variables (firstNum and secondNum), which are added
together. The initial result is that the numbers are concatenated instead of added because they
are a String data type. The second trace statement converts both numbers to a Number data
type before performing the addition that yields the proper result. Data conversion is
important when working with data loaded using XML or FlashVars, as shown in the following
example:
var firstNum:String = "17";
var secondNum:String = "29";
trace(firstNum + secondNum); // 1729
trace(Number(firstNum) + Number(secondNum)); // 46

For more information on data conversion functions, see the entry for each conversion
function in ActionScript 2.0 Language Reference: Array function, Boolean function,
Number function, Object function, and String function.

77

4
CHAPTER 4

Syntax and Language
Fundamentals

Learning ActionScript syntax and statements is like learning how to put together words to
make sentences, which you can then put together into paragraphs. ActionScript can be as
simple. For example, in English, a period ends a sentence; in ActionScript, a semicolon ends a
statement. In the ActionScript language, you can type a stop() action to stop the playhead of
a movie clip instance or a SWF file from looping. Or you can write thousands of lines of code
to power an interactive banking application. As you can see, ActionScript can do very simple
or very complex things.

In Chapter 3, “Data and Data Types,” you learned how the ActionScript language uses data,
and how you can format it in your code. This chapter demonstrates how you can form
statements in ActionScript using syntax. It contains many short code snippets and some
examples to demonstrate fundamental language concepts. Upcoming chapters contain longer
and increasingly involved code examples that combine and facilitate the fundamentals you
learn in this chapter.

The general rules described in this section apply to all ActionScript. Most ActionScript terms
also have individual requirements; for the rules for a specific term, see its entry in the
ActionScript 2.0 Language Reference.

Applying the basics of ActionScript in a way that creates elegant programs can be a challenge
for users who are new to ActionScript. For more information on how to apply the rules
described in this section, see Chapter 17, “Best Practices and Coding Conventions for
ActionScript 2.0,” on page 665.

N
O

T
E

You add ActionScript directly to a frame on the Timeline within this chapter. In later
chapters, you use classes to separate your ActionScript from the FLA file.

78 Syntax and Language Fundamentals

For more information on working with ActionScript syntax and language fundamentals, see
the following topics:
About syntax, statements, and expressions . 78

About dot syntax and target paths . 82

About language punctuators . 88

About constants and keywords . 99

About statements . 103

About arrays . 125

About operators . 137

About syntax, statements, and
expressions
The ActionScript language is made up of the built-in classes that make up the ActionScript
language. You need to use correct ActionScript syntax to form statements so the code compiles
and runs correctly in Flash. In this case, syntax refers to the grammar and spelling of a
language that you program with. The compiler cannot understand incorrect syntax, so you see
errors or warnings displayed in the Output panel when you try to test the document in the
test environment. Therefore, syntax is a collection of rules and guidelines that help you form
correct ActionScript.

A statement is an instruction you give the FLA file to do something, such as to perform a
particular action. For example, you can use a conditional statement to determine whether
something is true or exists. Then you might execute actions that you specify, such as functions
or expressions, based on whether the condition is true or not. The if statement is a
conditional statement and evaluates a condition to determine the next action that should
occur in your code.
// if statement
if (condition) {
 // statements;
}

For more information on statements, see “About statements” on page 103.

About syntax, statements, and expressions 79

Expressions, different from statements, are any legal combination of ActionScript symbols that
represent a value. Expressions have values, while values and properties have types. An
expression can consist of operators and operands, values, functions, and procedures. The
expression follows ActionScript rules of precedence and of association. Typically, Flash Player
interprets the expression and then returns a value that you can use in your application.

For example, the following code is an expression:
x + 2

In the previous expression, x and 2 are operands and + is an operator. For more information
on operators and operands, see “About operators” on page 137. For more information on
objects and properties, see “Object data type” on page 42.

The way you format your ActionScript also determines how maintainable your code is. For
example, it’s difficult to read the logic of a FLA file that doesn’t contain indents or comments,
or contains inconsistent formatting and naming conventions. When you indent blocks of
ActionScript (such as loops and if statements), the code is easier to read and debug if you
encounter problems. For more information about formatting ActionScript, see “Formatting
ActionScript syntax” on page 697. You can also see proper formatting of ActionScript in
these sections.

For more information on syntax and language fundamentals, see the following topics:

■ “Differences between ActionScript and JavaScript”
■ “About case sensitivity”

Differences between ActionScript and JavaScript
ActionScript is similar to the core JavaScript programming language. You don’t need to know
JavaScript to use and learn ActionScript; however, if you know JavaScript, ActionScript will
seem familiar.

This manual does not attempt to teach general programming. There are many resources that
provide more information about general programming concepts and the JavaScript language.

■ The ECMAScript (ECMA-262) edition 3 language specification is derived from
JavaScript and serves as the international standard for the JavaScript language.
ActionScript is based on this specification. For more information, see www.ecma-
international.org/publications/standards/Ecma-262.htm.

■ The Java Technology site has tutorials on object-oriented programming (http://
java.sun.com/docs/books/tutorial/java/index.html) that are targeted for the Java language
but are useful for understanding concepts that you can apply to ActionScript.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://java.sun.com/docs/books/tutorial/java/index.html
http://java.sun.com/docs/books/tutorial/java/index.html

80 Syntax and Language Fundamentals

Some of the differences between ActionScript and JavaScript are described in the
following list:

■ ActionScript does not support browser-specific objects such as Document, Window,
and Anchor.

■ ActionScript does not completely support all the JavaScript built-in objects.
■ ActionScript does not support some JavaScript syntax constructs, such as statement labels.
■ In ActionScript, the eval() function can perform only variable references.
■ ActionScript 2.0 supports several features that are not in the ECMA-262 specification,

such as classes and strong typing. Many of these features are modeled after the
ECMAScript (ECMA-262) edition 3 language specification (see www.ecma-
international.org/publications/standards/Ecma-262.htm).

■ ActionScript does not support regular expressions using the RegExp object. However,
Adobe Central does support the RegExp object. For more information on Adobe Central,
see www.adobe.com/products/central.

About case sensitivity
When you write ActionScript for Flash Player 7 and later, your code is case-sensitive. This
means that variables with slightly different capitalization are considered different from each
other. The following ActionScript code shows this:
// use mixed capitalization
var firstName:String = "Jimmy";
// use all lower case
trace(firstname); // undefined

Or you could write the following:
// In file targeting Flash Player 8
// and either ActionScript 1.0 or ActionScript 2.0
//
// Sets properties of two different objects
cat.hilite = true;
CAT.hilite = true;

// Creates three different variables
var myVar:Number = 10;
var myvar:Number = 10;
var mYvAr:Number = 10;

N
O

T
E

It is not a good practice to differentiate between variables, or any identifier, using
different case. For more information on naming variables, see Chapter 17, “Best
Practices and Coding Conventions for ActionScript 2.0,” on page 665.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.adobe.com/software/central/

About syntax, statements, and expressions 81

When you publish for versions of Flash Player (Flash Player 6 and earlier), Flash traces the
string Jimmy in the Output panel. Because Flash Player 7 and later versions are case-sensitive,
firstName and firstname are two separate variables (when you use either ActionScript 1.0
or ActionScript 2.0). This is an important concept to understand. If you created FLA files for
Flash Player 6 or earlier with nonmatching capitalization in your variables, your functionality
and files might break during conversion of the file or application that targets a newer version
of the Flash Player.

Therefore, it’s good practice to follow consistent capitalization conventions, such as those
used in this manual. Doing so also makes it easier to differentiate between variables, classes,
and function names. Do not use case to make two identifiers differ. Change the instance,
variable, or class name—not just the case. For more information on coding conventions, see
Chapter 17, “Best Practices and Coding Conventions for ActionScript 2.0,” on page 665.

Case sensitivity can have a large impact when you work with a web service that uses its own
rules for variable naming and for the case that variables are in when they are returned to the
SWF file from the server. For example, if you use a ColdFusion web service, property names
from a structure or object might be all uppercase, such as FIRSTNAME. Unless you use the same
case in Flash, you might experience unexpected results.

Case sensitivity is implemented for external scripts, such as ActionScript 2.0 class files, scripts
that you import using the #include command, and scripts in a FLA file. If you encounter
runtime errors and are exporting to more than one version of Flash Player, you should review
both external script files and scripts in FLA files to confirm that you used consistent
capitalization.

Case sensitivity is implemented on a per-SWF file basis. If a strict (case-sensitive) Flash Player
8 application calls a nonstrict Flash Player 6 SWF file, ActionScript executed in the Player 6
SWF file is nonstrict. For example, if you use loadMovie() to load a Flash Player 6 SWF file
into a Flash Player 8 SWF file, the version 6 SWF file remains case-insensitive, while the
version 8 SWF file is treated as case-sensitive.

When syntax coloring is enabled, language elements written with correct capitalization are
blue by default. For more information, see “About reserved words” on page 103.

N
O

T
E

Case sensitivity also affects external variables that you load into a SWF file, such as
those loaded with LoadVars.load().

82 Syntax and Language Fundamentals

About dot syntax and target paths
In ActionScript, you use a dot (.) operator (dot syntax) to access properties or methods that
belong to an object or instance on the Stage. You also use the dot operator to identify the
target path to an instance (such as a movie clip), variable, function, or object.

A dot syntax expression begins with the name of the object or movie clip, followed by a dot,
and it ends with the element you want to specify. The following sections demonstrate how to
write dot syntax expressions.

To control a movie clip, loaded SWF file, or button, you must specify a target path. Target
paths are hierarchical addresses of movie clip instance names, variables, and objects in a SWF
file. In order to specify a target path for a movie clip or button, you must assign an instance
name to the movie clip or button. You name a movie clip instance by selecting the instance
and typing the instance name in the Property inspector. Or you can specify the instance name
with code if you create the instance using ActionScript. You can use the target path to assign
an action to a movie clip or to get or set the value of a variable or property.

For more information on assigning an instance name and using dot syntax to target an
instance, see the following topics:

■ “About using dot syntax to target an instance” on page 82.
■ “About scope and targeting” on page 87
■ “Using the Target Path button” on page 88
■ “About slash syntax” on page 88

For more information on objects and properties, see “Object data type” on page 42.

About using dot syntax to target an instance
To write ActionScript that controls an instance such as a movie clip or manipulates assets in a
loaded SWF file, you must specify its name and its address in code. This is called a target path.
To target (or address) objects in a SWF file, you use dot syntax (also called dot notation). For
example, you need to target a movie clip or button instance before you can apply an action to
it. Dot syntax helps you create a path to the instance you need to target. The path to the
instance that you target is sometimes called the target path.

A FLA file has a particular hierarchy. You can create instances on the Stage or you can use
ActionScript. You can even create instances that are inside other instances. Or you might have
instances that nest within several other instances. You can manipulate any instance as long as
you name it.

About dot syntax and target paths 83

You name instances using an instance name, which you can specify in two different ways (both
demonstrated below):

■ Manually by selecting an instance and typing an instance name in the Property inspector
(when an instance is on the Stage).

■ Dynamically by using ActionScript. You create an instance using ActionScript and assign
it an instance name when you create it.

To assign the instance an instance name in the Property inspector, type a name into the
Instance Name text box.

You can also give an instance name to an object you create using ActionScript. It can be as
simple as the following code:
this.createEmptyMovieClip("pic_mc", this.getNextHighestDepth());
pic_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");

This code creates a new movie clip and assigns it the instance name pic_mc. Then, you can
manipulate the pic_mc instance using code, such as loading an image into it as demonstrated
in the previous code.

For more information on working with scope, see “About scope and targeting” on page 87
and “About variables and scope” on page 60.

Targeting an instance
If you want something to work in your SWF file, you need to target that instance and then
tell it to do something, such as assigning it an action or changing its properties. You usually
need to define where that instance is in the SWF file (for example, what timeline it’s on or
what instance it’s nested within) by creating the target path. Remember that you have given
many of the instances in your FLA file instance names, and then you added code to the FLA
file that uses those instance names. When you do this, you target that particular instance and
then tell it to do something (such as move the playhead or open a web page). For more
information on objects and properties, see “Object data type” on page 42.

To target an instance:

1. Select File > New and select Flash Document.

2. Select File > Save As and name the file target.fla.

3. Use the Oval tool to draw a shape on the Stage. Draw an oval of any size and color.

4. Use the Selection tool to select the oval on the Stage.

T
IP Remember to select the stroke and fill if necessary.

84 Syntax and Language Fundamentals

5. Select Modify > Convert to Symbol, select the Movie Clip option, and then click OK to
create the symbol.

6. Select the movie clip on the Stage and give it the instance name myClip in the
Property inspector.

7. Insert a new layer and rename the layer actions.

8. Add the following ActionScript to Frame 1 of the actions layer:
myClip._xscale = 50;

This line of code targets the myClip instance on the Stage. The ActionScript scales the
instance to half its original width. Because the ActionScript is on the same timeline as the
movie clip symbol, you only need to target the instance using the instance name. If the
instance was on a different timeline or nested within another instance, you would need to
modify the target path accordingly.

Targeting a nested instance
You can also target instances that are nested inside other instances. Perhaps you want to place
a second movie clip instance inside of the myClip instance from the exercise in “Targeting an
instance” on page 83. You can also target that nested instance using ActionScript. Before you
proceed with the following exercise, you need to complete the exercise in “Targeting an
instance” on page 83, and then follow these steps to target a nested instance.

To target a nested instance:

1. Open target.fla from the procedure on targeting an instance, and rename it target2.fla.

2. Double-click the myClip instance on the Stage.

3. Select the Oval tool and draw another oval inside of the myClip instance.

4. Select the new shape, and then select Modify > Convert to Symbol.

5. Select the Movie Clip option and click OK.

6. Select the new instance, and type myOtherClip in the Instance Name text box of the
Property inspector.

7. Click Scene 1 in the edit bar to return to the main Timeline.

8. Add the following ActionScript to Frame 1 of the actions layer:
myClip.myOtherClip._xscale = 50;

This ActionScript resizes the myOtherClip instance to 50% of its current width. Because
the target.fla file modified the myClip instances _xscale property, and the myOtherClip
is a nested symbol, you’ll notice that myOtherClip will be 25 percent of the
original width.

About dot syntax and target paths 85

If you work with nested movie clips that have their own timelines, you can manipulate the
playhead in a nested instance’s timeline using code similar to the following snippet:
myClip.nestedClip.gotoAndPlay(15);
myClip.someOtherClip.gotoAndStop("tweenIn");

Notice that the clip that you manipulate (such as nestedClip) appears right before the
action. You’ll notice this trend in upcoming sections.

You aren’t limited to accessing predefined methods and properties of instances on the Stage, as
demonstrated in the previous examples. You can also set a variable within a movie clip, as seen
in the following code, which sets a variable in the starClip movie clip:
starClip.speed = 1.1;
starClip.gravity = 0.8;

If either the speed or gravity variables existed previously in the starClip movie clip instance,
the previous values would have been overwritten as soon as the new values were set. You are
able to add new properties to the starClip movie clip, because the MovieClip class was defined
with the dynamic keyword. The dynamic keyword specifies that objects based on the
specified class (in this case MovieClip) can add and access dynamic properties at runtime. For
more information about the dynamic statement, see dynamic statement in the ActionScript
2.0 Language Reference.

Targeting dynamic instances and loaded content
You can also create an object using ActionScript and target it using a target path afterwards.
For example, you can use the following ActionScript to create a movie clip. Then you can
change the rotation of that movie clip using ActionScript, as shown in the next example:

To target a dynamically created movie clip instance:

1. Create a new Flash document and save the file as targetClip.fla.

2. Insert a new layer and rename the layer actions.

3. Add the following ActionScript to Frame 1 of the actions layer:
this.createEmptyMovieClip("rotateClip", this.getNextHighestDepth());
trace(rotateClip);
rotateClip._rotation = 50;

4. Select Control > Test Movie to test your document.

You can tell that you created a movie clip because of the trace statement, but you cannot
see anything on the Stage. Even though you added code that creates a movie clip instance,
you won’t see anything on the Stage unless you add something to the movie clip. For
example, you might load an image into the movie clip.

5. Return to the authoring environment, and open the Actions panel.

86 Syntax and Language Fundamentals

6. Type the following ActionScript after the code you added in step 3:
rotateClip.loadMovie("http://www.helpexamples.com/flash/images/

image1.jpg");

This code loads an image into the rotateClip movie clip that you created with code. You’re
targeting the rotateClip instance with ActionScript.

7. Select Control > Test Movie to test your document.

Now you should see an image on the Stage that rotates 50º clockwise.

You can also target or identify parts of SWF files that you load into a base SWF file.

To identify a loaded SWF file:

■ Use _levelX, where X is the level number specified in the loadMovie() function that
loaded the SWF file.
For example, a SWF file loaded into level 99 has the target path _level99. In the
following example, you load a SWF file into level 99 and set its visibility to false:
//Load the SWF onto level 99.
loadMovieNum("contents.swf", 99);
//Set the visibility of level 99 to false.
loaderClip.onEnterFrame = function(){

_level99._visible = false;
};

Setting variables using a path
You can set variables for instances that you nest inside of other instances. For example, if you
want to set a variable for a form that’s inside another form, you can use the following code.
The instance submitBtn is inside of formClip on the main timeline:
this.formClip.submitBtn.mouseOver = true;

You can express a method or property of a particular object (such as a movie clip or text field)
using this pattern. For example, the property of an object would be
myClip._alpha = 50;

T
IP It’s generally a good idea to avoid using levels if you can load content into movie clips

at different depths instead. Using the MovieClip.getNextHighestDepth() method
enables you to create new movie clip instances on the Stage dynamically without
having to check whether there is already an instance at a particular depth.

About dot syntax and target paths 87

About scope and targeting
When you nest instances, the movie clip that nests a second movie clip is known as the parent
to the nested instance. The nested instance is known as the child instance. The main Stage
and main timeline are essentially a movie clip themselves, and can therefore be targeted as
such. For more information on scope, see “About variables and scope” on page 60.

You can target parent instances and parent timelines using ActionScript. When you want to
target the current timeline, you use the this keyword. For example, when you target a movie
clip called myClip that's on the current main timeline, you would use
this.myClip.

Optionally, you can drop the this keyword, and just use
myClip

You might choose to add the this keyword for readability and consistency. For more
information on recommended coding practices, see Chapter 17, “Best Practices and Coding
Conventions for ActionScript 2.0,” on page 665.

If you trace the movie clip, for either snippet above you see _level0.myClip in the Output
panel. However, if you have ActionScript that’s inside the myClip movie clip but you want to
target the main timeline, target the parent of the movie clip (which is the main Stage).
Double-click a movie clip, and place the following ActionScript on the movie clip’s timeline:
trace("me: " + this);
trace("my parent: " + this._parent);

Test the SWF file, and you’ll see the following message in the Output panel:
me: _level0.myClip
my parent: _level0

This indicates you targeted the main timeline. You can use parent to create a relative path to
an object. For example, if the movie clip dogClip is nested inside the animating movie
clip animalClip, the following statement on the instance dogClip tells animalClip to
stop animating:
this._parent.stop();

If you're familiar with Flash and ActionScript, you’ve probably noticed people using the
_root scope. The _root scope generally refers to the main timeline of the current Flash
document. You should avoid using the _root scope unless it’s absolutely necessary. You can
use relative target paths instead of _root.

If you use _root in your code, you can encounter errors if you load the SWF file into another
Flash document. When the SWF file loads into a different SWF file, _root in the loaded file
might point to the root scope of the SWF file it loads into, instead of referring to its own root
as you intend it to. This can lead to unpredictable results, or break functionality altogether.

88 Syntax and Language Fundamentals

Using the Target Path button
Sometimes it takes some time to figure out what a given target path is, or what target path you
need for a piece of code. If you target an instance you have on the Stage, you can use the
Target Path button to determine what the path is to that instance.

To use the Target Path button:

1. Open the Actions panel (Window > Actions) and click the Insert Target Path button. The
movie clips in your current document appear in a dialog box.

2. Select one of the instances from the list in the dialog box.

3. Click OK.

4. The target path for the selected instance appears in the Script pane.

About slash syntax
Slash syntax was used in Flash 3 and 4 to indicate the target path of a movie clip or variable.
This syntax is supported by ActionScript 1.0 in Flash Player 7 and earlier, but it’s not
supported in ActionScript 2.0 and Flash Player 7 or Flash Player 8.

Using slash syntax is not recommended unless you do not have another option, such as when
you create content intended specifically for Flash Player 4 or Flash Lite 1.1 (and earlier)
where you must use slash syntax. For more information on Flash Lite, see the Flash Lite
product page.

About language punctuators
There are several language punctuators in Flash. The most common type of punctuators are
semicolons (;), colons (:), parentheses [()] and braces ({}). Each of these punctuators has a
special meaning in the Flash language and helps define data types, terminate statements or
structure ActionScript. The following sections discuss how to use the punctuators in
your code.

For more information on language punctuators, see the following topics:

■ “Semicolons and colons” on page 89
■ “Curly braces” on page 90
■ “Parentheses” on page 93
■ “About literals” on page 94
■ “About comments” on page 95

http://www.adobe.com/software/flashlite/
http://www.adobe.com/software/flashlite/

About language punctuators 89

For more information on the dot (.) operator and array access ([]) operators, see “Using dot
and array access operators” on page 145. For information on white space and code formatting,
see “Formatting ActionScript syntax” on page 697.

Semicolons and colons
ActionScript statements terminate with a semicolon (;) character, as demonstrated in the
following two lines of code:
var myNum:Number = 50;
myClip._alpha = myNum;

You can omit the semicolon character and the ActionScript compiler assumes that each line of
code represents a single statement. However, it is good scripting practice to use semicolons
because it makes your code more readable. When you click the Auto Format button in the
Actions panel or Script window, trailing semicolons are appended to the end of your
statements by default.

Another place you use semicolons is in for loops. You use the semicolon to separate
parameters, as shown in the following example. The example loops from 0 to 9 and then
displays each number in the Output panel:
var i:Number;
for (i = 0; i < 10; i++) {

trace(i); // 0,1,...,9
}

You use colons (:) in your code to assign data types to your variables. To assign a specific data
type to an item, specify its type using the var keyword and post-colon syntax, as shown in the
following example:
// strict typing of variable or object
var myNum:Number = 7;
var myDate:Date = new Date();
// strict typing of parameters
function welcome(firstName:String, myAge:Number) {
}
// strict typing of parameter and return value
function square(num:Number):Number {

var squared:Number = num * num;
return squared;

}

N
O

T
E

Using a semicolon to terminate a statement allows you to place more than one statement
on a single line, but doing so usually makes your code more difficult to read.

90 Syntax and Language Fundamentals

You can declare the data type of objects based on built-in classes (Button, Date, MovieClip,
and so on) and on classes and interfaces that you create. In the following snippet, you create a
new object of the custom type Student:
var firstStudent:Student = new Student();

You can also specify that objects are of the Function or the Void data type. For more
information on assigning data types, see Chapter 3, “Data and Data Types,” on page 35.

Curly braces
You group ActionScript events, class definitions, and functions into blocks using curly brace
({}) punctuators. You put the opening brace on the same line as the declaration.

Place braces around each statement when it is part of a control structure (such as if..else or
for), even if it contains only a single statement. This good practice helps you avoid errors in
your ActionScript when you forget to add braces to your code. The following example shows
code that is written using poor form:
var numUsers:Number;
if (numUsers == 0)
 trace("no users found.");

Although this code validates, it is considered poor form because it lacks braces around
the statements.

In this case, if you add a second statement after the trace statement, the second statement
executes regardless of whether the numUsers variable equals 0, which can lead to unexpected
results. For this reason, add braces so the code looks like the following example:
var numUsers:Number;
if (numUsers == 0) {
 trace("no users found");
}

N
O

T
E

You can also put the opening brace on the line that follows the declaration. Coding
conventions recommend that you put the opening brace on the same line for
consistency. For information on braces and code conventions, see Chapter 17, “Best
Practices and Coding Conventions for ActionScript 2.0,” on page 665.

T
IP Braces are added to this statement if you click the Auto Format button.

About language punctuators 91

In the following example, you create both an event listener object and a MovieClipLoader
instance.
var imgUrl:String = "http://www.helpexamples.com/flash/images/image1.jpg";
this.createEmptyMovieClip("img_mc", 100);
var mclListener:Object = new Object();
mclListener.onLoadStart = function() {

trace("starting");
};
mclListener.onLoadInit = function(target_mc:MovieClip):Void {

trace("success");
};
mclListener.onLoadError = function(target_mc:MovieClip):Void {

trace("failure");
};
var myClipl:MovieClipLoader = new MovieClipLoader();
myClipl.addListener(mclListener);
myClipl.loadClip(imgUrl, img_mc);

The next example displays a simple class file that could be used to create a Student object. You
learn more about class files in Chapter 6, “Classes,” on page 187.

To use curly braces in an ActionScript file:

1. Select File > New and then select ActionScript File.

2. Select File > Save As and save the new document as Student.as.

3. Add the following ActionScript to the AS file.
// Student.as
class Student {

private var _id:String;
private var _firstName:String;
private var _middleName:String;
private var _lastName:String;

public function Student(id:String, firstName:String,
middleName:String, lastName:String) {

this._id = id;
this._firstName = firstName;
this._middleName = middleName;
this._lastName = lastName;

}
public function get firstName():String {

return this._firstName;
}
public function set firstName(value:String):Void {

this._firstName = value;
}
// ...

}

92 Syntax and Language Fundamentals

4. Save the class file.

5. Select File > New and click Flash Document to create a new FLA file.

6. Save the new FLA file as student_test.fla.

7. Type the following ActionScript on Frame 1 of the main Timeline:
// student_test.fla
import Student;
var firstStudent:Student = new Student("cst94121", "John", "H.", "Doe");
trace(firstStudent.firstName); // John
firstStudent.firstName = "Craig";
trace(firstStudent.firstName); // Craig

8. Select File > Save to save the changes to student_test.fla.

9. Select Control > Test Movie to test the FLA and AS files.

The next example demonstrates how curly braces are used when you work with functions.

To use curly braces with functions:

1. Select File > New and select Flash Document to create a new FLA file.

2. Select File > Save As and name the new file checkform.fla.

3. Drag an instance of the Label component from the Components panel onto the Stage.

4. Open the Property inspector (Window > Properties > Properties) and with the Label
component instance selected, type an instance name of status_lbl into the Instance Name
text box.

5. Type 200 into the W (width) text box to resize the component to 200 pixels wide.

6. Drag an instance of the TextInput component onto the Stage and give it an instance name
of firstName_ti.

7. Drag an instance of the Button component onto the Stage and give it an instance name of
submit_button.

8. Select Frame 1 of the Timeline, and add the following ActionScript into the Actions panel:
function checkForm():Boolean {

status_lbl.text = "";
if (firstName_ti.text.length == 0) {

status_lbl.text = "Please enter a first name.";
return false;

}
return true;

}
function clickListener(evt_obj:Object):Void {

var success:Boolean = checkForm();
};
submit_button.addEventListener("click", clickListener);

About language punctuators 93

9. Select File > Save to save the Flash document.

10. Select Control > Test Movie to test the code in the authoring environment.

In the SWF file, an error message is displayed if you click the Button instance on the Stage
when you do not have text in the firstName_ti TextInput component. This error
appears in the Label component and informs users that they need to enter a first name.

The next example using curly braces shows how to create and define properties within an
object. In this example, properties are defined in the object by specifying the variable names
within the curly brace ({}) punctuators:
var myObject:Object = {id:"cst94121", firstName:"John", middleName:"H.",

lastName:"Doe"};
var i:String;
for (i in myObject) {

trace(i + ": " + myObject[i]);
}
/*

id: cst94121
firstName: John
middleName: H.
lastName: Doe

*/

You can also use empty curly braces as a syntax shortcut for the new Object() function. For
example, the following code creates an empty Object instance:
var myObject:Object = {};

Parentheses
When you define a function in ActionScript, you place parameters inside parentheses [()]
punctuators, as shown in the following lines of code:
function myFunction(myName:String, myAge:Number, happy:Boolean):Void {
 // Your code goes here.
}

When you call a function, you also include any of the parameters you pass to the function in
parentheses, as shown in the following example:
myFunction("Carl", 78, true);

You can use parentheses to override the ActionScript order of precedence or to make your
ActionScript statements easier to read. This means you can change the order in which values
are computed by placing brackets around certain values, as seen in the following example:
var computedValue:Number = (circleClip._x + 20) * 0.8;

T
IP Remember to make sure each opening curly brace has a matching closing brace.

94 Syntax and Language Fundamentals

Because of order of precedence, if you didn’t use parentheses or use two separate statements,
the multiplication would be computed first, meaning that the first operation would be 20 *
0.8. The result, 16, would then be added to the current value of circleClip._x and finally
assigned to the computedValue variable.

If you don’t use parentheses, you must add a statement to evaluate the expression, as shown in
the following example:
var tempValue:Number = circleClip._x + 20;
var computedValue:Number = tempValue * 0.8;

As with brackets and braces, you need to make sure each opening parentheses has a closing
parentheses.

About literals
A literal is a value that appears directly in your code. Literals are constant (unchanging) values
within your Flash documents. Examples of a literal include true, false, 0, 1, 52, or even the
string “foo”.

The following examples are all literals:
17
"hello"
-3
9.4
null
undefined
true
false

Literals can also be grouped to form compound literals. Array literals are enclosed in bracket
punctuators ([]) and use the comma punctuator (,) to separate array elements. An array
literal can be used to initialize an array. The following examples show two arrays that are
initialized using array literals. You can use the new statement and pass the compound literal as
a parameter to the Array class constructor, but you can also assign literal values directly when
instantiating instances of any built-in ActionScript class.
// using new statement
var myStrings:Array = new Array("alpha", "beta", "gamma");
var myNums:Array = new Array(1, 2, 3, 5, 8);

// assigning literal directly
var myStrings:Array = ["alpha", "beta", "gamma"];
var myNums:Array = [1, 2, 3, 5, 8];

About language punctuators 95

Literals can also be used to initialize a generic object. A generic object is an instance of the
Object class. Object literals are enclosed in curly braces ({}) and use the comma punctuator
(,) to separate object properties. Each property is declared with the colon punctuator (:),
which separates the name of the property from the value of the property.

You can create a generic object using the new statement and pass the object literal as a
parameter to the Object class constructor, or you can assign the object literal directly to the
instance you are declaring. The following example creates a new generic object and initializes
the object with three properties, propA, propB, and propC, each with values set to 1, 2, and 3,
respectively.
// using new statement
var myObject:Object = new Object({propA:1, propB:2, propC:3});

// assigning literal directly
var myObject:Object = {propA:1, propB:2, propC:3};

Do not confuse a string literal with a String object. In the following example, the first line of
code creates the string literal firstStr, and the second line of code creates the String object
secondStr:
var firstStr:String = "foo"
var secondStr:String = new String("foo")

Use string literals unless you specifically need to use a String object for better performance.
For more information on strings, see “About strings and the String class” on page 411.

About comments
Comments are a way of annotating your code with plain-English descriptions that do not get
evaluated by the compiler. You can use comments within your code to describe what the code
is doing or to describe which data returns to the document. Using comments can help you
remember important coding decisions, and it can be helpful to anyone else who reads your
code. Comments must clearly explain the intent of the code and not just translate the code. If
something is not readily obvious in the code, you should add comments to it.

Using comments to add notes to scripts is highly recommended. Comments document the
decisions you make in the code, answering both how and why. They make ActionScript easier
to understand. For example, you might describe a work-around in comments. Therefore, you
or another developer can easily find sections of code to update or fix. Or, if the issue is fixed or
improved in a future version of Flash or Flash Player, you could improve the ActionScript by
removing the work-around.

96 Syntax and Language Fundamentals

Avoid using cluttered comments. An example of cluttered comments is a line of equal signs
(=) or asterisks (*) used to create a block or separation around your comments. Instead, use
white space to separate your comments from the ActionScript. If you format your
ActionScript using the Auto Format button in the Actions panel or Script window, this
removes the white space. Remember to add white space back into your code, or use single
comment lines (//) to maintain spacing; these lines are easier to remove after you format your
code than trying to determine where white space once was.

Before you deploy your project, remove any superfluous comments from the code, such as
“define the x and y variables” or other comments that are immediately obvious to other
developers. If you find that you have many extra comments in the ActionScript, consider
whether you need to rewrite some of the code. If you need to include many comments about
how the code works, it is usually a sign that the ActionScript is inelegant and not intuitive.

When you enable syntax coloring, comments are gray by default. Comments can be any
length without affecting the size of the exported file, and they do not need to follow rules for
ActionScript syntax or keywords.

Single-line comments
You use single-line comments to add a comment to a single line in your code. You might
comment out a single line of code, or add a short description of what a piece of code
accomplishes. To indicate that a line or portion of a line is a comment, precede the comment
with two forward slashes (//), as shown in the following code:
// The following sets a local variable for age.
var myAge:Number = 26;

Single-line comments are typically used to explain a small code snippet. You can use single-
line comments for any short comments that fit on a single line. The following example
includes a single-line comment:
while (condition) {

// handle condition with statements
}

N
O

T
E

Using comments is most important in ActionScript that is intended to teach an audience.
Add comments to your code if you are creating sample applications for the purpose of
teaching Flash or if you are writing articles or tutorials on ActionScript.

About language punctuators 97

Multiline comments
Use multiline comments, also called block comments, for comments that are several lines in
length. Developers commonly use multiline comments to describe files, data structures,
methods, and descriptions of files. They are usually placed at the beginning of a file and
before or within a method.

To create a comment block, place /* at the beginning of the commented lines and */ at the
end of the comment block. This technique lets you create lengthy comments without adding
// at the beginning of each line. Using // for numerous sequential lines can lead to some
problems when you modify the comments.

The format for a multiline comment is as follows.
/*

The following ActionScript initializes variables used in the main and
sub-menu systems. Variables are used to track what options are clicked.

*/

By placing large chunks of script in a comment block, called commenting out a portion of your
script, you can test specific parts of a script. For example, when the following script runs,
none of the code in the comment block executes:
// The following code runs.
var x:Number = 15;
var y:Number = 20;

// The following code is commented out and will not run.
/*
// create new Date object
var myDate:Date = new Date();
var currentMonth:Number = myDate.getMonth();
// convert month number to month name
var monthName:String = calcMonth(currentMonth);
var year:Number = myDate.getFullYear();
var currentDate:Number = myDate.getDate();
*/

// The code below runs.
var namePrefix:String = "My name is";
var age:Number = 20;

T
IP If you place the comment characters (/* and */) on separate lines at the beginning and

end of the comment, you can easily comment them out by placing double slash
characters (//) in front of them (for example, ///* and //*/). These let you quickly and
easily comment and uncomment your code.

T
IP It’s good practice to place a blank line before a block comment.

98 Syntax and Language Fundamentals

Trailing comments
You use trailing comments to add a comment on the same line as your code. These comments
appear on the same line as your ActionScript code. Developers commonly use trailing
comments to indicate what a variable contains or to describe or note the value that returns
from a line of ActionScript. Format trailing comments as follows:
var myAge:Number = 26; // variable for my age
trace(myAge); // 26

Space the comments to the right so readers can distinguish them from the code. Try to have
the comments line up with each other, if possible, as shown in the following code.
var myAge:Number = 28; // my age
var myCountry:String = "Canada"; // my country
var myCoffee:String = "Hortons"; // my coffee preference

If you use autoformatting (click the Auto Format button in the Actions panel), trailing
comments move to the next line. Add these comments after you format your code, or you
must modify their placement after using the Auto Format button.

Comments inside classes
You use comments in your classes and interfaces to document them to help developers
understand the contents of your class. You might start all your class files with a comment that
provides the class name, its version number, the date, and your copyright. For example, you
might create documentation for your class that is similar to the following comment:
/**
 Pelican class
 version 1.2
 10/10/2005
 copyright Adobe Systems Incorporated
*/

Use block comments to describe files, data structures, methods, and descriptions of files. They
are usually placed at the beginning of a file and before or within a method.

There are two kinds of comments in a typical class or interface file: documentation comments
and implementation comments. Documentation comments are used to describe the code’s
specifications and do not describe the implementation. You use documentation comments to
describe interfaces, classes, methods, and constructors. Implementation comments are used to
comment out code or to comment on the implementation of particular sections of code.

About constants and keywords 99

Include one documentation comment per class, interface, or member, and place it directly
before the declaration. If you have additional information to document that does not fit into
the documentation comments, use implementation comments (in the format of block
comments or single-line comments). Implementation comments directly follow the
declaration.

The two kinds of comments use slightly different delimiters. Documentation comments are
delimited with /** and */, and implementation comments are delimited with /* and */.

You can also use single-line comments, block comments, and trailing comments in class files.
For more information on these kinds of comments, see the following sections:

■ “Single-line comments” on page 96
■ “Multiline comments” on page 97
■ “Trailing comments” on page 98

About constants and keywords
Constants and keywords are the backbone of ActionScript syntax. Constants are properties
with a fixed value that cannot be altered, so they are values that don’t change throughout
an application.

Flash includes several predefined constants, which can help simplify application development.
An example of constants can be found in the Key class, which includes many properties, such
as Key.ENTER or Key.PGDN. If you rely on constants, you never have to remember that the key
code values for the Enter and Page Down keys are 13 and 34. Using constant values not only
makes development and debugging easier, but it also makes your code easier to read by your
fellow developers.

Keywords in ActionScript are used to perform specific kinds of actions. They are also reserved
words because of this, so you can’t use them as identifiers (such as variable, function, or label
names). Examples of some reserved keywords are if, else, this, function, and return.

For more information on constants and keywords, see the following topics:

■ “Using constants” on page 100
■ “About keywords” on page 102
■ “About reserved words” on page 103

T
IP Don’t include comments that do not directly relate to the class being read. For example,

do not include comments that describe the corresponding package.

100 Syntax and Language Fundamentals

For more information on objects and properties, see “Object data type” on page 42. For a list
of constants in the language (such as false and NaN), see the ActionScript Language Elements
> Constants category in the ActionScript 2.0 Language Reference.

Using constants
Constants are properties with a fixed value that cannot be altered; in other words, they are
values that don’t change throughout an application. The ActionScript language contains many
predefined constants. For example, the constants BACKSPACE, ENTER, SPACE, and TAB are
properties of the Key class and refer to keyboard keys. The constant Key.TAB always has the
same meaning: it indicates the Tab key on a keyboard. Constants are useful for comparing
values and for using values in your application that do not change.

To test whether the user is pressing the Enter key, you could use the following statement:
var keyListener:Object = new Object();
keyListener.onKeyDown = function() {

if (Key.getCode() == Key.ENTER) {
trace("Are you ready to play?");

}
};
Key.addListener(keyListener);

For the previous ActionScript to work, it may be necessary to disable keyboard shortcuts in
the authoring environment. Select Control > Test Movie from the main menu, then while
previewing the SWF file in the player, select Control > Disable Keyboard Shortcuts from the
SWF file’s preview window.

In Flash there is no way to create your own constant values except when you create your own
custom classes with private member variables. You cannot create a “read-only” variable
within Flash.

Variables should be lowercase or mixed-case letters; however, constants (variables that do not
change) should be uppercase. Separate words with underscores, as the following ActionScript
shows:
var BASE_URL:String = "http://www.adobe.com"; //constant
var MAX_WIDTH:Number = 10; //constant

Write static constants in uppercase, and separate words with an underscore. Do not directly
code numerical constants unless the constant is 1, 0, or -1, which you might use in a for loop
as a counter value.

You can use constants for situations in which you need to refer to a property whose value
never changes. This helps you find typographical mistakes in your code that you might not
find if you use literals. It also lets you change the value in a single place. For more information
on literals, see “About literals” on page 94.

About constants and keywords 101

For example, the class definition in the next example creates three constants that follow the
naming convention used by ActionScript 2.0.

To use constants in an application:

1. Select File > New and then select ActionScript File to create an AS file.

2. Name the new file ConstExample.as.

3. Type the following code into the Script window:
class ConstExample {

public static var EXAMPLE_STATIC:String = "Global access";
public var EXAMPLE_PUBLIC:String = "Public access";
private var EXAMPLE_PRIVATE:String = "Class access";

}

The EXAMPLE_STATIC property is a static property, which means that the property applies
to the class as a whole instead of to a particular instance of the class. You must access a
static property of a class using the name of the class instead of the name of an instance.
You cannot access a static property through a class instance.

4. Create a new Flash document and save it as const.fla.

5. Open the Actions panel, and type the following code on Frame 1 of the Timeline:
trace(ConstExample.EXAMPLE_STATIC); // output: Global access

When you declare the EXAMPLE_STATIC property as static, you use this code to access the
value of the property.

6. Select Control > Test Movie to test your document.

You will see Global access in the Output panel.
7. In the Actions panel, type this code following the code you added in step 5.

trace(ConstExample.EXAMPLE_PUBLIC); // error
trace(ConstExample.EXAMPLE_PRIVATE); // error

8. Select Control > Test Movie to test your document.

The EXAMPLE_PUBLIC and EXAMPLE_PRIVATE properties are not static properties. When
you try to access the values through the class, you see the error message:
The property being referenced does not have the static attribute.

To access a property that is not static, you must access the value through an instance of the
class. Because the EXAMPLE_PUBLIC property is a public property, it is available to code
outside of the class definition.

9. In the Actions panel, delete the trace statements that you added in steps 5 and 7.

102 Syntax and Language Fundamentals

10. Type the following code into the Actions panel:
var myExample:ConstExample = new ConstExample();
trace(myExample.EXAMPLE_PUBLIC); // output: Public access

This code instantiates the myExample instance and accesses the EXAMPLE_PUBLIC
property.

11. Select Control > Test Movie to test your document.

You see Public access in the Output panel.
12. In the Actions panel, delete the trace statement that you added in step 10.

13. Type the following code into the Actions panel.
trace(myExample.EXAMPLE_PRIVATE); // error

The EXAMPLE_PRIVATE property is a private property, so it is available only within the
class definition.

14. Select Control > Test Movie to test your document.

You see The member is private and cannot be accessed in the Output panel.
For more information on built-in classes and creating custom classes, see Chapter 6,
“Classes,” on page 187.

About keywords
Keywords are words in ActionScript that do one specific thing. For example, you use the var
keyword to declare a variable. The var keyword is shown in the following line of code:
var myAge:Number = 26;

A keyword is a reserved word that has a specific meaning: for example, you use the class
keyword to define new a new ActionScript class; and you use the var keyword to declare local
variables. Other examples of reserved keywords are: if, else, this, function, and return.

Keywords cannot be used as identifiers (such as variable, function, or label names), and you
should not use them elsewhere in your FLA files for other things (such as instance names).
You have already used the var keyword a lot, particularly if you read Chapter 3, “Data and
Data Types,” on page 35. ActionScript reserves words in the language for specific use.
Therefore, you can’t use keywords as identifiers (such as variable, function, or label names).
You can find a list of these keywords in “About reserved words” on page 103.

About statements 103

About reserved words
Reserved words are words that you cannot use as identifiers in your code because the words are
reserved for use by ActionScript. Reserved words include keywords, which are ActionScript
statements, and words that are reserved for future use. That means you should not use them
for naming your variables, instances, custom classes, and so on; doing so can lead to technical
problems in your work.

Several words, although they are not reserved words, should not be used as identifiers (such as
variable or instance names) in your ActionScript code. These are words that are used by the
built-in classes that make up the ActionScript language, which are called language constructs.
Therefore, do not use the names of properties, methods, classes, interfaces, component class
names, and interface names as identifiers in your code (such as when you name variables,
classes, or instances).

For more information about reserved keywords that can cause errors in your scripts and
protected keywords for future use by ActionScript or the ECMAScript (ECMA-262) edition
4 draft language specifications see Avoiding reserved words and language constructs
on page 668.

To learn the names of language constructs, refer to the ActionScript 2.0 Language Reference.

About statements
A statement is an instruction you give the FLA file to do something, such as to perform a
particular action. For example, you can use a conditional statement to determine whether
something is true or exists. Then your code might execute actions that you specify, such as
functions or expressions, based on whether the condition is true or not.

For example, the if statement is a conditional statement and evaluates a condition to
determine the next action that should occur in your code.
// if statement
if (condition) {

// statements;
}

Another example is the return statement, which returns a result as a value of the function in
which it executes.

There are many different ways for you to format or write ActionScript. You might differ from
someone else who writes ActionScript in the way you form syntax, such as the way you space
out your statements or where you put curly braces ({}) in your code. Even though there are
several different ways you can form statements without breaking your code, there are some
general guidelines you can follow to write well-formed ActionScript.

104 Syntax and Language Fundamentals

Place only one statement on a line to increase the readability of your ActionScript. The
following example shows the recommended and not recommended statement usage:
theNum++; // recommended
theOtherNum++; // recommended
aNum++; anOtherNum++; // not recommended

Assign variables as separate statements. Consider the following ActionScript example:
var myNum:Number = (a = b + c) + d;

This ActionScript embeds an assignment within the code, which is difficult to read. If you
assign variables as separate statements, it improves readability, as the following example shows:
var a:Number = b + c;
var myNum:Number = a + d;

The following sections show you how to form specific statements in ActionScript. For
information on writing and formatting events, see Chapter 9, “Handling Events,” on
page 291.

For more information on each statement, see the following topics:

■ “About compound statements” on page 104
■ “About conditions” on page 105
■ “Repeating actions using loops” on page 115

About compound statements
A compound statement contains numerous statements that you enclose within curly brace
({}) punctuators. The statements inside a compound statement can be any kind of
ActionScript statement. A typical compound statement is shown below.

The statements within the curly brace punctuators are indented from the compound
statement, as the following ActionScript shows:
var a:Number = 10;
var b:Number = 10;
if (a == b) {
 // This code is indented.
 trace("a == b");
 trace(a);
 trace(b);
}

This compound statement contains several statements, but acts like a single statement in your
ActionScript code. The opening brace is placed at the end of the compound statement. The
closing brace begins a line, and aligns with the beginning of the compound statement.

For more information on using braces, see “Curly braces” on page 90.

About statements 105

About conditions
You use conditions to determine whether something is true or exists, and then you can
optionally repeat an action (using loops), or execute actions that you specify, such as functions
or expressions, based on whether the condition is true or not. For example, you can determine
whether a certain variable is defined or has a certain value and execute a block of code based
on the result. Also, you could change the graphics within your Flash document based on what
time the user's system clock is set to or on the weather in the user’s current location.

To perform an action depending on whether a condition exists, or to repeat an action (create
loop statements), you can use if, else, else if, for, while, do while, for..in, or switch
statements.

For more information on conditions that you can use, and how to write them, see the
following topics:

■ “About writing conditions” on page 105
■ “Using the if statement” on page 106
■ “Using the if..else statement” on page 107
■ “Using the if..else if statement” on page 108
■ “Using a switch statement” on page 109
■ “Using try..catch and try..catch..finally statements” on page 111
■ “About the conditional operator and alternative syntax” on page 114

About writing conditions
Statements that check whether a condition is true or false begin with the term if. If the
condition evaluates to true, ActionScript executes the next statement. If the condition
evaluates to false, ActionScript skips to the next statement outside the block of code.

The following statements test three conditions. The term else if specifies alternative tests to
perform if previous conditions are false.
if ((passwordTxt.text.length == 0) || (emailTxt.text.length == 0)) {
 gotoAndStop("invalidLogin");
} else if (passwordTxt.text == userID){
 gotoAndPlay("startProgram");
}

T
IP To optimize your code’s performance, check for the most likely conditions first.

106 Syntax and Language Fundamentals

In this code snippet, if the length of the passwordTxt or emailTxt text fields is 0 (for example,
the user hasn’t entered a value), the Flash document redirects to the invalidLogin frame
label. If both the passwordTxt and emailTxt text fields contain values and the passwordTxt
text field’s contents match the userID variable, the SWF file redirects to the startProgram
frame label.

If you want to check for one of several conditions, you can use the switch statement rather
than multiple else if statements. For more information on switch statements, see “Using a
switch statement” on page 109.

Refer to the following sections to learn how to write different kinds of conditions in your
ActionScript applications.

Using the if statement
Use the if statement when you want to execute a series of statements based on a whether a
certain condition is true.
// if statement
if (condition) {
 // statements;
}

There are several times when you’ll use if statements when you work on a Flash project. For
example, if you are building a Flash site that requires users to log in before they can access
certain sections of a website, you can use an if statement to validate that the user enters some
text in the username and password fields.

If you need to validate user names and passwords using an external database, you probably
want to verify that the username/password combination a user submits matches a record in
the database. You also want to check whether the user has permission to access the specified
part of the site.

If you script animations in Flash, you might want to use the if statement to test whether an
instance on the Stage is still within the boundaries of the Stage. For example, if a ball moves
downward along the y-axis, you might need to detect when the ball collides with the bottom
edge of the Stage, so you can change the direction so that the ball appears to bounce upwards.

To use an if statement:

1. Select File > New and then select Flash Document.

About statements 107

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
// create a string to hold AM and PM
var amPm:String = "AM";
// no parameters pass to Date, so returns current date/time
var current_date:Date = new Date();
// if current hour is greater than/equal to 12, sets amPm string to "PM".
if (current_date.getHours() >= 12) {

amPm = "PM";
}
trace(amPm);

3. Select Control > Test Movie to test the ActionScript.

In this code, you create a string that holds AM or PM based on the current time of day. If the
current hour is greater than or equal to 12 the amPM string sets to PM. Finally, you trace the
amPm string, and if the hour is greater than or equal to 12, PM is displayed. Otherwise,
you’ll see AM.

Using the if..else statement
The if..else conditional statement lets you test a condition and then execute a block of
code if that condition exists or execute an alternative block of code if the condition does
not exist.

For example, the following code tests whether the value of x exceeds 20, generates a trace()
statement if it does, or generates a different trace() statement if it does not:
if (x > 20) {

trace("x is > 20");
} else {

trace("x is <= 20");
}

If you do not want to execute an alternative block of code, you can use the if statement
without the else statement.

The if..else statement in Flash is similar to the if statement. For example, if you use the
if statement to validate that a user’s supplied user name and password matches a value stored
in a database, then you might want to redirect the user based on whether the user name and
password are correct. If the login is valid, you can redirect the user to a welcome page using
the if block. However, if the login was invalid, you can redirect the user to the login form and
display an error message using the else block.

To use an if..else statement in a document:

1. Select File > New and then select Flash Document to create a new FLA file.

108 Syntax and Language Fundamentals

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
// create a string that holds AM/PM based on the time of day.
var amPm:String;
// no parameters pass to Date, so returns current date/time.
var current_date:Date = new Date();
// if current hour is greater than/equal to 12, sets amPm string to "PM".
if (current_date.getHours() >= 12) {

amPm = "PM";
} else {

amPm = "AM";
}
trace(amPm);

3. Select Control > Test Movie to test the ActionScript.

In this code, you create a string that holds AM or PM based on the current time of day. If the
current hour is greater than or equal to 12, the amPM string sets to PM. Finally, you trace the
amPm string, and if the hour is greater than or equal to 12, PM is displayed. Otherwise,
you’ll see AM in the Output panel.

Using the if..else if statement
You can test for more than one condition using the if..else if conditional statement. You
use the following syntax in an if..else if statement:
// else-if statement
if (condition) {
 // statements;
} else if (condition) {
 // statements;
} else {
 // statements;
}

You want to use an if..else if block in your Flash projects when you need to check a series
of conditions. For example, if you want to display a different image on the screen based on the
time of the day the user is visiting, you can create a series of if statements that determine if it’s
early morning, afternoon, evening, or night time. Then you can display an appropriate
graphic.

The following code not only tests whether the value of x exceeds 20 but also tests whether the
value of x is negative:
if (x > 20) {

trace("x is > 20");
} else if (x < 0) {

trace("x is negative");
}

About statements 109

To use an if..else if statement in a document:

1. Select File > New and then select Flash Document.

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var now_date:Date = new Date();
var currentHour:Number = now_date.getHours();
// if the current hour is less than 11AM...
if (currentHour < 11) {

trace("Good morning");
// else..if the current hour is less than 3PM...

} else if (currentHour < 15) {
trace("Good afternoon");
// else..if the current hour is less than 8PM...

} else if (currentHour < 20) {
trace("Good evening");
// else the current hour is between 8PM and 11:59PM

} else {
trace("Good night");

}

3. Select Control > Test Movie to test the ActionScript.

In this code, you create a string called currentHour that holds the current hour number
(for example, if it’s 6:19 pm, currentHour holds the number 18). You use the
getHours() method of the Date class to get the current hour. Then you can use the
if..else if statement to trace information to the Output panel, based on the number
that returns. For more information, see the comments in the previous code snippet.

Using a switch statement
The switch statement creates a branching structure for ActionScript statements. Similar to
the if statement, the switch statement tests a condition and executes statements if the
condition returns a value of true.

When you use a switch statement, the break statement instructs Flash to skip the rest of the
statements in that case block and jump to the first statement that follows the enclosing
switch statement. If a case block doesn’t contain a break statement, a condition called “fall
through” occurs. In this situation, the following case statement also executes until a break
statement is encountered or the switch statement ends. This behavior is demonstrated in the
following example, where the first case statement doesn’t contain a break statement and
therefore both of the code blocks for the first two cases (A and B) execute.

110 Syntax and Language Fundamentals

All switch statements should include a default case. The default case should always be the
last case on a switch statement and should also include a break statement to prevent a fall-
through error if another case is added. For example, if the condition in the following example
evaluates to A, both the statements for case A and B execute, because case A lacks a break
statement. When a case falls through, it does not have a break statement, but includes a
comment in the break statement’s place, which you can see in the following example after
case A. Use the following format when you write switch statements:
switch (condition) {
case A :
 // statements
 // falls through
case B :
 // statements
 break;
case Z :
 // statements
 break;
default :
 // statements
 break;
}

To use a switch statement in a document:

1. Select File > New and then select Flash Document.

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var listenerObj:Object = new Object();
listenerObj.onKeyDown = function() {

// Use the String.fromCharCode() method to return a string.
switch (String.fromCharCode(Key.getAscii())) {
case "A" :

trace("you pressed A");
break;

case "a" :
trace("you pressed a");
break;

case "E" :
case "e" :

/* E doesn't have a break statement, so this block executes if you
press e or E. */

trace("you pressed E or e");
break;

case "I" :
case "i" :

trace("you pressed I or i");
break;

About statements 111

default :
/* If the key pressed isn’t caught by any of the above cases,

execute the default case here. */
trace("you pressed some other key");

}
};
Key.addListener(listenerObj);

3. Select Control > Test Movie to test the ActionScript.

Type letters using the keyboard, including the a, e, or i key. When you type those three
keys, you’ll see the trace statements in the preceding ActionScript. The line of code
creates a new object that you use as a listener for the Key class. You use this object to
notify the onKeyDown() event when the user presses a key. The Key.getAscii() method
returns the ASCII code of the last key that the user presses or releases, so you need to use
the String.fromCharCode() method to return a string that contains the characters
represented by the ASCII values in the parameters. Because “E” doesn’t have a break
statement, the block executes if the user presses the e or E key. If the user presses a key that
isn’t caught by any of the first three cases, the default case executes.

Using try..catch and try..catch..finally statements
Using try..catch..finally blocks lets you add error handling to your Flash applications.
The try..catch..finally keywords let you enclose a block of code where an error can
occur and respond to that error. If any code within the try code block throws an error (using
the throw statement), control passes to the catch block, if one exists. Then control passes to
the finally code block, if one exists. The optional finally block always executes, regardless
of whether an error was thrown.

If code within the try block doesn’t throw an error (that is, the try block completes
normally), the code in the finally block still executes.

You write try..catch and try..catch..finally statements using the following format:
// try-catch
try {
 // statements
} catch (myError) {
 // statements
}

// try-catch-finally
try {
 // statements

N
O

T
E

The finally block executes even if the try block exits using a return statement

112 Syntax and Language Fundamentals

} catch (myError) {
 // statements
} finally {
 // statements
}

Any time your code throws an error, you can write custom handlers to handle the error
gracefully and take appropriate actions. You might need to try loading external data from a
web service or text file or to display an error message to the end user. You can even use the
catch block to try to connect to a web service that alerts an administrator that a particular
error occurred, so he or she can make sure the application works properly.

To use the try..catch..finally block for data validation before dividing some
numbers:

1. Select File > New and then select Flash Document.

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var n1:Number = 7;
var n2:Number = 0;
try {

if (n2 == 0) {
throw new Error("Unable to divide by zero");

}
trace(n1/n2);

} catch (err:Error) {
trace("ERROR! " + err.toString());

} finally {
delete n1;
delete n2;

}

3. Select Control > Test Movie to test the document.

4. The Output panel displays Unable to divide by zero.

5. Return to the authoring environment and change the following line of code:
var n2:Number = 0;
to
var n2:Number = 2;

6. Select Control > Enter to test the document again.

If the value of n2 equals zero, an error is thrown and is caught by the catch block, which
displays a message in the Output panel. If the value of y is not equal to zero, the Output
panel displays the result of n1 divided by n2. The finally block executes regardless of
whether an error occurs and deletes the values of the n1 and n2 variables from the
Flash document.

About statements 113

You aren’t limited to throwing new instances of the Error class when an error occurs. You
could also extend the Error class to create your own custom errors, as demonstrated in the
following example.

To create a custom error:

1. Select File > New and create a new ActionScript file.

2. Select File > Save As and name the file DivideByZeroException.as.

3. Type the following ActionScript into the Script pane:
// In DivideByZeroException.as:
class DivideByZeroException extends Error {
 var message:String = "Divide By Zero error";
}

4. Save the ActionScript file.

5. Create a new Flash document named exception_test.fla in the same directory as the
ActionScript file, and then save the file.

6. Type the following ActionScript into the Actions panel in Frame 1 of the main Timeline:
var n1:Number = 7;
var n2:Number = 0;
try {

if (n2 == 0) {
throw new DivideByZeroException();

} else if (n2 < 0) {
throw new Error("n2 cannot be less than zero");

} else {
trace(n1/n2);

}
} catch (err:DivideByZeroException) {

trace(err.toString());
} catch (err:Error) {

trace("An unknown error occurred; " + err.toString());
}

7. Save the Flash document and select Control > Test Movie to test the file in the test
environment.

Because the value of n2 equals 0, Flash throws your custom DivideByZeroException error
class and displays Divide By Zero error in the Output panel. If you change the value of
n2 in line two from 0 to -1, and retest the Flash document, you would see An unknown
error occurred; n2 cannot be less than zero in the Output panel. Setting the
value of n2 to any number greater than 0 causes the result of the division to appear in the
Output panel. For more information on creating custom classes, see Chapter 6, “Classes,”
on page 187.

114 Syntax and Language Fundamentals

About the conditional operator and alternative syntax
If you like shortcuts, you can use the conditional (?:) operator, also called conditional
expressions. The conditional operator lets you convert simple if..else statements into a
single line of code. The operator helps decrease the amount of code you write while
accomplishing the same thing, but it also tends to make your ActionScript more difficult
to read.

The following condition is written in long hand, and checks whether the variable numTwo is
greater than zero, and returns the result of numOne/numTwo or a string of carrot:
var numOne:Number = 8;
var numTwo:Number = 5;
if (numTwo > 0) {
 trace(numOne / numTwo); // 1.6
} else {
 trace("carrot");
}

Using a conditional expression, you would write the same code using this format:
var numOne:Number = 8;
var numTwo:Number = 0;
trace((numTwo > 0) ? numOne/numTwo : "carrot");

As you can see, the shortened syntax reduces readability, and so it is not preferable. If you
must use conditional operators, place the leading condition (before the question mark [?])
inside parentheses. This helps improve the readability of your ActionScript. The following
code is an example of ActionScript with improved readability:
var numOne:Number;
(numOne >= 5) ? numOne : -numOne;

You can write a conditional statement that returns a Boolean value, as the following
example shows:
if (cartArr.length > 0) {
 return true;
} else {
 return false;
}

However, compared with the previous code, the ActionScript in the following example
is preferable:
return (cartArr.length > 0);

The second snippet is shorter and has fewer expressions to evaluate. It’s easier to read
and understand.

About statements 115

When you write complex conditions, it is good form to use parentheses [()] to group
conditions. If you do not use parentheses, you (or others working with your ActionScript)
might run into operator precedence errors. For more information on operator precedence, see
“About operator precedence and associativity” on page 140.

For example, the following code does not use parentheses around the condition:
if (fruit == "apple" && veggie == "leek") {}

The following code uses good form by adding parentheses around conditions:
if ((fruit == "apple") && (veggie == "leek")) {}

Repeating actions using loops
ActionScript can repeat an action a specified number of times or while a specific condition
exists. Loops let you repeat a series of statements when a particular condition is true. There
are four types of loops in ActionScript: for loops, for..in loops, while loops, and
do..while loops. Each type of loop behaves somewhat differently, and each one is useful for
different purposes.

Most loops use some kind of counter to control how many times the loop executes. Each
execution of a loop is called an iteration. You can declare a variable and write a statement that
increases or decreases the variable each time the loop executes. In the for action, the counter
and the statement that increments the counter are part of the action.

Loop Description

for loops Repeat an action using a built-in counter.

for..in loops Iterate over the children of a movie clip or object.

while loops Repeat an action while a condition exists.

do..while loops Similar to while loops, except the expression evaluates at the bottom of
the code block, so the loop always runs at least once.

116 Syntax and Language Fundamentals

The most common type of loop is the for loop, which loops over a block of code a predefined
number of times. For example, if you have an array of items, and you want to perform a series
of statements on each item in the array, you would use a for loop and loop from 0 to the
number of items in the array. Another type of loop is the for..in loop, which can be very
useful when you want to loop over each name/value pair within an object and then perform
some type of action. This can be very useful when you are debugging your Flash projects and
want to display the values that load from external sources, such as web services or external
text/XML files. The final two types of loops (while and do..while) are useful when you
want to loop over a series of statements but you don’t necessarily know how many times you
need to loop. In this case you can use a while loop that loops as long as a certain condition
is true.

ActionScript can repeat an action a specified number of times or while a specific condition
exists. Use the while, do..while, for, and for..in actions to create loops. This section
contains general information on these loops. See the following procedures for more
information on each of these loops.

To repeat an action while a condition exists:

■ Use the while statement.
A while loop evaluates an expression and executes the code in the body of the loop if the
expression is true. After each statement in the body is executed, the expression is
evaluated again. In the following example, the loop executes four times:
var i:Number = 4;
while (i > 0) {

myClip.duplicateMovieClip("newMC" + i, i, {_x:i*20, _y:i*20});
i--;

}

You can use the do..while statement to create the same kind of loop as a while loop. In
a do..while loop, the expression is evaluated at the bottom of the code block so that the
loop always runs at least once.
This is shown in the following example:
var i:Number = 4;
do {

myClip.duplicateMovieClip("newMC" + i, i, {_x:i*20, _y:i*20});
i--;

} while (i > 0);

For more information on the while statement, see “Using while loops” on page 122.

About statements 117

To repeat an action using a built-in counter:

■ Use the for statement.
Most loops use some kind of counter to control how many times the loop executes. Each
execution of a loop is called an iteration. You can declare a variable and write a statement
that increases or decreases the variable each time the loop executes. In the for action, the
counter and the statement that increments the counter are part of the action.
In the following example, the first expression (var i:Number = 4) is the initial expression
that is evaluated before the first iteration. The second expression (i > 0) is the condition
that is checked each time before the loop runs. The third expression (i--) is called the post
expression and is evaluated each time after the loop runs.
for (var i:Number = 4; i > 0; i--) {

myClip.duplicateMovieClip("newMC" + i, i, {_x:i*20, _y:i*20});
}
For more information on the for statement, see “Using for loops” on page 119.

To loop through the children of a movie clip or an object:

■ Use the for..in statement.
Children include other movie clips, functions, objects, and variables. The following
example uses the trace statement to print its results in the Output panel:
var myObject:Object = {name:'Joe', age:25, city:'San Francisco'};
var propertyName:String;
for (propertyName in myObject) {

trace("myObject has the property: " + propertyName + ", with the
value: " + myObject[propertyName]);

}

This example produces the following results in the Output panel:
myObject has the property: name, with the value: Joe
myObject has the property: age, with the value: 25
myObject has the property: city, with the value: San Francisco

You might want your script to iterate over a particular type of child—for example, over
only movie clip children. You can do this using for..in with the typeof operator. In the
following example, a child movie clip instance (called instance2) is inside a movie clip
instance on the Stage. Add the following ActionScript to Frame 1 of the Timeline:
for (var myName in this) {

if (typeof (this[myName]) == "movieclip") {
trace("I have a movie clip child named " + myName);

}
}

118 Syntax and Language Fundamentals

For more information on the for..in statement, see “Using for..in loops” on page 120.

For more information on each statement, see the individual sections that follow in this
chapter, such as “Using while loops” on page 122, and their respective entries in the
ActionScript 2.0 Language Reference.

About creating and ending loops
The following example shows a simple array of month names. A for loop iterates from 0 to
the number of items in the array and displays each item in the Output panel.
var monthArr:Array = new Array("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
var i:Number;
for (i = 0; i < monthArr.length; i++) {

trace(monthArr[i]);
}

When you work with arrays, whether they’re simple or complex, you need to be aware of a
condition called an infinite loop. An infinite loop, as its name suggests, is a loop with no end
condition. This causes real problems—crashing your Flash application, causing your Flash
document to stop responding in a web browser, or causing very inconsistent behavior of your
Flash document. The following code is an example of an infinite loop:
// BAD CODE- creates an infinite loop
// USE AT OWN RISK!
var i:Number;
for (i = 0; i < 10; i--) {

trace(i);
}

The value of i is initialized to 0 and the end condition is met when i is greater than or equal
to 10 and after each iteration the value of i is decremented. You can probably see the obvious
error immediately: if the value of i decreases after each loop iteration, the end condition is
never met. The results vary on each computer you run it on, and the speed at which the code
fails depends on the speed of the CPU and other factors. For example, the loop executes about
142,620 times before displaying an error message on a given computer.

The following error message is displayed in a dialog box:
A script in this movie is causing Flash Player to run slowly. If it

continues to run, your computer may become unresponsive. Do you want to
abort the script?

W
A

R
N

IN
G

Iterations in Flash execute very quickly in the Flash Player, but loops depend heavily
on the processor. The more iterations a loop has and the more statements executed
within each block, the more processor resources will be consumed. Poorly written
loops can cause performance problems and stability issues.

About statements 119

When you work with loops (and especially while and do..while loops), always make sure
that the loop can exit properly and does not end up in an infinite loop.

For more information on controlling loops, see “Using a switch statement” on page 109.

Using for loops
The for loop lets you iterate over a variable for a specific range of values. A for loop is useful
when you know exactly how many times you need to repeat a series of ActionScript
statements. This can be useful if you want to duplicate a movie clip on the Stage a certain
number of times or to loop over an array and perform a task on each item in that array. A for
loop repeats an action using a built-in counter. In a for statement, the counter and the
statement that increments the counter are all part of the for statement. You write the for
statement using the following basic format:
for (init; condition; update) {
 // statements;
}

You must supply three expressions to a for statement: a variable that is set to an initial value,
a conditional statement that determines when the looping ends, and an expression that
changes the value of the variable with each loop. For example, the following code loops five
times. The value of the variable i starts at 0 and ends at 4, and the output are the numbers 0
through 4, each on its own line.
var i:Number;
for (i = 0; i < 5; i++) {

trace(i);
}

In the next example, the first expression (i = 0) is the initial expression that evaluates before
the first iteration. The second expression (i < 5) is the condition that you check each time
before the loop runs. The third expression (i++) is called the post expression and is evaluated
each time after the loop runs.

To create a for loop:

1. Select File > New and then select Flash Document.

2. Create a movie clip on the Stage.

3. Right-click the movie clip symbol in the Library panel and select Linkage from the
context menu.

4. Select the Export for ActionScript check box, and type libraryLinkageClassName in the
Class text input field. Click OK.

120 Syntax and Language Fundamentals

5. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var i:Number;
for (i = 0; i < 5; i++) {

this.attachMovie("libraryLinkageClassName", "clip" + i + "_mc", i,
{_x:(i * 100)});

}

6. Select Control > Test Movie to test the code in Flash Player.

Notice how five movie clips duplicate across the top of the Stage. This ActionScript
duplicates the movie clip symbol in the library and repositions the clips on the Stage at x
coordinates of 0, 100, 200, 300 and 400 pixels. The loop executes five times, with the
variable i assigned a value of 0 through 4. On the last iteration of the loop, the value of i
increments to 4 and the second expression (i < 5) is no longer true, which causes the
loop to exit.

Remember to include a space following each expression in a for statement. For more
information, see the for statement in the ActionScript 2.0 Language Reference.

Using for..in loops
Use the for..in statement to loop through (or iterate through) the children of a movie clip,
properties of an object, or elements of an array. Children, referenced previously, include other
movie clips, functions, objects, and variables. Common uses of the for..in loop include
looping over instances on a timeline or looping over the key/value pairs within an object.
Looping over objects can be an effective way to debug applications because it lets you see what
data returns from web services or external documents such as text or XML files.

For example, you can use a for...in loop to iterate through the properties of a generic object
(object properties are not kept in any particular order, so properties appear in an
unpredictable order):
var myObj:Object = {x:20, y:30};
for (var i:String in myObj) {

trace(i + ": " + myObj[i]);
}

This code outputs the following in the Output panel:
x: 20
y: 30

You can also iterate through the elements of an array:
var myArray:Array = ["one", "two", "three"];
for (var i:String in myArray) {

trace(myArray[i]);
}

About statements 121

This code outputs the following in the Output panel:
three
two
one

For more information on objects and properties, see “Object data type” on page 42.

The following example uses for..in to iterate over the properties of an object:

To create a for loop:

1. Select File > New and then select Flash Document.

2. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var myObj:Object = {name:"Tara", age:27, city:"San Francisco"};
var i:String;
for (i in myObj) {
 trace("myObj." + i + " = " + myObj[i]);
}

3. Select Control > Test Movie to test the code in Flash Player.

When you test the SWF file, you should see the following text in the Output panel:
myObj.name = Tara
myObj.age = 27
myObj.city = San Francisco

If you write a for..in loop in a class file (an external ActionScript file), instance members are
not available within the loop, but static members are. However, if you write a for..in loop in
a FLA file for an instance of the class, instance members are available but static members are
not. For more information on writing class files, see Chapter 6, “Classes,” on page 187. For
more information, see the for..in statement in the ActionScript 2.0 Language Reference.

N
O

T
E

You cannot iterate through the properties of an object if it is an instance of a custom
class, unless the class is a dynamic class. Even with instances of dynamic classes, you
are able to iterate only through properties that are added dynamically.

N
O

T
E

The curly braces ({}) used to enclose the block of statements to be executed by the
for..in statement are not necessary if only one statement executes.

122 Syntax and Language Fundamentals

Using while loops
Use the while statement to repeat an action while a condition exists, similar to an if
statement that repeats as long as the condition is true.

A while loop evaluates an expression and executes the code in the body of the loop if the
expression is true. If the condition evaluates to true, a statement or series of statements runs
before looping back to evaluate the condition again. When the condition evaluates to false,
the statement or series of statements is skipped and the loop ends. Using while loops can be
very useful when you aren’t sure of how many times you’ll need to loop over a block of code.

For example, the following code traces numbers to the Output panel:
var i:Number = 0;
while (i < 5) {

trace(i);
i++;

}

You see the following numbers traced to the Output panel:
0
1
2
3
4

One disadvantage of using a while loop instead of a for loop is that infinite loops are easier
to write with while loops. The for loop example code does not compile if you omit the
expression that increments the counter variable, but the while loop example does compile if
you omit that step. Without the expression that increments i, the loop becomes an
infinite loop.

To create and use a while loop in a FLA file, follow this example.

To create a while loop:

1. Select File > New and then select Flash Document.

2. Open the Components panel and drag a DataSet component onto the Stage.

3. Open the Property inspector (Window > Properties > Properties) and type the instance
name users_ds.

About statements 123

4. Select Frame 1 of the Timeline, and then type the following ActionScript in the
Actions panel:
var users_ds:mx.data.components.DataSet;
//
users_ds.addItem({name:"Irving", age:34});
users_ds.addItem({name:"Christopher", age:48});
users_ds.addItem({name:"Walter", age:23});
//
users_ds.first();
while (users_ds.hasNext()) {
 trace("name:" + users_ds.currentItem["name"] + ", age:" +

users_ds.currentItem["age"]);
 users_ds.next();
}

5. Select Control > Test Movie to test the document.

The following information is displayed in the Output panel:
name:Irving, age:34
name:Christopher, age:48
name:Walter, age:23

For more information, see the while statement in the ActionScript 2.0 Language Reference.

About do..while loops
You can use the do..while statement to create the same kind of loop as a while loop.
However, the expression is evaluated at the bottom of the code block in a do..while loop (it’s
checked after the code block executes), so the loop always runs at least one time. The
statements execute only if the condition evaluates to true.

The following code shows a simple example of a do..while loop that generates output even
though the condition is not met.
var i:Number = 5;
do {

trace(i);
i++;

} while (i < 5);
// Output: 5

When you use loops, you need to avoid writing infinite loops. If the condition in a
do..while loop continuously evaluates to true, you create an infinite loop that displays a
warning or crashes Flash Player. Use a for loop instead if you know how many times you
want to loop. For more information on and examples of do..while statement, see the
ActionScript 2.0 Language Reference.

124 Syntax and Language Fundamentals

Using nested loops in your ActionScript
The following example demonstrates how to make an array of objects and display each of the
values in the nested structure. This example shows you how to use the for loop to loop
through each item in the array and how to use the for..in loop to iterate through each key/
value pair in the nested objects.

Nesting a loop within another loop:

1. Create a new Flash document.

2. Select File > Save As and name the document loops.fla.

3. Add the following code to Frame 1 of the Timeline:
var myArr:Array = new Array();
myArr[0] = {name:"One", value:1};
myArr[1] = {name:"Two", value:2};
//
var i:Number;
var item:String;
for (i = 0; i < myArr.length; i++) {

trace(i);
for (item in myArr[i]) {

trace(item + ": " + myArr[i][item]);
}
trace("");

}

4. Select Control > Test Movie to test your code.

The following is displayed in the Output panel.
0
name: One
value: 1

1
name: Two
value: 2

You know how many items are in the array, so you can loop over each item using a simple
for loop. Because each object in the array can have different name/value pairs, you can
use a for..in loop to iterate over each value and display the results in the Output panel.

About arrays 125

About arrays
An array is an object whose properties are identified by numbers representing their positions
in the structure. Essentially, an array is a list of items. It’s important to remember that each
element in an array doesn’t have to be the same data type. You can mix numbers, dates,
strings, and objects and even add a nested array at each array index.

The following example is a simple array of month names.
var myArr:Array = new Array();
myArr[0] = "January";
myArr[1] = "February";
myArr[2] = "March";
myArr[3] = "April";

The previous array of month names can also be rewritten as follows:
var myArr:Array = new Array("January", "February", "March", "April");

Or, you can use shorthand syntax, as follows:
var myArr:Array = ["January", "February", "March", "April"];

An array is like a structure for data. An array is like an office building, where each floor
contains a different piece of data (such as accounting on floor 3, and engineering on floor 5). As
such, you can store different kinds of data in a single array, including other arrays. Each floor
of this building can contain multiple kinds of content (executives and accounting might share
floor 3).

An array contains elements, which are equivalent to each floor of the building. Each element
has a numeric position (the index), which is how you refer to each element's position in the
array. This is similar to how each floor in a building has a floor number. Each element can
either hold a piece of data (which could be a number, string, Boolean value, or even an array
or object) or be empty.

You can also control and modify the array itself. For example, you might want to move the
engineering department to the basement of the building. Arrays let you move values around,
and they let you change the size of the array (say, renovate the building and add more floors or
remove floors). As such, you can add or remove elements and move values to different
elements.

Therefore, the building (the array) contains floors (the elements), which are numbered floors
(the index), and each floor contains one or more departments (the values).

126 Syntax and Language Fundamentals

For more information on modifying arrays, see “About modifying arrays” on page 127. For
information on using arrays and about indexes, see “Using arrays” on page 126. For
information on adding and removing elements, see “About adding and removing elements”
on page 129. For information on the array access operator, see “Using dot and array access
operators” on page 145.

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List
components.

Using arrays
There are several different ways you can use arrays in your work. You can use them to store
lists of objects, such as a bunch of returned items. If you load data from remote web servers,
you might even receive data as an array of nested objects. Often, arrays contain data in a
similar format. For example, if you build an audio application in Flash, you might have a
user’s playlist stored as an array of song information, stored in objects. Each object contains
the song name, artist name, song duration, location of a sound file (such as an MP3), or any
other information that you might need to associate with a particular file.

The location of an item in an array is called the index. All arrays are zero-based, which means
that the first element in the array is [0], the second element is [1], and so on.

There are different kinds of arrays, which you'll discover in the following sections. The most
common arrays use a numerical index to look up a particular item in an indexed array. The
second kind of array is called an associative array and uses a text index instead of a numerical
index to look up information. For more information on common arrays, see “About arrays”
on page 125. For more information on associative arrays, see “Creating associative arrays”
on page 134. For more information on multidimensional arrays, see “Creating
multidimensional arrays” on page 131. For information on the array access operator, see
“Using dot and array access operators” on page 145.

The built-in Array class lets you access and manipulate arrays. To create an Array object, you
use the constructor new Array() or the array access operator ([]). To access the elements of
an array, you also use the array access ([]) operator. The next example uses an indexed array.

To use arrays in your code:

1. Create a new Flash document, and save it as basicArrays.fla.

http://www.adobe.com/go/learn_fl_samples

About arrays 127

2. Add the following ActionScript to Frame 1 of the Timeline:
// define a new array
var myArr:Array = new Array();
// define values at two indexes
myArr[1] = "value1";
myArr[0] = "value0";
// iterate over the items in the array
var i:String;
for (i in myArr) {

// trace the key/value pairs
trace("key: " + i + ", value: " + myArr[i]);

}

In the first line of ActionScript, you define a new array to hold the values. Then, you
define data (value0 and value1) at two indexes of the array. You use a for..in loop to
iterate over each of the items in that array and display the key/value pairs in the Output
panel using a trace statement.

3. Select Control > Test Movie to test your code.

The following text is displayed in the Output panel:
key: 0, value: value0
key: 1, value: value1

For more information on for..in loops, see “Using for..in loops” on page 120.

For information on how to create different kinds of arrays, see the following sections:

■ “Creating indexed arrays” on page 130
■ “Creating multidimensional arrays” on page 131
■ “Creating associative arrays” on page 134

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List
components.

About modifying arrays
You can also control and modify the array using ActionScript. You can move values around an
array, or you can change the size of the array. For example, if you want to exchange data at two
indexes in an array, you can use the following code:
var buildingArr:Array = new Array();
buildingArr[2] = "Accounting";
buildingArr[4] = "Engineering";
trace(buildingArr); // undefined,undefined,Accounting,undefined,Engineering

http://www.adobe.com/go/learn_fl_samples

128 Syntax and Language Fundamentals

var temp_item:String = buildingArr[2];
buildingArr[2] = buildingArr[4];
buildingArr[4] = temp_item;
trace(buildingArr); // undefined,undefined,Engineering,undefined,Accounting

You might wonder why you need to create a temporary variable in the previous example. If
you copied the contents of array index 4 into array index 2 and vice versa, the original
contents of array index 2 would be lost. When you copy the value from one of the array
indexes into a temporary variable, you can save the value and safely copy it back later in your
code. For example, if you use the following code instead, you can see that the value of array
index 2 (Accounting) has been lost. Now you have two engineering teams but no accountants.
// wrong way (no temporary variable)
buildingArr[2] = buildingArr[4];
buildingArr[4] = buildingArr[2];
trace(buildingArr); //

undefined,undefined,Engineering,undefined,Engineering

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List
components.

About referencing and finding length
When you work with arrays, you often need to know how many items exist in the array. This
can be very useful when writing for loops that iterate through every element in the array and
execute a series of statements. You can see an example in the following snippet:

var monthArr:Array = new Array("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec");

trace(monthArr); // Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec
trace(monthArr.length); // 12
var i:Number;
for (i = 0; i < monthArr.length; i++) {

monthArr[i] = monthArr[i].toUpperCase();
}
trace(monthArr); // JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

In the previous example, you create an array and populate it with month names. The contents
are displayed, and also the array’s length. A for loop iterates over each item in the array and
converts the value to uppercase, and the array contents are displayed again.

http://www.adobe.com/go/learn_fl_samples

About arrays 129

In the following ActionScript, if you create an element at array index 5 in an array, the length
of the array returns 6 (because the array is zero based), and not the actual number of items in
the array as you might expect:
var myArr:Array = new Array();
myArr[5] = "five";
trace(myArr.length); // 6
trace(myArr); // undefined,undefined,undefined,undefined,undefined,five

For more information on for loops, see “Using for loops” on page 119. For information on
the array access operator, see “Using dot and array access operators” on page 145.

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List
components.

About adding and removing elements
An array contains elements and each element has a numeric position (the index), which is
how you refer to each element's position in the array. Each element can either hold a piece of
data or be empty. An element can hold the following data: a number, string, Boolean, or even
an array or object.

When you create elements in an array, you should create the indexes sequentially whenever
possible. This helps you when you debug your applications. In “About referencing and finding
length” on page 128, you saw that if you assign a single value in an array at index 5, the array
length returns as 6. This causes five undefined values to be inserted into the array.

The following example demonstrates how to create a new array, delete an item at a particular
index, and add and replace data at an index in an array:
var monthArr:Array = new Array("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
delete monthArr[5];
trace(monthArr); // Jan,Feb,Mar,Apr,May,undefined,Jul,Aug,Sep,Oct,Nov,Dec
trace(monthArr.length); // 12
monthArr[5] = "JUN";
trace(monthArr); // Jan,Feb,Mar,Apr,May,JUN,Jul,Aug,Sep,Oct,Nov,Dec

Even though you deleted the item at array index 5, the array length is still 12, and the item at
array index 5 changed to a blank string instead of disappearing completely.

130 Syntax and Language Fundamentals

For a sample source file, array.fla, that illustrates array manipulation using ActionScript, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Arrays folder to access the sample.
The code in the sample creates an array and sorts, adds, and removes items of two List
components.

Creating indexed arrays
Indexed arrays store a series of one or more values. You can look up items by their position in
the array, which you might have done in earlier sections. The first index is always the number
0, and the index increments by one for each subsequent element that you add to the array.
You can create an indexed array by calling the Array class constructor or by initializing the
array with an array literal. You create arrays using the Array constructor and an array literal in
the next example.

To create an indexed array:

1. Create a new Flash document, and save it as indexArray.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var myArray:Array = new Array();
myArray.push("one");
myArray.push("two");
myArray.push("three");
trace(myArray); // one,two,three

In the first line of ActionScript, you define a new array to hold the values.
3. Select Control > Test Movie to test your code.

The following text is displayed in the Output panel:
one,two,three

4. Return to the authoring tool, and delete the code in the Actions panel.

5. Add the following ActionScript to Frame 1 of the Timeline:
var myArray:Array = ["one", "two", "three"];
trace(myArray); // one,two,three

In this code you use the array literal to define a new array for your code. This code is the
equivalent of the ActionScript you wrote in step 2. When you test the code, you see the
same output appear in the Output panel.

http://www.adobe.com/go/learn_fl_samples

About arrays 131

Creating multidimensional arrays
In ActionScript, you can implement arrays as nested arrays that are essentially arrays of arrays.
Nested arrays, also known as multidimensional arrays, can be thought of as matrices or grids.
Therefore, when you are programming, you might use multidimensional arrays to model
these kinds of structures. For example, a chess board is a grid of eight columns and rows; you
could model the chess board as an array that contains eight elements, each of which is also an
array that contains eight elements.

For example, consider a list of tasks that is stored as an indexed array of strings:
var tasks:Array = ["wash dishes", "take out trash"];

If you want to store a separate list of tasks for each day of the week, you can create a
multidimensional array with one element for each day of the week. Each element contains an
indexed array that stores the list of tasks.

To create a basic multidimensional array and retrieve elements from the array:

1. Create a new Flash document, and save it as multiArray1.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var twoDArray:Array = new Array(new Array("one","two"), new

Array("three", "four"));
trace(twoDArray);

This array, twoDArray, consists of two array elements. These elements are themselves
arrays consisting of two elements. In this case, twoDArray is the main array that contains
two nested arrays.

3. Select Control > Test Movie to test the code. You see the following display in the
Output panel.
one,two,three,four

4. Return to the authoring tool and open the Actions panel. Comment out the trace
statement, as shown below:
// trace(twoDArray);

C
A

U
T

IO
N

When you use the array access operator, the ActionScript compiler cannot check
whether the accessed element is a valid property of the object.

132 Syntax and Language Fundamentals

5. Add the following ActionScript at the end of your code on Frame 1 of the Timeline:
trace(twoDArray[0][0]); // one
trace(twoDArray[1][1]); // four

To retrieve elements of a multidimensional array, you use multiple array access ([])
operators after the name of the top-level array. The first [] refers to the index of the top-
level array. Subsequent array access operators refer to elements of nested arrays.

6. Select Control > Test Movie to test the code. You see the following display in the
Output panel.
one
four

You can use nested for loops to create multidimensional arrays. The next example shows
you how.

To create a multidimensional array using a for loop:

1. Create a new Flash document, and save it as multiArray2.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var gridSize:Number = 3;
var mainArr:Array = new Array(gridSize);
var i:Number;
var j:Number;
for (i = 0; i < gridSize; i++) {

mainArr[i] = new Array(gridSize);
for (j = 0; j < gridSize; j++) {

mainArr[i][j] = "[" + i + "][" + j + "]";
}

}
trace(mainArr);

This ActionScript creates a 3 x 3 array and sets the value of each array node to its index.
Then you trace the array (mainArr).

3. Select Control > Test Movie to test the code.

You see the following display in the Output panel:
[0][0],[0][1],[0][2],[1][0],[1][1],[1][2],[2][0],[2][1],[2][2]

You can also use nested for loops to iterate through the elements of a multidimensional array,
as shown in the next example.

To use a for loop to iterate a multidimensional array:

1. Create a new Flash document, and save it as multiArray3.fla.

About arrays 133

2. Add the following ActionScript to Frame 1 of the Timeline:
// from previous example
var gridSize:Number = 3;
var mainArr:Array = new Array(gridSize);
var i:Number;
var j:Number;
for (i = 0; i < gridSize; i++) {

mainArr[i] = new Array(gridSize);
for (j = 0; j < gridSize; j++) {

mainArr[i][j] = "[" + i + "][" + j + "]";
}

}

In this code, seen in the previous example, the outer loop iterates through each element
of mainArray. The inner loop iterates through each nested array and outputs each
array node.

3. Add the following ActionScript to Frame 1 of the Timeline, following the code you entered
in step 2:
// iterate through elements
var outerArrayLength:Number = mainArr.length;
for (i = 0; i < outerArrayLength; i++) {

var innerArrayLength:Number = mainArr[i].length;
for (j = 0; j < innerArrayLength; j++) {

trace(mainArr[i][j]);
}

}

This ActionScript iterates through the elements of the array. You use the length property
of each array as the loop condition.

4. Select Control > Test Movie to view the elements that are displayed in the Output panel.
You will see the following in the Output panel:
[0][0]
[0][1]
[0][2]
[1][0]
[1][1]
[1][2]
[2][0]
[2][1]
[2][2]

For information on using arrays, see “Using arrays” on page 126. For information on array
elements, see “About adding and removing elements” on page 129. For information on the
array access operator, see “Using dot and array access operators” on page 145.

134 Syntax and Language Fundamentals

Creating associative arrays
An associative array, which is like an object, is made of unordered keys and values. Associative
arrays use keys instead of a numeric index to organize stored values. Each key is a unique
string, and it is associated with and used to access one value. That value can be a data type
such as Number, Array, Object, and so on. When you create code to find a value that’s
associated with a key, you are indexing or performing a lookup. This is what you will probably
use associative arrays for most often.

The association between a key and value is commonly referred to as its binding; the key and
value are mapped to each other. For example, a contact book might be considered an
associative array, where the names are the keys and email addresses are the values

When you use associative arrays, you can call the array element you need using a string rather
than a number, which is often easier to remember. The downside is that these arrays aren't as
useful in a loop because they do not use numbers as the index value. They are useful when you
need to look up by key values frequently. For example, if you had an array of names and ages
that you needed to refer to a lot, you might use an associative array.

The following example demonstrates how to create an object and define a series of properties
in an associative array.

To create a simple associative array:

1. Create a new Flash document.

2. Type the following ActionScript on Frame 1 of the Timeline:
// Define the object to use as an associative array.
var someObj:Object = new Object();
// Define a series of properties.
someObj.myShape = "Rectangle";
someObj.myW = 480;
someObj.myH = 360;
someObj.myX = 100;
someObj.myY = 200;
someObj.myAlpha = 72;
someObj.myColor = 0xDFDFDF;
// Display a property using dot operator and array access syntax.
trace(someObj.myAlpha); // 72
trace(someObj["myAlpha"]); // 72

N
O

T
E

Associative arrays are unordered collections of key and value pairs. Your code should
not expect the keys of an associative array to be in a specific order.

About arrays 135

The first line of ActionScript defines a new object (someObj) that you use as the
associative array. Following this, you define a series of properties in someObj. Finally, you
display a property that you select using both dot operator and array access syntax.

3. Select Control > Test Movie to test your ActionScript.

The Output panel displays the number 72 twice, which represents both of the alpha levels
that you traced.

There are two ways to create associative arrays in ActionScript 2.0:

■ Use an Object constructor
■ Use an Array constructor (or the constructor of any dynamic class)

You can use an instance of any dynamic class to create an associative array, but it is common
practice to use an instance of the Object class because you won’t have any added class member
properties or methods.

Both of these ways are demonstrated in upcoming examples.

If you use the Object constructor to create an associative array, you can take advantage of
initializing your array with an object literal. An instance of the Object class, also called a
generic object, is functionally identical to an associative array. In fact, Object instances are
essentially associative arrays. You might use associative arrays for dictionary-like functionality,
when it’s more convenient to have string keys rather than numerical indices. Each property
name of the generic object serves as the key that provides access to a stored value. For more
information on literals, see “About literals” on page 94. For more information on classes, see
Chapter 6, “Classes,” on page 187.

To create an associative array using an Object constructor:

1. Create a new Flash document, and save it as assocArray.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var monitorInfo:Object = {type:"Flat Panel", resolution:"1600 x 1200"};
trace(monitorInfo["type"] + ", " + monitorInfo["resolution"]);

N
O

T
E

You can access variables in an associative array using two different methods: dot
syntax (someObj.myColor) and array syntax (someObj[‘myColor’]).

N
O

T
E

The previous example used an Object constructor to create an associative array.

136 Syntax and Language Fundamentals

This code creates an associative array called monitorInfo, and uses an object literal to
initialize the array with two key/value pairs.

var monitorInfo:Object = new Object();

3. Select Control > Test Movie.

The Output panel displays the following text:
Flat Panel, 1600 x 1200

4. Add the following ActionScript to Frame 1 of the Timeline, following the code you entered
previously:
monitorInfo["aspectRatio"] = "16:10";
monitorInfo.colors = "16.7 million";
trace(monitorInfo["aspectRatio"] + ", " + monitorInfo.colors);

After you use using either an object literal or the Object class constructor to create the
array, you can add new values to the array using either the bracket operator ([]) or the dot
operator (.), as demonstrated in this code. The code you just typed adds two new values
to monitorInfo array.

5. Select Control > Test Movie.

The Output panel displays the following text:
16:10, 16.7 million

Note that a key can contain a space character. This is possible with the bracket operator,
but generates an error if you attempt this with the dot operator. Using spaces in your key
names is not recommended. For more information on bracket operators and dot
operators, see “About operators” on page 137. For more information on well-formatted
code, see “Formatting ActionScript syntax” on page 697.

The second way to create an associative array is to use the Array constructor and then use
either the bracket operator ([]) or the dot operator (.) to add key and value pairs to the array.
If you declare your associative array to be of type Array, you cannot use an object literal to
initialize the array.

The next example demonstrates how to use the Array constructor to create an
associative array.

N
O

T
E

If you do not need to initialize the array at declaration time, you can use the Object
constructor to create the array:

N
O

T
E

There is no advantage to using the Array constructor to create an associative array. The
Array constructor is best for creating indexed arrays.

About operators 137

To create an associative array using the Array constructor:

1. Create a new Flash document, and save it as assocArray2.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var monitorInfo:Array = new Array();
monitorInfo["type"] = "Flat Panel";
monitorInfo["resolution"] = "1600 x 1200";
trace(monitorInfo["type"] + ", " + monitorInfo["resolution"]);

This code creates an associative array named monitorInfo using the Array constructor
and adds a key called type and a key called resolution, along with their values.

3. Select Control > Test Movie.

The Output panel displays the following text:
Flat Panel, 1600 x 1200

Associative arrays are essentially instances of the Object class, and there is no advantage of
creating associative arrays using the Array constructor. Even though you create an associative
array using the new Array() constructor, you cannot use any of the Array class’s methods and
properties (such as sort() or length) when using an associative array. If you want to use key/
value pairs instead of a numeric index, you should use the Object class instead of an
associative array.

About operators
This section describes general rules about common types of operators, operator precedence,
and operator associativity.

Operators are characters that specify how to combine, compare, or change values in an
expression. An expression is any statement that Flash can evaluate and that returns a value.
You can create an expression by combining operators and values or by calling a function. For
more information on expressions, see “About syntax, statements, and expressions” on page 78.

For example, a mathematical expression uses numerical operators to manipulate the values
you use. Examples of operator characters are +, <, *, and =. An expression consists of operators
and operands, and they are any legal combination of ActionScript symbols that represent a
value. An operand is the part of your code that the operator performs actions on. For example,
in the expression x + 2, x and 2 are operands and + is an operator.

N
O

T
E

There is no advantage to using the Array constructor to create an associative array.
The Array constructor is best for creating indexed arrays.

138 Syntax and Language Fundamentals

You use expressions and operators frequently throughout your code. You can combine
operators and values to create an expression, or you can call a function.

The parts of your code that the operator performs actions on are called operands. For example,
you can use the addition (+) operator to add values of a numeric literal. You could do this to
add the value of a variable called myNum.
myNum + 3;

In this example, myNum and 3 are operands.

This section describes general rules about common types of operators, operator precedence,
and operator associativity:

■ “Using operators to manipulate values” on page 139
■ “About operator precedence and associativity” on page 140
■ “About using operators with strings” on page 143
■ “Using dot and array access operators” on page 145
■ “About postfix operators” on page 147
■ “About unary operators” on page 147
■ “About multiplicative operators” on page 148
■ “About additive operators” on page 148
■ “Using numeric operators” on page 149
■ “About relational operators” on page 150
■ “About equality operators” on page 150
■ “Using relational and equality operators” on page 151
■ “About assignment operators” on page 154
■ “Using assignment operators” on page 155
■ “About logical operators” on page 155
■ “Using logical operators” on page 156
■ “About bitwise shift operators” on page 157
■ “About bitwise logical operators” on page 158
■ “Using bitwise operators” on page 158
■ “About the conditional operator” on page 160
■ “Using operators in a document” on page 160

N
O

T
E

This section describes how to use each type of operator; however, there isn't space to
cover each one. For information on every operator, including special operators that don’t
fall into the following categories, see the ActionScript 2.0 Language Reference.

About operators 139

For information on operators, that do not fall into these categories, see the ActionScript 2.0
Language Reference, which contains information about all the operators you can use.

The following sections show you some common uses for operators. For more information on
using many operators in a single code sample, see “Using operators in a document”
on page 160.

Using operators to manipulate values
Operators are commonly used to manipulate values in Flash. For example, you might want to
create a game in Flash where the score changes depending on the user’s interaction with
instances on the Stage. You can use a variable to hold the value and operators to manipulate
the value of the variable.

For example, you might want to increase the value of a variable called myScore. The following
example demonstrates how to use the + (addition) and += (addition assignment) operators to
add and increment values in your code.

To manipulate values using operators:

1. Create a new Flash document.

2. Open the Actions panel (Window > Actions) and type the following code into the
Script pane:
// example one
var myScore:Number = 0;
myScore = myScore + 1;
trace("Example one: " + myScore); // 1

// example two
var secondScore:Number = 1;
secondScore += 3;
trace("Example two: " + secondScore); // 4

3. Select Control > Test Movie.

The Output panel displays the following text:
Example one: 1
Example two: 4

The addition operator is fairly straightforward, because it adds two values together. In the
first code example, it adds the current value of myScore and the number 1, and then stores
the result into the variable myScore.

140 Syntax and Language Fundamentals

The second code example uses the addition assignment operator to add and assign a new
value in a single step. You can rewrite the line myScore = myScore + 1 (from the previous
exercise) as myScore++ or even myScore += 1. The increment operator (++) is a simplified
way of saying myScore = myScore + 1, because it handles an increment and assignment
simultaneously. You can see an example of the increment operator in the following
ActionScript:
var myNum:Number = 0;
myNum++;
trace(myNum); // 1
myNum++;
trace(myNum); // 2

Notice that the previous code snippet doesn’t have assignment operators. It relies on the
increment operator instead.

You can manipulate the value of a variable using operators while a condition is true. For
example, you can use the increment operator (++) to increment the variable i while the
condition is true. In the following code, the condition is true while i is less than the value of
10. While that is true, you increment i one number higher using i++.
var i:Number;
for (i = 1; i < 10; i++) {

trace(i);
}

The Output panel displays the numbers 1 through 9, which is i incrementing in value until it
reaches the end condition (i is equal to 10), when it stops. The last value displayed is 9.
Therefore, the value of i is 1 when the SWF file starts playing, and 9 after the trace completes.

For more information on conditions and loops, see “About statements” on page 103.

About operator precedence and associativity
When you use two or more operators in a statement, some operators take precedence over
other operators. Operator precedence and associativity determine the order in which
operators are processed. ActionScript has a hierarchy that determines which operators execute
before others. There is a table that outlines this hierarchy at the end of this section.

Although it may seem natural to those familiar with arithmetic or basic programming that the
compiler processes the multiplication (*) operator before the addition (+) operator, the
compiler needs explicit instructions about which operators to process first. Such instructions
are collectively referred to as operator precedence.

About operators 141

You can see an example of operator precedence when you work with the multiplication and
addition operators:
var mySum:Number;
mySum = 2 + 4 * 3;
trace(mySum); // 14

You see the output of this statement is 14, because multiplication has a higher operator
precedence. Therefore, 4 * 3 is evaluated first and the result is added to 2.

You can control what happens by enclosing expressions in parentheses. ActionScript defines a
default operator precedence that you can alter using the parentheses (()) operator. When you
put parentheses around the addition expression, ActionScript performs the addition first:
var mySum:Number;
mySum = (2 + 4) * 3;
trace(mySum); // 18

Now the output of this statement is 18.

It’s also possible for operators to have the same precedence. In this case, the associativity
determines the order in which the operators perform. You can either have left-to-right
associativity or right-to-left associativity.

Take a look at the multiplication operator again. It has left-to-right associativity, so the
following two statements are the same.
var mySum:Number;
var myOtherSum:Number;
mySum = 2 * 4 * 3;
myOtherSum = (2 * 4) * 3;
trace(mySum); // 24
trace(myOtherSum); // 24

You might encounter situations in which two or more operators of the same precedence
appear in the same expression. In these cases, the compiler uses the rules of associativity to
determine which operator to process first. All of the binary operators, except the assignment
operators, are left-associative, which means that operators on the left are processed before
operators on the right. The assignment operators and the conditional (?:) operator are right-
associative, which means that the operators on the right are processed before operators on the
left. For more information on assignment operators, see “Using assignment operators”
on page 155. For more information on the conditional (?:) operator, see “About the
conditional operator” on page 160.

142 Syntax and Language Fundamentals

For example, consider the less than (<) and greater than (>) operators, which have the same
precedence. If both operators are used in the same expression, the operator on the left is
processed first because both operators are left-associative. This means that the following two
statements produce the same output:
trace(3 > 2 < 1); // false
trace((3 > 2) < 1); // false

The greater than (>) operator is processed first, which results in a value of true because the
operand 3 is greater than the operand 2. The value true is then passed to the less than (<)
operator, along with the operand 1. The less than (<) operator converts the value true to the
numeric value 1 and compares that numeric value to the second operand 1 to return the value
false (the value 1 is not less than 1).

Consider the order of operands in your ActionScript, particularly when you set up complex
conditions and you know how often one of those conditions is true. For example, if you know
that i will be greater than 50 in your condition, you need to write i<50 first. Therefore, it’s
checked first, and the second condition that you write doesn’t need to be checked as often.

The following table lists the operators for ActionScript 2.0 in order of decreasing precedence.
Each row of the table contains operators of the same precedence. Each row of operators has
higher precedence than the row appearing below it in the table. For more information and
guidelines on using operators and parentheses, see Chapter 17, “Formatting ActionScript
syntax,” on page 697.

Group Operators

Primary [] {x:y} () f(x) new x.y x[y]

Postfix x++ x--

Unary ++x --x + - ~ ! delete typeof void

Multiplicative * / %

Additive + -

Bitwise shift << >> >>>

Relational < > <= >= instanceof

Equality == != === !==

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Logical AND &&

Logical OR ||

About operators 143

 About using operators with strings
Comparison operators convert a operand to the type of the other if the both data types are
different. If one operand is a string and the other is a number, ActionScript converts the string
operand to a number and performs a numeric comparison on them. An exception to this rule
is the strict equality (===) operator which performs in the same way as the equality (==)
operator, except that data types are not converted. The result is true if both expressions,
including their data types, are equal. For more information on numeric operators, see “Using
numeric operators” on page 149.

Except for the equality operator (==), comparison operators (>, >=, <, and <=) affect strings
differently than when they operate on other values.

Comparison operators compare strings to determine which is first alphabetically. Strings with
uppercase characters precede strings that are lowercase. That means that "Egg" comes before
"chicken".
var c:String = "chicken";
var e:String = "Egg";
trace(c < e); // false
var riddleArr:Array = new Array(c, e);
trace(riddleArr); // chicken,Egg
trace(riddleArr.sort()); // Egg,chicken

In this ActionScript, the sort() method of the Array class reorders the contents of the array
alphabetically. You can see that the value “Egg” comes before the value “chicken” because
uppercase E comes before a lowercase c. If you want to compare the strings regardless of case,
you need to convert the strings to uppercase or lowercase before you compare them. For more
information on comparison operators, see “About equality operators” on page 150 and “Using
relational and equality operators” on page 151.

Conditional ?:

Assignment = *= /= %= += -= <<= >>= >>>= &= ^= |=

Comma ,

Group Operators

144 Syntax and Language Fundamentals

You can use the toLowerCase() or toUpperCase() methods to convert strings to a similar
case before you compare them. In the following example, both strings convert to lowercase
strings and compare, and now the chicken comes before the egg:
var c:String = "chicken";
var e:String = "Egg";
trace(c.toLowerCase() < e.toLowerCase()); // true

You can use operators to manipulate strings. You can use the addition (+) operator to
concatenate string operands. You might have already used the addition operator to
concatenate strings when you write trace statements. For example, you might write the
following:
var myNum:Number = 10;
trace("The variable is " + myNum + ".");

When you test this code, the Output panel displays the following:
The variable is 10.

In the previous example, the trace statement uses the + operator to concatenate instead of
add. When you deal with strings and numbers, Flash sometimes concatenates instead of
adding numerically.

For example, you might concatenate two strings from different variables in a single text field.
In the following ActionScript code, the variable myNum concatenates with a string, and the
string is displayed in the myTxt text field on the Stage.
this.createTextField("myTxt", 11, 0, 0, 100, 20);
myTxt.autoSize = "left";
var myNum:Number = 10;
myTxt.text = "One carrot. " + myNum + " large eggplants.";
myTxt.text += " Lots of vegetable broth.";

This code outputs the following in a text field with the instance name myTxt:
One carrot. 10 large eggplants. Lots of vegetable broth.

The previous example shows how you can use the addition (+) and addition assignment (+=)
operators to concatenate strings. Notice how the third line of code uses the addition operator
to concatenate the value of the myNum variable into the text field, and the fourth line of code
uses the addition assignment operator to concatenate a string onto the existing value of the
text field.

N
O

T
E

Comparison operators compare only two strings. For example, the operators do not
compare the values if one operand is a numerical value. If one of the operands is a string,
ActionScript converts both operands to numbers and then compares them numerically.

About operators 145

If only one of the text string operands is actually a string, Flash converts the other operand
into a string. Therefore, the value of myNum converts to a string in the previous example.

Using dot and array access operators
You can use the dot operator (.) and the array access operator ([]) to access built-in or custom
ActionScript properties. You use dot operators to target certain indexes in an object. For
example, if you have an object that contains some user information, you can specify a certain
key name in the array access operator to retrieve a user’s name, as demonstrated in the
following ActionScript:
var someUser:Object = {name:"Hal", id:2001};
trace("User's name is: " + someUser["name"]); // User's name is: Hal
trace("User's id is: " + someUser["id"]); // User's id is: 2001

For example, the following ActionScript uses the dot operator to set certain properties
within objects:
myTextField.border = true;
year.month.day = 9;
myTextField.text = "My text";

The dot operator and the array access operator are very similar. The dot operator takes an
identifier as its property, but the array access operator evaluates the contents to a name and
then accesses the value of that named property. The array access operator lets you dynamically
set and retrieve instance names and variables.

The array access operator is useful if you don’t know exactly what keys are in an object. When
this occurs, you can use a for..in loop to iterate through an object or movie clip and display
its contents.

To use dot and array access operators:

1. In a new Flash document, create a movie clip on the main Timeline.

2. Select the movie clip and open the Property inspector.

3. Type in an instance name of myClip.

4. Add the following ActionScript to Frame 1 of the Timeline:
myClip.spam = 5;
trace(myClip.spam); // 5

N
O

T
E

ActionScript treats spaces at the beginning or end of a string as a literal part of the string.

146 Syntax and Language Fundamentals

If you want to set a value in the myClip instance on the current timeline you can use the
dot or array access operators, as demonstrated in this ActionScript. If you write an
expression inside the array access operator, it evaluates that expression first and uses the
result as the variable name.

5. Select Control > Test Movie to test the document.

The Output panel displays 5.
6. Return to the authoring environment, and replace the first line of ActionScript with

the following:
myClip["spam"] = 10;

7. Select Control > Test Movie to test the document.

The Output panel displays 10.
8. Return to the authoring environment, and double-click the myClip instance.

9. Add four new instances inside the myClip instance.

10. Use the Property inspector to add the following instance names to each of the four new
instances: nestedClip1, nestedClip2, nestedClip3, nestedClip4.

11. Add the following code to Frame 1 of the main Timeline:
var i:Number;
for (i = 1; i <= 4; i++) {

myClip["nestedClip" + i]._visible = false;
}

This ActionScript toggles the visibility of each of the nested movie clips.
12. Select Control > Test Movie to test the ActionScript you just added.

Now the four nested instances are invisible. You’re using the array access operator to
iterate over each nested movie clip in the myClip instance and set its visible property
dynamically. You save time, because you don’t have to specifically target each instance.

You can also use the array access operator on the left side of an assignment, which lets you set
instance, variable, and object names dynamically:

myNum[i] = 10;

In ActionScript 2.0, you can use the bracket operator to access properties on an object that are
created dynamically, in case the class definition for that object is not given the dynamic
attribute. You can also create multidimensional arrays using this operator. For more
information on creating multidimensional arrays using array access operators, see “Creating
multidimensional arrays” on page 131.

About operators 147

About postfix operators
The postfix operators take one operator and either increment or decrement the operator’s
value. Although these operators are unary operators, they are classified separately from the rest
of the unary operators because of their higher precedence and special behavior. For
information on unary operators, see “About unary operators” on page 147.

When you use a postfix operator as part of a larger expression, the expression’s value is
returned before the postfix operator is processed. For example, the following code shows how
the value of the expression xNum++ is returned before the value is incremented.
var xNum:Number = 0;
trace(xNum++); // 0
trace(xNum); // 1

When you trace this code, the text in the Output panel reads:
0
1

The operators in this table have equal precedence:

About unary operators
Unary operators take one operand. The increment (++) and decrement (--) operators in this
group are prefix operators, which means that they appear before the operand in an expression.
They can also appear after the operand, in which case they are postfix operators. For
information on postfix operators, see “About postfix operators” on page 147.

The prefix operators differ from the postfix counterparts because the increment or decrement
operation completes before the value of the overall expression is returned. For example, the
following code shows how the value of the expression xNum++ is returned after the value is
incremented.
var xNum:Number = 0;
trace(++xNum); // 1
trace(xNum); // 1

Operator Operation performed

++ Increment (postfix)

-- Decrement (postfix)

148 Syntax and Language Fundamentals

All of the operators in this table have equal precedence:

About multiplicative operators
The multiplicative operators take two operands and perform multiplication, division, or
modulo calculations. Other numeric operators include additive operators. For information on
additive operators, see “About additive operators” on page 148.

All of the operators in this table have equal precedence:

For information on using multiplicative operators, see “Using numeric operators”
on page 149.

About additive operators
The additive operators take two operands and perform addition or subtraction calculations.
Other numeric operators include multiplicative operators. For information on multiplicative
operators, see “About multiplicative operators” on page 148.

The operators in this table have equal precedence:

For information on using additive operators, see “Using numeric operators” on page 149.

Operator Operation performed

++ Increment (prefix)

-- Decrement (prefix)

+ Unary +

! Unary - (negation)

typeof Returns type information

void Returns undefined value

Operator Operation performed

* Multiplication

/ Division

% Modulo

Operator Operation performed

+ Addition

- Subtraction

About operators 149

Using numeric operators
You use numeric operators to add, subtract, divide, and multiply values in ActionScript. You
can perform different kinds of arithmetic operations. One of the most common operators is
the increment operator, commonly formed as i++. There are more things you can do with this
operator. For more information on the increment operator, see “Using operators to
manipulate values” on page 139.

You can add the increment before (preincrement) or after (postincrement) an operand.

To understand numeric operators in ActionScript:

1. Create a new Flash document.

2. Type the following ActionScript into Frame 1 of the Timeline:
// example one
var firstScore:Number = 29;
if (++firstScore >= 30) {

// should trace
trace("Success! ++firstScore is >= 30");

}
// example two
var secondScore:Number = 29;
if (secondScore++ >= 30) {

// shouldn't trace
trace("Success! secondScore++ is >= 30");

}

3. Select Control > Test Movie to test the ActionScript

The “Example one” code block traces, but the “Example two” code block does not. The
first example uses a preincrement (++firstScore) to increment and calculate
firstScore before it’s tested against 30. Therefore, firstScore increments to 30 and
then tests against 30.
However, Example two uses a postincrement (secondScore++), which evaluates after the
test is performed. Therefore, 29 compares against 30, and then increments to 30 after
the evaluation.

When you work with the addition operator, you can have unexpected results if you try to add
values in an expression, as you can see in the following example:
trace("the sum of 5 + 2 is: " + 5 + 2); // the sum of 5 + 2 is: 52

Flash concatenates the values 5 and 2 instead of adding them. To work around this, you can
wrap the expression 5+2 in a pair of parentheses, as shown in the following code:
trace("the sum of 5 + 2 is: " + (5 + 2)); // the sum of 5 + 2 is: 7

For more information on operator precedence, see “About operator precedence and
associativity” on page 140.

150 Syntax and Language Fundamentals

When you load data from external sources (such as XML files, FlashVars, web services, and so
on), you need to be very careful when you work with numeric operators. Sometimes Flash
treats the numbers like strings because the SWF file isn’t aware of the number’s data type. In
this case, you could add 3 and 7 with a result of 37 because both numbers are concatenated
like strings instead of adding numerically. In this situation, you need to manually convert the
data from strings to numbers using the Number() function.

About relational operators
The relational operators take two operands, compare their values, and return a Boolean value.
All of the operators in this table have equal precedence:

For information on using relational operators, see “Using relational and equality operators”
on page 151.

About equality operators
The equality operators take two operands, compare their values, and return a Boolean value.
All of the operators in this table have equal precedence:

For information on using equality operators, see “Using relational and equality operators”
on page 151.

Operator Operation performed

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

instanceof Checks prototype chain

in Checks for object properties

Operator Operation performed

== Equality

!= Inequality

=== Strict equality

!== Strict inequality

About operators 151

Using relational and equality operators
Relational and equality operators, also called comparison operators, compare values of
expressions, and they return either true or false (a Boolean value). You frequently use
comparison operators in conditional statements and loops to specify the condition for when
the loop should stop.

You can use the equality (==) operator to figure out whether the values or references of two
operands are equal, and this comparison returns a Boolean value. String, number, or Boolean
operand values compare using a value. Object and array operands are compared by a
reference.

In this example, you can see how to use the equality operator to test the array’s length and
display a message in the Output panel if there are no items in the array.

var myArr:Array = new Array();
if (myArr.length == 0) {

trace("the array is empty.");
}

When you select Control > Test Movie, the string the array is empty appears in the
Output panel.

You can use the equality operator to compare values, but you cannot use the equality operator
to set values. You might try to use the assignment operator (=) to check for equality.

To use relational and equality operators in your code:

1. Create a new Flash document.

2. Type the following ActionScript into Frame 1 of the Timeline:
var myNum:Number = 2;
if (myNum == 2) {

// do something
trace("It equals 2");

}

In this ActionScript, you use the equality operator (==) to check for equality. You check
whether the variable myNum equals 2.

3. Select Control > Test Movie.

The string It equals 2 appears in the Output panel.
4. Return to the authoring environment and change:

var myNum:Number = 2;

to:
var myNum:Number = 4;

152 Syntax and Language Fundamentals

5. Select Control > Test Movie again.

The string It equals 2 doesn’t appear in the Output panel.
6. Return to the authoring environment and change:

if (myNum == 2) {

to
if (myNum = 2) {

7. Select Control > Test Movie again.

The string It equals 2 appears in the Output panel again.
In step 6, you assign the value of 2 to myNum, instead of comparing myNum to 2. In this
case, the if statement executes regardless of the previous value of myNum, which can cause
unexpected results when you test the Flash document.
For more information on correctly using the assignment operator, see “Using assignment
operators” on page 155.

The strict equality operator (===) is similar to the equality operator, except it doesn’t perform
type conversion. If two operands are different types, the equality operator returns false. The
strict inequality operator (!==) returns the opposite of the strict equality operator.

The following ActionScript demonstrates the key difference between the equality operator
(==) and the strict equality operator (===):
var num1:Number = 32;
var num2:String = new String("32");
trace(num1 == num2); // true
trace(num1 === num2); // false

First, you define numeric variables: num1, and num2. If you compare the variables using the
equality operator, Flash tries to convert the values to the same data type and then compare the
values to see whether they are equal. When you use the strict equality operator (===) Flash
doesn’t attempt to do any data type conversion before it compares the values. As a result, Flash
sees the variables as two separate values.

In the following example, you’ll use the greater than or equal to (>=) operator to compare
values and execute code based on the value a user enters into a text field.

About operators 153

To use the greater than or equal to operator in your code:

1. Select File > New and then select Flash Document to create a new FLA file.

2. Add the following code to Frame 1 of the main Timeline:
this.createTextField("myTxt", 20, 0, 0, 100, 20);
myTxt.type = "input";
myTxt.border = true;
myTxt.restrict = "0-9";

this.createEmptyMovieClip("submit_mc", 30);
submit_mc.beginFill(0xFF0000);
submit_mc.moveTo(0, 0);
submit_mc.lineTo(100, 0);
submit_mc.lineTo(100, 20);
submit_mc.lineTo(0, 20);
submit_mc.lineTo(0, 0);
submit_mc.endFill();
submit_mc._x = 110;

submit_mc.onRelease = function(evt_obj:Object):Void {
var myNum:Number = Number(myTxt.text);
if (isNaN(myNum)) {

trace("Please enter a number");
return;

}
if (myNum >= 10) {

trace("Your number is greater than or equal to 10");
} else {

trace("Your number is less than 10");
}

};

3. Select Control > Test Movie to test the ActionScript.

You can also check whether certain conditions are true and execute an alternative block if
the condition is not true.

4. Change the condition in your ActionScript to the following.
if (myNum == 10) {

trace("Your number is 10");
} else {

trace("Your number is not 10");
}

5. Select Control > Test Movie to test the ActionScript again.

154 Syntax and Language Fundamentals

Except for the strict equality (===) operator, the comparison operators compare strings only if
both operands are strings. If only one of the operands is a string, both operands convert to
numbers and perform a numeric comparison. For more information on strings and operators,
see “About using operators with strings” on page 143. For information on how order and
operator precedence affect your ActionScript, see “About operator precedence and
associativity” on page 140.

About assignment operators
The assignment operators take two operands and assign a value to one operand based on the
value of the other operand. All of the operators in this table have equal precedence:

For information on using assignment operators, see “Using assignment operators”
on page 155.

Operator Operation performed

= Assignment

*= Multiplication assignment

/= Division assignment

%= Modulo assignment

+= Addition assignment

-= Subtraction assignment

<<= Bitwise left shift assignment

>>= Bitwise right shift assignment

>>>= Bitwise unsigned right shift assignment

&= Bitwise AND assignment

^= Bitwise XOR assignment

|= Bitwise OR assignment

About operators 155

Using assignment operators
You can use the assignment operator (=) to assign a given value to a variable. You might assign
a string to a variable, as follows:
var myText:String = "ScratchyCat";

You can also use the assignment operator to assign several variables in the same expression. In
the following statement, the value of 10 is assigned the variables numOne, numTwo, and
numThree.
var numOne:Number;
var numTwo:Number;
var numThree:Number;
numOne = numTwo = numThree = 10;

You can also use compound assignment operators to combine operations. These operators
perform the operation on both operands, and then they assign the new value to the first
operand. For example, both of these statements do the same thing:
var myNum:Number = 0;
myNum += 15;
myNum = myNum + 15;

About logical operators
You use logical operators to compare Boolean values (true and false) and then return a
Boolean value based on the comparison. For example, if you have two operands that evaluate
to true, the logical AND (&&) operator returns true. Or if one or both of the operands
evaluate to true, the logical OR (||) operator returns true.

The logical operators take two operands and return a Boolean result. The logical operators
differ in precedence and are listed in the table in order of decreasing precedence:

For information on using logical operators, see “Using logical operators” on page 156.

Operator Operation performed

&& Logical AND

|| Logical OR

156 Syntax and Language Fundamentals

Using logical operators
You often use logical operators with comparison operators to determine the condition of an
if statement. This is demonstrated by the next example.

To use logical operators in your code:

1. Select File > New and create a new Flash document.

2. Open the Actions panel and type the following ActionScript on Frame 1 of the Timeline:
this.createTextField("myTxt", 20, 0, 0, 100, 20);
myTxt.type = "input";
myTxt.border = true;
myTxt.restrict = "0-9";

this.createEmptyMovieClip("submit_mc", 30);
submit_mc.beginFill(0xFF0000);
submit_mc.moveTo(0, 0);
submit_mc.lineTo(100, 0);
submit_mc.lineTo(100, 20);
submit_mc.lineTo(0, 20);
submit_mc.lineTo(0, 0);
submit_mc.endFill();
submit_mc._x = 110;

submit_mc.onRelease = function():Void {
var myNum:Number = Number(myTxt.text);
if (isNaN(myNum)) {

trace("Please enter a number");
return;

}
if ((myNum > 10) && (myNum < 20)) {

trace("Your number is between 10 and 20");
} else {

trace("Your number is NOT between 10 and 20");
}

};

In this ActionScript, you create a text field at runtime. If you type a number into the text
field and click the button on the Stage, Flash uses the logical operator to display a message
in the Output panel. The message depends on the value of the number you type into the
text field.

About operators 157

When you use operands, you need to be careful of the order. This is particularly the case when
you use complex conditions. In the following snippet, you can see how you use the logical
AND operator to check that a number is between 10 and 20. Based on the result, you display
an appropriate message. If the number is less than 10 or greater than 20, an alternate message
is displayed in the Output panel.

submit_mc.onRelease = function():Void {
var myNum:Number = Number(myTxt.text);
if (isNaN(myNum)) {

trace("Please enter a number");
return;

}
if ((myNum > 10) && (myNum < 20)) {

trace("Your number is between 10 and 20");
} else {

trace("Your number is NOT between 10 and 20");
}

};

About bitwise shift operators
The bitwise shift operators take two operands and shift the bits of the first operand to the
extent specified by the second operand. All of the operators in this table have equal
precedence:

For information on using bitwise operators, see “Using bitwise operators” on page 158. For
specific information on each bitwise operator, see its entry in the ActionScript 2.0 Language
Reference.

Operator Operation performed

<< Bitwise left shift

>> Bitwise right shift

>>> Bitwise unsigned right shift

158 Syntax and Language Fundamentals

About bitwise logical operators
The bitwise logical operators take two operands and perform bit-level logical operations. The
bitwise logical operators differ in precedence and are listed in the table in order of decreasing
precedence:

For information on using bitwise operators, see “Using bitwise operators” on page 158. For
specific information on each bitwise operator, see its entry in the ActionScript 2.0 Language
Reference.

Using bitwise operators
Bitwise operators internally manipulate floating-point numbers to change them into 32-bit
integers. The exact operation performed depends on the operator, but all bitwise operations
evaluate each binary digit (bit) of the 32-bit integer individually to compute a new value. For
a list of bitwise shift operators, see “About bitwise shift operators” on page 157. For a list of
bitwise logical operators, see “About bitwise logical operators” on page 158.

Using bitwise operators in Flash isn’t very common, but can be useful in some circumstances.
For example, you might want to build a permissions matrix for a Flash project, but you don’t
want to create separate variables for each type of permission. In this case, you might use
bitwise operators.

The following example shows how you can use the bitwise OR operator with the
Array.sort() method to specify sort options.

To use the bitwise OR operator:

1. Select File > New and create a new Flash document.

2. Type the following ActionScript into the Actions panel:
var myArr:Array = new Array("Bob", "Dan", "doug", "bill", "Hank",

"tom");
trace(myArr); // Bob,Dan,doug,bill,Hank,tom
myArr.sort(Array.CASEINSENSITIVE | Array.DESCENDING);
trace(myArr); // tom,Hank,doug,Dan,Bob,bill

Operator Operation performed

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

About operators 159

The first line defines an array of random names and traces them to the Output panel.
Then you call the Array.sort() method and specify two sort options using the constant
values Array.CASEINSENSITIVE and Array.DESCENDING. The result of the sort method
causes the items in the array to be sorted in reverse order (z to a). The search is case-
insensitive; a and A are treated the same, instead of having a case-sensitive search where Z
comes before a.

3. Select Control > Test Movie to test your ActionScript. The following text is displayed in
the Output panel:
Bob,Dan,doug,bill,Hank,tom
tom,Hank,doug,Dan,Bob,bill

There are five options available in the sort method:

■ 1 or Array.CASEINSENSITIVE (binary = 1)
■ 2 or Array.DESCENDING (binary = 10)
■ 4 or Array.UNIQUESORT (binary = 100)
■ 8 or Array.RETURNINDEXEDARRAY (binary = 1000)
■ 16 or Array.NUMERIC (binary = 10000)

There are three different ways you can define the sort options for an array:
my_array.sort(Array.CASEINSENSITIVE | Array.DESCENDING); // constants
my_array.sort(1 | 2); // numbers
my_array.sort(3); // adding the numbers

Although it might not be immediately obvious, the number values for the sort options are
actually bitwise digits (binary or base 2). The constant value Array.CASEINSENSITIVE equals
the numeric value of 1, which also happens to be the binary value of 1. The constant value
Array.DECENDING has a numeric value of 2 or a binary value of 10.

Working with binary numbers can get confusing. Binary only has two possible values, 1 or 0,
which is why the value 2 is represented as 10. If you want to display the number 3 in binary, it
would be 11 (1+10). The number 4 represented in binary is 100, representing 5 in binary is
101, and so on.

The following ActionScript demonstrates how to sort an array of numeric values in
descending order by using the bitwise AND operator to add the Array.DESCENDING and
Array.NUMERIC constants together.
var scores:Array = new Array(100,40,20,202,1,198);
trace(scores); // 100,40,20,202,1,198
trace(scores.sort()); // 1,100,198,20,202,40
var flags:Number = Array.NUMERIC|Array.DESCENDING;
trace(flags); // 18 (base 10)
trace(flags.toString(2)); // 10010 (binary -- base2)
trace(scores.sort(flags)); // 202,198,100,40,20,1

160 Syntax and Language Fundamentals

About the conditional operator
The conditional operator is a ternary operator, which means that it take three operands. The
conditional operator is a short-hand method of applying the if..else conditional statement:

For information on using the conditional operator and an example, see “About the
conditional operator and alternative syntax” on page 114.

Using operators in a document
In the following example, you use the Math.round() method to round calculations to an
arbitrary number of decimal places. This method rounds the value of the score parameter up
or down to the nearest integer, and then returns the value. After you slightly modify the
ActionScript, you can make Flash round numbers to a certain number of decimal
places instead.

In the example, you also use the division and multiplication operators to calculate a user’s
score based on the number of correct answers divided by the total number of questions that
are asked. The user’s score can multiply by a number and display to get a score between 0%
and 100%. Then you use the addition operator to concatenate the user’s score into a string
that is displayed in the Output panel.

To use operators in ActionScript:

1. Create a new Flash document.

2. Type the following ActionScript on Frame 1 of the main Timeline:
var correctAnswers:Number = 11;
var totalQuestions:Number = 13;
//round to the nearest integer
//var score:Number = Math.round(correctAnswers / totalQuestions * 100);
//round to two decimal places
var score:Number = Math.round(correctAnswers / totalQuestions * 100 *

100) / 100;
trace("You got " + correctAnswers + " out of " + totalQuestions + "

answers correct, for a score of " + score + "%.");

Operator Operation performed

?: Conditional

About operators 161

3. Select Control > Test Movie.

The Output panel displays the following text:
You got 11 out of 13 answers correct, for a score of 84.62%.

When you call Math.round() in this example, the score rounds to the nearest integer (85)
and is displayed in the Output panel. If you multiply the number by an additional 100,
before you call Math.round(), and then divide by 100, you can make Flash round the
number to 2 decimal places. This results in a more accurate score.

4. Try changing the correctAnswers variable to 3 and select Control > Test Movie to test
the SWF file again.

If you are building a testing application, you might want to create a series of true/false or
multiple choice questions using the RadioButton and Label components. After users finish
answering each of the questions and click the submit button, you can compare their answers
to an answer key and then calculate their score.

162 Syntax and Language Fundamentals

163

5
CHAPTER 5

Functions and Methods

Understanding functions is important when you’re writing ActionScript, creating classes, and
using methods.There are several different kinds of functions that you’ll work with. In this
chapter, you learn about functions and methods: how to use them in your applications when
you use built-in classes, and how to write them. In Chapter 6, “Classes,” you’ll create custom
classes in which you’ll write functions regularly. You’ll also learn how to write functions in
ActionScript class files.

You can use functions in your code to add interactivity, animations, and other effects to your
applications. This chapter covers the kinds of functions that you can write in your Flash
applications. For information on what functions and methods are, as well as exercises in which
you write and use functions and methods in Flash, see the following topics:
About functions and methods . 163

Understanding methods . 184

About functions and methods
Methods and functions are blocks of ActionScript code that you can reuse anywhere in a SWF
file. You might write your functions in the FLA file or in an external ActionScript file and
then call the function from anywhere within your documents. Methods are merely functions
that are located within an ActionScript class definition. You can define functions to execute a
series of statements on passed values. Your functions can also return values. After a function is
defined, it can be called from any timeline, including a timeline of a loaded SWF file.

164 Functions and Methods

If you pass values as parameters to a function, the function can perform calculations using the
supplied values. Each function has individual characteristics, and some functions require that
you pass certain types or numbers of values. If you pass more parameters than the function
requires, the function ignores the extra values. If you don’t pass a required parameter, the
function assigns the undefined data type to the empty parameters. This can cause errors
during runtime. A function can also return values (see “Returning values from functions”
on page 182).

You can think of a well-written function as a “black box.” If the function contains carefully
placed comments about its input, output, and purpose, a person using the function does not
need to understand exactly how it works internally.

The basic syntax for a simple named function is:
function traceMe() {

trace("your message");
}
traceMe();

For information on writing named functions, see “Writing named functions” on page 168.

The basic syntax for a simple named function that builds on the previous example by passing
a parameter, yourMessage, is:
function traceMe(yourMessage:String) {

trace(yourMessage);
}
traceMe("How you doing?");

Alternatively, if you want to pass multiple parameters, you could use the following code:
var yourName:String = "Ester";
var yourAge:String = "65";
var favSoftware:String = "Flash";
function traceMe(favSoftware:String, yourName:String, yourAge:String) {

trace("I'm " + yourName + ", I like " + favSoftware + ", and I'm " +
yourAge + ".");

}
traceMe(favSoftware,yourName,yourAge);

N
O

T
E

To call a function, that function’s definition must be in a frame that the playhead has
reached.

About functions and methods 165

For more information on passing parameters, see “Passing parameters to a function”
on page 180.

There are numerous kinds of functions that you can write. For more information on writing
functions, as well as links to sections on writing specific kinds of functions, see “About types
of methods and functions” on page 165. For an example that compares methods and
functions, see “Understanding methods” on page 184.

For more information about functions and methods, see the following topics:

■ “About types of methods and functions” on page 165

About types of methods and functions
Functions that belong to a class are called the methods of that class. There are several types of
functions that you can use in your applications, including built-in functions, named and user-
defined functions, anonymous functions, callback functions, constructor functions, and
function literals. The following sections contain information on how to define these
functions.

You can also write functions in an ActionScript class file. You use these functions as methods
in your scripts. In the following example, the Person class displays a constructor method, class
methods, instance methods, and accessor methods (getters and setters). The comments in this
code sample show where these methods occur in the code.

class Person {
public static var numPeople:Number = 0;

// instance members
private var _speed:Number;

// constructor
public function Person(speed:Number) {

Person.numPeople++;
this._speed = speed;

}

// static methods
public static function getPeople():Number {

return Person.numPeople;

N
O

T
E

For information on writing code using Script Assist, see Using Flash.

N
O

T
E

For information on writing class files, such as the following, see Chapter 6, “Classes,” on
page 187.

166 Functions and Methods

}

// instance methods
public function walk(speed:Number):Void {

this._speed = speed;
}
public function run():Void {

this._speed *= 2;
}
public function rest():Void {

this._speed = 0;
}

// getters/setters (accessor methods)
public function get speed():Number {

return this._speed;
}

}

For a full demonstration of how to write methods like the ones in the previous code sample,
see Chapter 6, “Classes,” on page 187. The methods that you use in your code might belong
to a class that is built into the ActionScript language. MovieClip and Math are examples of
top-level classes that you might use in an application. When you use methods from these
classes in your code, they are functions written in the built-in class (similar to the previous
code sample). Alternatively, you could use methods from a custom class that you
wrote yourself.

Functions that don’t belong to a class are called top-level functions (sometimes called predefined
or built-in functions), meaning that you can call them without a constructor. Examples of
functions that are built in to the top level of the ActionScript language are trace() and
setInterval().

To add a top-level function call to your code, just add a single line of code in the Script pane
of the Actions panel. For example, type the following:
trace("my message");

When you test the SWF file with this single line of code, the top-level trace() function is
called, and text appears in the Output panel.

Remember: when you want to assign a method to a property, you omit the parentheses after
the method name because you’re passing a reference to the function:
my_mc.myMethod = aFunction;

About functions and methods 167

However, when you want to invoke a method in your code, you need to include the
parentheses following the method name:
my_mc.myMethod();

You can also define functions in numerous other ways. For more information on each kind of
function, see the following sections:

■ “About built-in and top-level functions” on page 167
■ “Writing named functions” on page 168
■ “Writing anonymous and callback functions” on page 170
■ “About function literals” on page 172
■ “Targeting and calling user-defined functions” on page 174
■ “About constructor functions” on page 173

For information on writing and using functions and methods, see the following related
sections. For information on using functions, see “Using functions in Flash” on page 176. For
information on using methods, see “Understanding methods” on page 184.

About built-in and top-level functions
As discussed in “About functions and methods” on page 163, a function is a block of
ActionScript code that can be reused anywhere in a SWF file. If you pass values as parameters
to a function, the function operates on those values. A function can also return values.

You can use functions that are built into the ActionScript language. They might be top level,
as described in “About types of methods and functions” on page 165; or the function might
be in a built-in class, such as Math or MovieClip, which you use as a method in your
application.

You use built-in functions in ActionScript to perform certain tasks and to access information.
For example, you can get the number of milliseconds the SWF file has been playing by using
getTimer(). Or you can get the version number of Flash Player that hosts the file by using
getVersion(). Functions that belong to an object are called methods. Functions that don’t
belong to an object are called top-level functions and are found in subcategories of the Global
Functions category of the Actions panel.

N
O

T
E

For more information on top-level functions, see “About built-in and top-level functions”
on page 167.

N
O

T
E

For information on writing code using Script Assist, see Using Flash.

168 Functions and Methods

Some built-in functions require you to pass certain values. If you pass more parameters than
the function requires, the extra values are ignored. If you don’t pass a required parameter, the
empty parameters are assigned the undefined data type, which can cause errors during
runtime.

Top-level functions are easy to use. To call a function, simply use the function name and pass
any parameters required by that function. (For information on required parameters, see the
entry for the function in the ActionScript 2.0 Language Reference). For example, add the
following ActionScript to Frame 1 of the Timeline:
trace("my message");

When you test the SWF file, my message appears in the Output panel. Two other examples
of top-level functions are setInterval() and getTimer(). The next example shows how to
use both of these functions together. Add the following code to Frame 1 of the Timeline:
function myTimer():Void {

trace(getTimer());
}
var intervalID:Number = setInterval(myTimer, 100);

This code creates a simple timer using getTimer(), and uses the setInterval() and
trace() top-level functions to display the number of milliseconds since the SWF file began
to play in Flash Player.

Calling a top-level function is like calling a user-defined function. For more information, see
“Targeting and calling user-defined functions” on page 174. For information on each
function, see its entry in ActionScript 2.0 Language Reference.

Writing named functions
A named function is a kind of function that you commonly create in your ActionScript code
to carry out all kinds of actions. When you create a SWF file, the named functions are
compiled first, which means that you can reference the function anywhere in your code, as
long as the function has been defined in the current or a previous frame. For example, if a
function is defined in Frame 2 of a timeline, you cannot access that function in Frame 1 of
the timeline.

The standard format for named functions is as follows:
function functionName(parameters) {

// function block
}

N
O

T
E

To call a function, that function’s definition must be in a frame that the playhead has
reached.

About functions and methods 169

This piece of code contains the following parts:

■ functionName is the unique name of the function. All function names in a document
must be unique.

■ parameters contains one or more parameters that you pass to the function. Parameters
are sometimes called arguments. For more information on parameters, see “Passing
parameters to a function” on page 180.

■ // function block contains all of the ActionScript code that’s carried out by the
function. This part contains the statements that “do stuff.” You can put the code that you
want to execute here. The // function block comment is a placeholder for where your
code for the function block would go.

To use a named function:

1. Create a new document called namedFunc.fla.

2. Import a short sound file into the library by selecting File > Import > Import to Library
and selecting a sound file.

3. Right-click the sound file and select Linkage.

4. Type mySoundID in the Identifier text box.

5. Select Frame 1 of the Timeline and add the following code to the Actions panel:
function myMessage() {

trace("mySoundID completed");
}
var my_sound:Sound = new Sound();
my_sound.attachSound("mySoundID");
my_sound.onSoundComplete = myMessage;
my_sound.start();

In this code you create a named function called myMessage, which you use later in the
script to call a trace() function.

6. Select Control > Test Movie to test the SWF file.

You use the function statement to create your own function in ActionScript. Remember that
parameters are optional; however, if you don’t have parameters, you still need to include the
brackets. The content between the curly braces ({}) is called the function block.

You can write functions on the main timeline or within external ActionScript files, including
class files.

You also write constructor functions in class files using this format (however, the name of the
function matches the class). For more information on constructor functions, see “Writing the
constructor function” on page 228. Also see Chapter 6, “Classes,” on page 187 for
information on and examples of writing functions in classes.

170 Functions and Methods

Writing anonymous and callback functions
A named function is a function that you reference in your script before or after you define it,
whereas an anonymous function is an unnamed function that references itself; you reference the
anonymous function when you create it. When you write ActionScript code, you will create
many anonymous functions.

Anonymous functions are commonly used when you work with event handlers. To write an
anonymous function, you could store a function literal inside a variable. Therefore, you can
reference the function later in your code. The next example shows you how to write an
anonymous function.

To write an anonymous function:

1. Create a movie clip on the Stage, and then select the clip.

2. Open the Property inspector, and type my_mc into the Instance Name text box.

3. Select Frame 1 of the Timeline, and type the following code into the Actions panel:
var myWidth = function () {

trace(my_mc._width);
};
//later in code you can add
myWidth();

4. Select Control > Test Movie.

The width of the movie clip is displayed in the Output panel.

You can also create a function inside an object, such as an XML or LoadVars instance. You can
associate an anonymous function with a certain event to create a callback function. A function
calls a callback function after a specific event occurs, such as after something finishes loading
(onLoad()) or finishes animating (onMotionFinished()).

For example, sometimes you need to write ActionScript to handle data that loads into a SWF
file from the server. After you finish loading data into a SWF file, you can access the data from
that location. It's important to use ActionScript to check whether the data has been fully
loaded. You can use callback functions to send a signal that the data has been loaded into the
document.

About functions and methods 171

In the following callback function, in which you load a remote XML document, you associate
an anonymous function with the onLoad() event. You use XML.load() and the callback
function, as shown in the following example. Type the following code on Frame 1 of
the Timeline:
var my_xml:XML = new XML();
my_xml.onLoad = function(success:Boolean):Void {

trace(success);
};
my_xml.load("http://www.helpexamples.com/crossdomain.xml");

You can see from the previous code snippet that the onLoad() event handler uses an
anonymous function to handle the onLoad() event.

For more information on callback functions, see Chapter 9, “Handling Events,” on page 291.

You could also use anonymous functions with the setInterval() function, as seen in the
following code, which uses setInterval() to call the anonymous function approximately
every 1000 milliseconds (1 second):
setInterval(function() {trace("interval");}, 1000);

You can use named functions instead of anonymous functions. Named functions are often
easier to read and understand (except in some circumstances, such as callback functions). You
can also forward-reference a named function, which means you reference it before the
function exists on a timeline.

You cannot reference an anonymous function anywhere in your code (unless you assign it to a
variable), as you can when you use a named function. For example, suppose that you have
anonymous functions on Frame 5 of your FLA file, such as the following:
//with a movie clip called my_mc that spans the timeline
stop();
var myWidth = function () {

trace(my_mc._width);
};

If you place the following code on Frame 1, it cannot reference the function:
myWidth();

Similarly, the following code placed on any frame does not work:
myWidth();
var myWidth:Function = function () {

trace(my_mc._width);
};

172 Functions and Methods

However, this code works properly:
var myWidth:Function = function () {

trace(my_mc._width);
};
myWidth();

When defining a named function, calling it in a frame script works, even though the
equivalent code with an anonymous function does not work:
// the following does work because you are calling a named function:
myWidth();
function myWidth() {

trace("foo");
}

// the following does not work because you are calling an anonymous
function:

myWidth();
var myWidth:Function = function () {

trace("foo");
};

For more information, see “Writing named functions” on page 168.

About function literals
A function literal is an unnamed function that you declare in an expression instead of in a
statement. Function literals are useful when you need to use a function temporarily or to use a
function in your code where you might use an expression instead. The syntax for a function
literal is:
function (param1, param2, etc) {

// statements
};

For example, the following code uses a function literal as an expression:
var yourName:String = "Ester";
setInterval(function() {trace(yourName);}, 200);

N
O

T
E

You could also place myWidth() on any frame that is after the frame that contains the
myWidth function.

N
O

T
E

For information on writing code using Script Assist, see Using Flash.

N
O

T
E

When you redefine a function literal, the new function definition replaces the old
definition.

About functions and methods 173

You can store a function literal in a variable to access it later in your code. To do so, you use an
anonymous function. For more information, see “Writing anonymous and callback functions”
on page 170.

About constructor functions
The constructor of a class is a special function that is called automatically when you create an
instance of a class by using the new keyword (such as, var my_xml:XML = new XML();). The
constructor function has the same name as the class that contains it. For example, a custom
Person class that you create would contain the following constructor function:
public function Person(speed:Number) {

Person.numPeople++;
this._speed = speed;

}

Then you could create a new instance by using:
var myPerson:Person = new Person();

A class can contain only one constructor function; overloaded constructor functions are not
allowed in ActionScript 2.0. Also, a constructor function cannot have a return type. For more
information on writing constructor functions in class files, “Writing the constructor function”
on page 228.

Defining global and timeline functions
In “About functions and methods” on page 163, you explored the different kinds of functions
that are available in Flash. As with variables, functions are attached to the timeline of the
movie clip that defines them, and you must use a target path to call them. As with variables,
you can use the _global identifier to declare a global function that is available to all timelines
and scopes without using a target path. To define a global function, precede the function
name with the identifier _global, as shown in the following example:
_global.myFunction = function(myNum:Number):Number {
 return (myNum * 2) + 3;
};
trace(myFunction(5)) // 13

For information on _global and scope, “About variables and scope” on page 60.

N
O

T
E

If you do not explicitly declare a constructor function in your class file—that is, if you don’t
create a function whose name matches that of the class—the compiler automatically
creates an empty constructor function for you.

174 Functions and Methods

To define a timeline function, use the function statement followed by the name of the
function, any parameters to be passed to the function, and the ActionScript statements that
indicate what the function does.

The following example is a function named areaOfCircle with the parameter radius:
function areaOfCircle(radius:Number):Number {
 return (Math.PI * radius * radius);
}
trace(areaOfCircle(8));

You can also define functions in numerous other ways. For more information on each kind of
function, see the following sections:

■ “About built-in and top-level functions” on page 167
■ “Writing named functions” on page 168
■ “Writing anonymous and callback functions” on page 170
■ “About function literals” on page 172
■ “About constructor functions” on page 173
■ “Targeting and calling user-defined functions” on page 174

For information on naming functions, see “Naming functions” on page 176. For a detailed
example of using functions in an external class file, see “Using functions in Flash” on page 176
and Chapter 6, “Classes,” on page 187.

Targeting and calling user-defined functions
User-defined functions are simply functions that you create yourself to use in applications, as
opposed to functions in built-in classes that perform predefined functions. You name the
functions yourself and add statements in the function block. Previous sections cover writing
functions such as named, unnamed, and callback functions. For information on naming
functions, see “Naming functions” on page 176, and for information on using functions, see
“Using functions in Flash” on page 176.

N
O

T
E

For information on writing code using Script Assist, see Using Flash.

About functions and methods 175

You can use a target path to call a function in any timeline from any timeline, including from
a timeline of a loaded SWF file. To call a function, type the target path to the name of the
function, if necessary, and pass any required parameters inside parentheses. There are several
forms of syntax for user-defined functions. The following code uses a path to call the
initialize() function, which was defined on the current timeline and requires
no parameters:
this.initialize();

The following example uses a relative path to call the list() function, which was defined in
the functionsClip movie clip:
this._parent.functionsClip.list(6);

For information on writing named functions, see “Writing named functions” on page 168.
For more information on parameters, see “Passing parameters to a function” on page 180.

You can also define your own named functions. For example, the following named function
helloWorld() is user defined:
function helloWorld() {

trace("Hello world!");
};

The following example shows you how to use a user-defined function in a FLA file.

To create and call a simple user-defined function:

1. Create a new Flash document and save it as udf.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
function traceHello(name:String):Void {

trace("hello, " + name + "!");
}
traceHello("world"); // hello, world!

The previous code creates a user-defined function named traceHello() that takes one
argument, name, and traces a greeting message. To call the user-defined function, you can
call traceHello from the same timeline as the function definition and pass a single
string value.

3. Select Control > Test Movie to test the Flash document.

For more information on named functions, see “Writing named functions” on page 168.
Classes contain many user-defined functions. For information on writing functions in class
files, see “Using functions in Flash” on page 176. Also see the following sections in Chapter 6,
“Classes”: “Using methods and properties from a class file” on page 206, “About public,
private, and static methods and properties (members)” on page 208, and “About class
members” on page 211.

176 Functions and Methods

Naming functions
Function names should start with a lowercase letter. Your function names should describe the
value the function returns, if any. For example, if the function returns the title of a song, you
might name it getCurrentSong().

Establish a standard for grouping similar functions (functions that relate to each other based
on functionality), because ActionScript does not permit overloading. In the context of object-
oriented programming (OOP), overloading refers to the ability to make your functions behave
differently depending on what data types are passed into them.

As with variables, you cannot use special characters, and the method name cannot start with a
number. For more information, see “Naming conventions” on page 666. For information on
naming methods, see “Naming methods” on page 185.

Using functions in Flash
This section shows you how to use functions in an application. Some of the following code
examples use ActionScript that resides in the FLA file, and other code examples place
functions in a class file for comparison. For more information and examples on using
functions in a class file, see Chapter 6, “Classes,” on page 187. For detailed information and
instruction on how to write functions for a class file, see “Example: Writing custom classes”
on page 223.

To reduce the amount of work you have to do, as well as the size of your SWF file, try to reuse
blocks of code whenever possible. One way you can reuse code is by calling a function
multiple times instead of creating different code each time. Functions can be generic pieces of
code; you can use the same blocks of code for slightly different purposes in a SWF file.
Reusing code lets you create efficient applications and minimizes the ActionScript code that
you must write, which reduces development time.

You can create functions in a FLA file or a class file or write ActionScript code that resides in a
code-based component. The following examples show you how to create functions on a
timeline and in a class file.

The following example shows you how to create and call a function in a FLA file.

To create and call a function in a FLA file:

1. Create a new Flash document and save it as basicFunction.fla.

T
IP By packing your code into class files or code-based components, you can easily share,

distribute, or reuse blocks of code. Users can install your component, drag it onto the
Stage, and use the code that you store in the file, such as the workflow for code-based
components available in Flash (Window > Common Libraries > Classes).

About functions and methods 177

2. Select Window > Actions to open the Actions panel.

3. Type the following ActionScript code into the Script pane:
function helloWorld(){

// statements here
trace("Hello world!");

};

This ActionScript defines the (user-defined, named) function called helloWorld(). If
you test your SWF file at this time, nothing happens. For example, you don’t see the
trace statement in the Output panel. To see the trace statement, you have to call the
helloWorld() function.

4. Type the following line of ActionScript code after the function:
helloWorld();

This code calls the helloWorld() function.
5. Select Control > Test Movie to test the FLA file.

The following text is displayed in the Output panel: Hello world!

For information on passing values (parameters) to a function, see “Passing parameters to a
function” on page 180.

There are several different ways that you can write functions on the main timeline. Most
notably, you can use named functions and anonymous functions. For example, you can use
the following syntax when you create functions:
function myCircle(radius:Number):Number {

return (Math.PI * radius * radius);
}
trace(myCircle(5));

Anonymous functions are often more difficult to read. Compare the following code to the
preceding code.
var myCircle:Function = function(radius:Number):Number {

// function block here
return (Math.PI * radius * radius);

};
trace(myCircle(5));

You can also place functions in class files when you use ActionScript 2.0, as the following
example shows:
class Circle {

public function area(radius:Number):Number {
return (Math.PI * Math.pow(radius, 2));

}
public function perimeter(radius:Number):Number {

return (2 * Math.PI * radius);

178 Functions and Methods

}
public function diameter(radius:Number):Number {

return (radius * 2);
}

}

For more information on writing functions in a class file, see Chapter 6, “Classes,” on
page 187.

As you can see in the previous code sample, you don’t need to place functions on a timeline.
The following example also puts functions in a class file. This is a good practice to adopt
when you create large applications by using ActionScript 2.0, because it lets you reuse your
code easily in several applications. When you want to reuse the functions in other
applications, you can import the existing class rather than rewrite the code from scratch or
duplicate the functions in the new application.

To create functions in a class file:

1. Create a new ActionScript document and save it as Utils.as.

2. Type the following ActionScript into the Script pane:
class Utils {
 public static function randomRange(min:Number, max:Number):Number {
 if (min > max) {
 var temp:Number = min;
 min = max;
 max = temp;
 }
 return (Math.floor(Math.random() * (max - min + 1)) + min);
 }
 public static function arrayMin(num_array:Array):Number {
 if (num_array.length == 0) {
 return Number.NaN;
 }
 num_array.sort(Array.NUMERIC | Array.DESCENDING);
 var min:Number = Number(num_array.pop());
 return min;
 }
 public static function arrayMax(num_array:Array):Number {
 if (num_array.length == 0) {
 return undefined;
 }
 num_array.sort(Array.NUMERIC);
 var max:Number = Number(num_array.pop());
 return max;
 }
}

3. Select File > Save to save the ActionScript file.

About functions and methods 179

4. Create a new Flash document and save it as classFunctions.fla in the same directory
as Utils.as.

5. Select Window > Actions to open the Actions panel.

6. Type the following ActionScript into the Script pane:
var randomMonth:Number = Utils.randomRange(0, 11);
var min:Number = Utils.arrayMin([3, 3, 5, 34, 2, 1, 1, -3]);
var max:Number = Utils.arrayMax([3, 3, 5, 34, 2, 1, 1, -3]);
trace("month: " + randomMonth);
trace("min: " + min); // -3
trace("max: " + max); // 34

7. Select Control > Test Movie to test the documents. The following text is displayed in the
Output panel:
month: 7
min: -3
max: 34

Using variables in functions
Local variables are valuable tools for organizing code and making it easy to understand. When
a function uses local variables, it can hide its variables from all other scripts in the SWF file;
local variables are invoked in the scope of the body of the function and cease to exist when the
function exits. Flash also treats any parameters passed to a function as local variables.

To use variables in functions:

1. Create a new Flash document and save it as flashvariables.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var myName:String = "Ester";
var myAge:String = "65";
var myFavSoftware:String = "Flash";
function traceMe(yourFavSoftware:String, yourName:String,

yourAge:String) {
trace("I'm " + yourName + ", I like " + yourFavSoftware + ", and I'm "
+ yourAge + ".");

}
traceMe(myFavSoftware, myName, myAge);

N
O

T
E

For information on writing code using Script Assist, see Using Flash.

N
O

T
E

You can also use regular variables in a function. However, if you modify regular variables,
it is good practice to use script comments to document these modifications.

180 Functions and Methods

3. Select Control > Test Movie to test the Flash document.

For more information on passing parameters, see “Passing parameters to a function”
on page 180. For more information on variables and data, see Chapter 3, “Data and Data
Types,” on page 35.

Passing parameters to a function
Parameters, also referred to as arguments, are the elements on which a function executes its
code. (In this book, the terms parameter and argument are interchangeable.) You can pass
parameters (values) to a function. You can then use these parameters for processing the
function. You use the values within the function block (statements within the function).

Sometimes parameters are required, and sometimes they are optional. You might even have
some required and some optional parameters in a single function. If you do not pass enough
parameters to a function, Flash sets the missing parameter values to undefined, which may
cause unexpected results in your SWF file.

The following function called myFunc() takes the parameter someText:
function myFunc(someText:String):Void {

trace(someText);
}

After passing the parameter, you can pass a value to the function when you call the function.
This value traces in the Output panel, as follows:
myFunc("This is what traces");

When you call the function, you should always pass the specified number of parameters unless
your function checks for undefined values and sets default values accordingly. The function
substitutes the passed values for the parameters in the function definition; if any parameters
are missing, Flash sets their value to undefined. You regularly pass parameters into functions
when you write ActionScript code.

You can also pass multiple parameters to a function, which can be as simple as the following:
var birthday:Date = new Date(1901, 2, 3);
trace(birthday);

Each parameter is separated by a comma delimiter. Many built-in functions in the
ActionScript language have multiple parameters. For example, the startDrag() method of
the MovieClip class takes five parameters, lockCenter, left, top, right, and bottom:
startDrag(lockCenter:Boolean, left:Number, top:Number, right:Number,

bottom:Number):Void

To pass a parameter to a function:

1. Create a new Flash document and save it as parameters.fla.

About functions and methods 181

2. Add the following code to Frame 1 of the Timeline:
function traceMe(yourMessage:String):Void {

trace(yourMessage);
}
traceMe("How are you doing?");

The first few lines of code create a user-defined function called traceMe(), which takes a
single parameter, yourMessage. The last line of code calls the traceMe() function and
passes the string value “How are you doing?”.

3. Select Control > Test Movie to test the Flash document.

The next example demonstrates how to pass multiple parameters to a function.

To pass multiple parameters to a function:

1. Create a new Flash document and save it as functionTest.fla.

2. Add the following code to Frame 1 of the main Timeline:
function getArea(width:Number, height:Number):Number {
 return width * height;
}

The getArea() function takes two parameters, width and height.
3. Type the following code after the function:

var area:Number = getArea(10, 12);
trace(area); // 120

The getArea() function call assigns the values 10 and 12 to the width and height,
respectively, and you save the return value in the area instance. Then you trace the values
that you save in the area instance.

4. Select Control > Test Movie to test the SWF file.

You see 120 in the Output panel.
The parameters in the getArea() function are similar to values in a local variable; they
exist while the function is called and cease to exist when the function exits.

In the next example, the ActionScript returns the value NaN (not a number) if you don’t pass
enough parameters to the addNumbers() function.

To pass a variable number of parameters to a function:

1. Create a new Flash document and save it as functionTest2.fla.

2. Add the following code to Frame 1 of the main Timeline:
function addNumbers(a:Number, b:Number, c:Number):Number {

return (a + b + c);
}
trace(addNumbers(1, 4, 6)); // 11

182 Functions and Methods

trace(addNumbers(1, 4)); // NaN (Not a Number), c equals undefined
trace(addNumbers(1, 4, 6, 8)); // 11

If you don’t pass enough parameters to the addNumbers function, the missing arguments
are assigned a default value of undefined. If you pass too many parameters, the excess
parameters are ignored.

3. Select Control > Test Movie to test the Flash document.

Flash displays the following values: 11, NaN, 11.

Returning values from functions
You use the return statement to return values from functions. The return statement
specifies the value that is returned by a function. The return statement returns the result of
an evaluation as a value of the function in which an expression executes. The return
statement returns its result immediately to the calling code.

For more information, see return statement in the ActionScript 2.0 Language Reference.

The following rules govern how to use the return statement in functions:

■ If you specify a return type other than Void for a function, you must include a return
statement and it must be followed by the returned value in the function.

■ If you specify a return type of Void, you do not need to include a return statement, but if
you do, it must not be followed by any value.

■ Regardless of the return type, you can use a return statement to exit from the middle of a
function.

■ If you don’t specify a return type, including a return statement is optional.

For example, the following function returns the square of the parameter myNum and specifies
that the returned value must be a Number data type:
function sqr(myNum:Number):Number {
 return myNum * myNum;
}

Some functions perform a series of tasks without returning a value. The next example returns
the processed value. You are capturing that value in a variable, and then you can use that
variable within your application.

To return a value and capture it in a variable:

1. Create a new Flash document and save it as return.fla.

About functions and methods 183

2. Add the following code to Frame 1 of the main Timeline:
function getArea(width:Number, height:Number):Number {
 return width * height;
}

The getArea() function takes two parameters, width and height.
3. Type the following code after the function:

var area:Number = getArea(10, 12);
trace(area); // 120

The getArea() function call assigns the values 10 and 12 to the width and height,
respectively, and you save the return value in the area instance. Then you trace the values
that you save in the area instance.

4. Select Control > Test Movie to test the SWF file.

You see 120 in the Output panel.
The parameters in the getArea() function are similar to values in a local variable; they
exist while the function is called and cease to exist when the function exits.

About nested functions
You can call a function from inside another function. This lets you nest functions so that you
can have them perform specific tasks in Flash.

For example, you can nest functions on a timeline to perform specific tasks on a string. Type
the following code on Frame 1 of the Timeline:
var myStr:String = "My marshmallow chicken is yellow.";
trace("Original string: " + myStr);
function formatText():Void {

changeString("Put chicken in microwave.");
trace("Changed string: " + myStr);

}
function changeString(newtext:String):Void {

myStr = newtext;
}
// Call the function.
formatText();

Select Control > Test Movie to test the nested function. The formatText() and
changeString() functions are both applied to the string when you call the formatText()
function.

184 Functions and Methods

Understanding methods
Methods are functions that are associated with a class. The class could be a custom class or
built-in classes that are part of the ActionScript language. For information on comparing
methods to functions, see “About functions and methods” on page 163 and “About types of
methods and functions” on page 165.

For example, sortOn() is a built-in method associated with the Array class (sortOn is a
function of the predefined Array class built into Flash).

To use the sortOn() method in a FLA file:

1. Create a new Flash document and save it as methods.fla.

2. Add the following code to Frame 1 of the Timeline:
var userArr:Array = new Array();
userArr.push({firstname:"George", age:39});
userArr.push({firstname:"Dan", age:43});
userArr.push({firstname:"Socks", age:2});
userArr.sortOn("firstname");
var userArrayLenth:Number = userArr.length;
var i:Number;
for (i = 0; i < userArrayLenth; i++) {

trace(userArr[i].firstname);
}

You use the sortOn() method of the Array class to create a new Array object named
userArr. The array is populated by three objects that contain a first name and age, and
then the array is sorted based on the value of each object’s firstname property. Finally,
you loop over each item in the array and display the first name in the Output panel and
sort the names alphabetically by first letter.

3. Select Control > Test Movie to test the SWF file.

This code displays the following in the Output panel:
Dan
George
Socks

As demonstrated in “Writing named functions” on page 168, when you write the following
code on Frame 1 of the Timeline, your ActionScript code defines a function called
eatCabbage().
function eatCabbage() {
 trace("tastes bad");
}
eatCabbage();

However, if you write the eatCabbage() function within a class file and, for example, call
eatCabbage() in the FLA file, then eatCabbage() is considered to be a method.

Understanding methods 185

The next examples show you how to create methods within a class.

To compare methods and functions:

1. Create a new ActionScript file, select File > Save As, and save it as EatingHabits.as.

2. Type the following ActionScript code in the Script window:
class EatingHabits {
 public function eatCabbage():Void {
 trace("tastes bad");
 }
}

3. Save your changes to EatingHabits.as.

4. Create a new Flash document, select File > Save As, name it methodTest.fla, and save this
file in the same directory as EatingHabits.as.

5. Type the following ActionScript code onto Frame 1 of the Timeline:
var myHabits:EatingHabits = new EatingHabits();
myHabits.eatCabbage();

When you use this ActionScript, you are calling the eatCabbage() method of the
EatingHabits class.

6. After the previous line of ActionScript, add the following code:
function eatCarrots():Void {
 trace("tastes good");
}
eatCarrots();

In this code, you write and call the eatCarrots() function.
7. Select Control > Test Movie to test the SWF file.

Naming methods
You should use verbs to name methods, and words with mixed cases for concatenated words,
making sure that the first letter is lowercase. For example, you might name methods in the
following ways:
sing();
boogie();
singLoud();
danceFast();

N
O

T
E

When you use methods of any built-in class (in addition to the custom class you
wrote earlier in this procedure), you are using a method on a timeline.

186 Functions and Methods

You use verbs for most method names because methods perform an operation on an object. As
with variables, you cannot use special characters, and the method name cannot start with a
number. For more information, see “Naming conventions” on page 666.

187

6
CHAPTER 6

Classes

This chapter introduces you to using and writing classes using ActionScript 2.0. Classes are
the backbone of ActionScript 2.0, and are more important than they were in earlier versions
of Flash. You will learn how important classes are in Flash throughout this chapter.

This chapter begins by explaining some fundamental terminology and how it relates to classes
and object-oriented programming (OOP). Next you walk through a sample class file and
understand how each section of the class file works and how the class is organized. The rest of
the chapter shows you how to create your own custom classes and how to use them within
your Flash documents. You learn about the Flash classpath and how a class should be
documented so that other people who read or use your code can easily understand the code
and the class’s overall purpose.

This section contains code examples that you can use to become familiar with creating classes
in ActionScript 2.0. By the end of this chapter, you should be able to write a typical class file,
understand and recognize Flash classes, and also feel comfortable reading other people’s
class files.

If you’re not familiar with ActionScript 2.0 scripting, see Chapter 4, “Syntax and Language
Fundamentals,” on page 77 and Chapter 17, “Best Practices and Coding Conventions for
ActionScript 2.0,” on page 665.

For more information on working with custom and built-in classes, see the following topics:
About object-oriented programming and Flash . 188

Writing custom class files . 196

About working with custom classes in an application . 199

Example: Writing custom classes .223

Example: Using custom class files in Flash. .236

Assigning a class to symbols in Flash .239

Compiling and exporting classes . 240

Understanding classes and scope .243

About top-level and built-in classes .246

About working with built-in classes .256

188 Classes

About object-oriented programming and
Flash
ActionScript 2.0 is an object-oriented language. Like ActionScript, OOP languages are based
on the concept of classes and instances. A class defines all of the properties that distinguish a
series of objects. For example, a User class represents a bunch of users who are using your
application. Then, you have an instantiation of the class, which, for the User class, is one of
the individual users—one of its members. The instantiation produces an instance of the User
class, and that instance has all of the properties of the User class.

Classes are also considered like data types or templates that you can create to define a new type
of object. For example, if you need a data type of Lettuce in your application, you might write
the Lettuce class. This defines the Lettuce object, and then you can assign your Lettuce
methods (wash()) and properties (leafy or bugs). To define a class, you use the class
keyword in an external script file. You can create an external script file in the Flash authoring
tool by selecting File > New and then selecting ActionScript File.

ActionScript 2.0 includes features such as filter effects, file upload and download, and the
External API, and also provides several powerful and familiar OOP concepts and keywords
(such as class, interface, and package) found in other programming languages, such as
Java. The programming language lets you build program structures that are reusable, scalable,
robust, and maintainable. It can also decrease development time by providing users with
thorough coding assistance and debugging information. You can use ActionScript 2.0 to
create objects and establish inheritance and to create custom classes and extend the Flash top-
level and built-in classes. You learn how to create classes and use custom classes in this chapter.

Flash includes approximately 65 top-level and built-in classes that provide everything from
basic, or “primitive,” data types (Array, Boolean, Date, and so on), to custom errors and
events, as well as several ways to load external content (XML, images, raw binary data, and
more). You can also write your own custom classes and integrate them into your Flash
documents or even extend the top-level classes and add your own functionality or modify
existing functionality. For example, “About class members” on page 211 in this chapter shows
you how to make a custom Person class that contains custom properties for the person’s name
and age. You can then treat this custom class as a new data type in your documents and create
a new instance of the class using the new operator.

For more information on working with OOP, see the following topics:

■ “The benefits of using classes” on page 189
■ “About packages” on page 189

About object-oriented programming and Flash 189

■ “About values and data types” on page 193
■ “Object-oriented programming fundamentals” on page 193

The benefits of using classes
In OOP, a class defines a category of object. A class describes the properties (data) and
methods (behaviors) for an object, much like an architectural blueprint describes the
characteristics of a building. You write a custom class in an external ActionScript (AS) file and
you can import it into your application when you compile the FLA file.

Classes can be very useful when you build larger Flash applications because you can organize a
lot of the application’s complexity in external class files. When you move a lot of the logic into
a custom class, you can not only make the code easier to reuse, but you can also “hide” some
of the methods and properties from other parts of the ActionScript code. This helps you
prevent people from accessing sensitive information or changing data that shouldn’t
be changed.

When you use a class, you can also extend existing classes and add new functionality or
modify existing functionality. For example, if you create three very similar classes, you can
write a base class and then write two other classes that extend the base class. These two classes
can add additional methods and properties, so that you don’t need to create three class files
that all duplicate the same code and logic.

Another benefit of using classes is code reusability. For example, if you create a custom class
that creates a custom progress bar using the Drawing application programming interface
(API), you could save the progress bar class in your classpath and reuse the same code in all of
your Flash documents by importing the custom class. For more information on setting the
classpath, see “About importing class files” on page 201 and “About setting and modifying
the classpath” on page 202.

About packages
When you are creating classes, you organize your ActionScript class files in packages. A
package is a directory that contains one or more class files and that resides in a designated
classpath directory (see “About importing class files” on page 201 and “About setting and
modifying the classpath” on page 202). A package can, in turn, contain other packages, called
subpackages, each with its own class files.

190 Classes

Like variables, package names must be identifiers; that is, the first character can be a letter,
underscore (_), or dollar sign ($), and each subsequent character can be a letter, number,
underscore, or dollar sign. There are preferred ways to name packages, which for example
recommend that you avoid using underscores or dollar sign characters. For more information
on naming packages, see “Naming packages” on page 675.

Packages are commonly used to organize related classes. For example, you might have three
related classes, Square, Circle, and Triangle, that are defined in Square.as, Circle.as, and
Triangle.as. Assume that you’ve saved the ActionScript files to a directory specified in the
classpath, as shown in the following example:
// In Square.as:
class Square {}

// In Circle.as:
class Circle {}

// In Triangle.as:
class Triangle {}

Because these three class files are related, you might decide to put them in a package
(directory) called Shapes. In this case, the fully qualified class name would contain the
package path, as well as the simple class name. Package paths are denoted with dot (.) syntax,
where each dot indicates a subdirectory.

For example, if you placed each ActionScript file that defines a shape in the Shapes directory,
you would need to change the name of each class file to reflect the new location, as follows:
// In Shapes/Square.as:
class Shapes.Square {}

// In Shapes/Circle.as:
class Shapes.Circle {}

// In Shapes/Triangle.as:
class Shapes.Triangle {}

To reference a class that resides in a package directory, you can either specify its fully qualified
class name or import the package by using the import statement. For more information, see
“Working with packages” on page 191.

About object-oriented programming and Flash 191

A comparison of classes and packages
In OOP, a class defines a category of object. Classes are essentially data types that you can
create if you want to define a new type of object in your application. A class describes the
properties (data) and behaviors (methods) for an object, much like an architectural blueprint
describes the characteristics of a building. The properties (variables defined within a class) and
methods of a class are collectively called the class’s members. To use the properties and
methods defined by a class, you generally first create an instance of that class (except for
classes that have all static members (see “About class (static) members” on page 258, such as
the top-level Math class, and “Static methods and properties” on page 210). The relationship
between an instance and its class is similar to the relationship between a house and its
blueprints.

Packages in Flash are directories that contain one or more class files and reside in a designated
file path. You might place related custom class files within a single directory. For example, you
might have three related classes called SteelWidget, PlasticWidget, and WoodWidget that are
defined in SteelWidget.as, PlasticWidget.as, and WoodWidget.as. You would organize these
classes in the Widget package. For more information on packages, see “Working with
packages” on page 191 and “Creating and packaging your class files” on page 226.

Working with packages
Packages are directories that contain one or more class files and reside in a designated
classpath directory. For example, the flash.filters package is a directory on your hard disk that
contains several class files for each filter type (such as BevelFilter, BlurFilter,
DropShadowFilter, and so on) in Flash 8.

The import statement lets you access classes without specifying their fully qualified names.
For example, if you want to use the BlurFilter class in a script, you must refer to it by its fully
qualified name (flash.filters.BlurFilter) or import it; if you import it, you can refer to it by its
class name (BlurFilter). The following ActionScript code demonstrates the differences
between using the import statement and using fully qualified class names.

If you don’t import the BlurFilter class, your code needs to use the fully qualified class name
(package name followed by class name) in order to use the filter:
// without importing
var myBlur:flash.filters.BlurFilter = new flash.filters.BlurFilter(10, 10,

3);

N
O

T
E

To use the import statement, you must specify ActionScript 2.0 and Flash Player 6 or
later in the Flash tab of your FLA file’s Publish Settings dialog box.

192 Classes

The same code, written with an import statement, lets you access the BlurFilter using only
the class name instead of always having to use the fully qualified name. This can save typing
and reduce the chance of making typing mistakes:
// with importing
import flash.filters.BlurFilter;
var myBlur:BlurFilter = new BlurFilter(10, 10, 3);

If you were importing several classes within a package (such as the BlurFilter,
DropShadowFilter, and GlowFilter) you could use one of two methods of importing each
class. The first method of importing multiple classes is to import each class using a separate
import statement, as seen in the following snippet:
import flash.filters.BlurFilter;
import flash.filters.DropShadowFilter;
import flash.filters.GlowFilter;

Using individual import statements for each class within a package can quickly become very
time consuming and prone to typing mistakes. The second method of importing classes
within a package is to use a wildcard import that imports all classes within a certain level of a
package. The following ActionScript shows an example of using a wildcard import:
import flash.filters.*; // imports each class within flash.filters package

The import statement applies only to the current script (frame or object) in which it’s called.
For example, suppose on Frame 1 of a Flash document you import all the classes in the
macr.util package. On that frame, you can reference classes in that package by their class
names instead of their fully qualified names. If you wanted to use the class name on another
frame script, however, you would need to reference classes in that package by their fully
qualified names or add an import statement to the other frame that imports the classes in
that package.

When using import statements, it’s also important to note that classes are imported only for
the level specified. For example, if you imported all classes in the mx.transitions package, only
those classes within the /transitions/ directory are imported, not all classes within
subdirectories (such as the classes in the mx.transitions.easing package).

T
IP If you import a class but don't use it in your script, the class isn't exported as part of the

SWF file. This means you can import large packages without being concerned about the
size of the SWF file; the bytecode associated with a class is included in a SWF file only if
that class is actually used.

About object-oriented programming and Flash 193

About values and data types
Data, values, and types are important when you start writing classes and using them. You
learned about data and types in Chapter 3, “Data and Data Types,” on page 35. When you
work with classes, remember that data types describe the kind of information a variable or
ActionScript element can contain, such as Boolean, Number, and String. For more
information, see “About data types” on page 36.

Expressions have values, while values and properties have types. The values that you can set
and get to and from a property in your class must be compatible with that property. Type
compatibility means the type of a value is compatible with the type that is in use, such as the
following example:
var myNum:Number = 10;

For more information on strict data typing, see “About assigning data types and strict data
typing” on page 45.

Object-oriented programming fundamentals
In the following sections, you will examine some of the terminology used throughout this
chapter before you start writing ActionScript code. This brief introduction to principles
involved in developing object-oriented programs helps you follow the examples and sections
within this chapter and the rest of this book. These principles are described in more depth in
the rest of this chapter, along with details on how they are implemented in Flash.

The following sections use the analogy of a cat, demonstrating how cats might compare to
OOP concepts.

Objects
Think of a real-world object, such as a cat. A cat could be said to have properties (or states),
such as name, age, and color; a cat also has behaviors such as sleeping, eating, and purring. In
the world of OOP, objects also have properties and behaviors. Using object-oriented
techniques, you can model a real-world object (such as a cat) or a more abstract object (such as
a chemical process).

For more information on objects, see “Object data type” on page 42.

N
O

T
E

The word behaviors is used generically here and does not refer to the Behaviors panel in
the Flash authoring environment.

194 Classes

Instances and class members
Continuing with the real-world analogy of a cat, consider that there are cats of different
colors, ages, and names, with different ways of eating and purring. But despite their individual
differences, all cats are members of the same category, or in OOP terms, the same class: the
class of cats. In OOP terminology, each individual cat is said to be an instance of the Cat class.

Likewise in OOP, a class defines a blueprint for a type of object. The characteristics and
behaviors that belong to a class are jointly referred to as members of that class. The
characteristics (in the cat example, the name, age, and color) are called properties of the class
and are represented as variables; the behaviors (play, sleep) are called methods of the class and
are represented as functions.

For more information on instances and class members, see “About class members”
on page 211 and “Using class members” on page 214.

Inheritance
One of the primary benefits of OOP is that you can create subclasses of (or extend) a class; the
subclass then inherits all the properties and methods of the class. The subclass typically
defines additional methods and properties or overrides methods or properties defined in the
superclass. Subclasses can also override (provide their own definitions for) methods defined in
a superclass.

One of the major benefits of using a superclass/subclass structure is that it is easier to reuse
similar code between various classes. For example, you could build a superclass called Animal,
which contains common characteristics and behaviors of all animals. Next you could build
several subclasses that inherit from the Animal superclass and add characteristics and
behaviors specific to that type of animal.

You might create a Cat class that inherits from another class. For example, you might create a
Mammal class that defines certain properties and behaviors common to all mammals. You
could then create a Cat subclass that extends the Mammal class. Another subclass, say, the
Siamese class, could extend (subclass) the Cat class, and so on.

Writing subclasses lets you reuse code. Instead of recreating all the code common to both
classes, you can simply extend an existing class.

For more information on inheritance and subclasses, see Chapter 7, “Inheritance,” on
page 263.

T
IP In a complex application, determining how to structure the hierarchy of your classes is an

important part of the design process. Make sure you determine this hierarchy before you
begin to program.

About object-oriented programming and Flash 195

Interfaces
Interfaces in OOP can be described as templates of class definitions, and classes that
implement interfaces are required to implement that template of methods. Using the cat
analogy, an interface is similar to a blueprint of a cat: the blueprint tells you which parts you
need, but not necessarily how those parts are assembled, or how the parts work.

You can use interfaces to add structure and ease of maintenance to your applications. Because
ActionScript 2.0 supports extending only from a single superclass, you can use interfaces as a
form of limited multiple inheritance.

You can also think of an interface as a “programming contract” that you can use to enforce
relationships between otherwise unrelated classes. For example, suppose you are working with
a team of programmers, each of whom is working on a different part (class) of the same
application. While designing the application, you agree on a set of methods that the different
classes use to communicate. So you create an interface that declares these methods, their
parameters, and their return types. Any class that implements this interface must provide
definitions for those methods; otherwise, a compiler error results.

For more information on inheritance, see Chapter 7, “Inheritance,” on page 263. For more
information on interfaces, see Chapter 8, “Interfaces,” on page 275.

Encapsulation
In elegant object-oriented design, objects are seen as “black boxes” that contain, or
encapsulate, functionality. A programmer should be able to interact with an object by knowing
only its properties, methods, and events (its programming interface), without knowing the
details of its implementation. This approach enables programmers to think at higher levels of
abstraction and provides an organizing framework for building complex systems.

Encapsulation is why ActionScript 2.0 includes, for example, member access control, so
details of the implementation can be made private and invisible to code outside an object.
The code outside the object is forced to interact with the object’s programming interface
rather than with the implementation details (which can be hidden in private methods and
properties). This approach provides some important benefits; for example, it lets the creator
of the object change the object’s implementation without requiring any changes to code
outside of the object—that is, as long as the programming interface doesn’t change.

For more information on encapsulation, see “About using encapsulation” on page 221.

196 Classes

Polymorphism
OOP lets you express differences between individual classes using a technique called
polymorphism, by which classes can override methods of their superclasses and define
specialized implementations of those methods. In Flash, subclasses can define specialized
implementations of methods inherited from its superclass but cannot access the superclass’s
implementation as in other programming languages.

For example, you might start with a class called Mammal that has play() and sleep()
methods. You then create Cat, Monkey, and Dog subclasses to extend the Mammal class. The
subclasses override the play() method from the Mammal class to reflect the habits of those
particular kinds of animals. Monkey implements the play() method to swing from trees; Cat
implements the play() method to pounce at a ball of yarn; Dog implements the play()
method to fetch a ball. Because the sleep() functionality is similar among the animals, you
would use the superclass implementation.

For more information on polymorphism, see Chapter 7, “Inheritance,” on page 263 and
“Using polymorphism in an application” on page 271.

Writing custom class files
The following example examines the parts of a class file. You learn how to write a class, and
how you can modify the class to extend the ways that you can use it with Flash. You learn
about the parts of a class and how to import them as well as related information about
working with custom class files in Flash.

You begin by looking at a very simple class. The following example shows the organization of
a simple class called UserClass.

To define a class, you use the class keyword in an external script file (that is, not in a script
you are writing in the Actions panel). The class structure is also pertinent for interface files.
This structure is illustrated below, and following this illustration you create a class.

■ The class file begins with documentation comments that include a general description of
the code as well as author and version information.

■ Add your import statements (if applicable).
■ Write a package statement, class declaration, or interface declaration, as follows:

class UserClass {...}

■ Include any necessary class or interface implementation comments. In these comments,
add information that is pertinent for the entire class or interface.

■ Add all your static variables. Write the public class variables first and follow them with
private class variables.

Writing custom class files 197

■ Add instance variables. Write the public member variables first, and follow them with
private member variables.

■ Add the constructor statement, such as the one in the following example:
public function UserClass(username:String, password:String) {...}

■ Write your methods. Group methods by their functionality, not by their accessibility or
scope. Organizing methods this way helps improve the readability and clarity of
your code.

■ Write the getter/setter methods into the class file.

The following example looks at a simple ActionScript class named User.

To create class files:

1. Select File > New and then select ActionScript File, and then click OK.

2. Select File > Save As and name the new file User.as.

3. Type the following ActionScript code into the Script window:
/**

User class
author: John Doe
version: 0.8
modified: 08/21/2005
copyright: Adobe Systems Incorporated

This code defines a custom User class that allows you to create new
users and specify user login information.

*/

class User {
// private instance variables
private var __username:String;
private var __password:String;

// constructor statement
public function User(p_username:String, p_password:String) {

this.__username = p_username;
this.__password = p_password;

}

public function get username():String {
return this.__username;

}
public function set username(value:String):Void {

this.__username = value;
}

198 Classes

public function get password():String {
return this.__password;

}
public function set password(value:String):Void {

this.__password = value;
}

}

4. Save your changes to the class file.

The previous code snippet begins with a standardized documentation comment, which
specifies the class name, author, version, date the class was last modified, copyright
information, and a brief description of what the class does.
The User class’s constructor statement takes two parameters: p_username and
p_password, which are copied into the class’s private instance variables __username and
__password. The remainder of the code in the class defines the getter and setter
properties for the private instance variables. If you want to create a read-only property,
then you would define a getter function, but not a setter function. For example, if you
want to make sure a user name cannot be changed after it has been defined, you would
delete the username setter function in the User class file.

5. Select File > New and then select Flash Document.

6. Select File > Save As and name the file user_test.fla. Save the file in the same directory as
User.as.

7. Type the following ActionScript into Frame 1 of the Timeline:
import User;
var user1:User = new User("un1", "pw1");
trace("Before:");
trace("\t username = " + user1.username); // un1
trace("\t password = " + user1.password); // pw1
user1.username = "1nu";
user1.password = "1wp";
trace("After:");
trace("\t username = " + user1.username); // 1nu
trace("\t password = " + user1.password); // 1wp

Because the User class you created previously is very basic, the ActionScript in the Flash
document is also very straightforward. The first line of code imports the custom User class
into your Flash document. Importing the User class lets you use the class as a custom data
type.

About working with custom classes in an application 199

A single instance of the User class is defined and assigned to a variable named user1. You
assign the user1 User object a value and define a username of un1 and a password of
pw1. The following two trace statements display the current value of user1.username
and user1.password using the User class’s getter functions, which both return strings.
The next two lines use the User class’s setter functions to set new values for the username
and password variables. Finally, you trace the values for username and password to the
Output panel. The trace statements display the modified values that you set using the
setter functions.

8. Save the FLA file, and then select Control > Test Movie to test the files.

You see the results of the trace statements in the Output panel. In the next examples, you
use these files in an application.

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmlMenu() constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

■ XmlMenu.as
■ xmlmenu.fla

About working with custom classes in an
application
In “Writing custom class files” on page 196, you created a custom class file. In the following
sections, you use that class file in an application. At the minimum, the workflow for creating
classes involves the following steps:

1. Define a class in an external ActionScript class file. For information on defining and
writing a class file, see “Writing custom class files” on page 196.

2. Save the class file to a designated classpath directory (a location where Flash looks for
classes), or in the same directory as the application’s FLA file. For more information on
setting the classpath, see “About setting and modifying the classpath” on page 202. For a
comparison and more information on importing class files, see “About importing class
files” on page 201.

http://www.adobe.com/go/learn_fl_samples

200 Classes

3. Create an instance of the class in another script, either in a FLA document or an external
script file or by creating a subclass based on the original class. For more information on
creating an instance of a class, see “Creating instances of classes in an example”
on page 238.

The following sections in this chapter contain code examples that you can use to become
familiar with creating classes in ActionScript 2.0. If you’re not familiar with ActionScript 2.0,
please read Chapter 3, “Data and Data Types,” on page 35 and Chapter 4, “Syntax and
Language Fundamentals,” on page 77.

For more information on working with custom classes, see the following topics:

■ “About importing class files” on page 201
■ “Using a class file in Flash” on page 205
■ “Using methods and properties from a class file” on page 206
■ “About class members” on page 211
■ “About getter and setter methods” on page 216
■ “How the compiler resolves class references” on page 205
■ “About dynamic classes” on page 219
■ “About using encapsulation” on page 221
■ “About using the this keyword in classes” on page 222

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmlMenu() constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

■ XmlMenu.as
■ xmlmenu.fla

http://www.adobe.com/go/learn_fl_samples

About working with custom classes in an application 201

About importing class files
In order to use a class or interface that you’ve defined, Flash must locate the external
ActionScript files that contain the class or interface definition so that it can import the file.
The list of directories in which Flash searches for class, interface, function, and variable
definitions is called the classpath. Flash has two classpath settings—a global classpath and a
document-level classpath:

■ Global classpath is a classpath that’s shared by all Flash documents. You set it in the
Preferences dialog box (Edit > Preferences (Windows) or Flash > Preferences (Macintosh),
click ActionScript in the Category list, and then click ActionScript 2.0 Settings).

■ Document-level classpath is a classpath that you specifically define for a single Flash
document. It is set in the Publish Settings dialog box (File > Publish Settings, select the
Flash tab, and then click the Settings button).

When you import class files, the following rules apply:

■ The import statements can exist in the following locations:
■ Anywhere before the class definition in class files
■ Anywhere in frame or object scripts
■ Anywhere in ActionScript files that you include in an application (using the #include

statement).
■ You import individual, packaged definitions using this syntax:

import flash.display.BitmapData;

■ You can import entire packages using the wildcard syntax:
import flash.display.*;

You can also include ActionScript code in a Flash document (FLA) file using an include
statement. The following rules apply to the include statement:

■ include statements are essentially a copy and paste of the content inside the included
ActionScript file.

■ include statements inside ActionScript class files are relative to the subdirectory that
contains the file.

202 Classes

■ An include statement in a FLA file can only bring in code that is valid inside FLA files,
and the same goes for other places that include statements can live. For example, if you
have an include statement inside a class definition, only property and method definitions
can exist in the included ActionScript file:
// Foo.as
class Foo {

#include "FooDef.as"
}

// FooDef.as:
var fooProp;
function fooMethod() {}
trace("Foo"); // This statement is not permitted in a class definition.

For more information on the include statement, see #include directive in the ActionScript 2.0
Language Reference. For more information on classpaths, see “About setting and modifying the
classpath” on page 202.

About setting and modifying the classpath
In order to use a class or interface that you’ve defined, Flash must locate the external
ActionScript files that contain the class or interface definition. The list of directories in which
Flash searches for class and interface definitions is called the classpath.

When you create an ActionScript class file, you need to save the file to one of the directories
specified in the classpath or a subdirectory therein. (You can modify the classpath to include
the desired directory path). Otherwise, Flash won’t be able to resolve, that is, locate, the class
or interface specified in the script. Subdirectories that you create within a classpath directory
are called packages and let you organize your classes. (For more information on packages, see
“Creating and packaging your class files” on page 226.)

Flash has two classpath settings: a global classpath and a document-level classpath. The global
classpath is a classpath that’s shared by all of your Flash documents. The document-level
classpath is a classpath that you specifically define for a single Flash document.

The global classpath applies to external ActionScript files and to FLA files, and you set it in
the Preferences dialog box (Windows: Edit > Preferences (Windows) or Flash > Preferences
(Macintosh), select ActionScript from the Category list, and then click ActionScript 2.0
Settings). You can set the document-level classpath in the Flash document’s Publish Settings
dialog box (File > Publish Settings, select the Flash tab, and then click the Settings button).

N
O

T
E

When you click the Check Syntax button above the Script pane while editing an
ActionScript file, the compiler looks only in the global classpath. ActionScript files aren't
associated with FLA files in Edit mode and don't have their own classpath.

About working with custom classes in an application 203

Using a global classpath

The global classpath is a classpath that’s shared by all of your Flash documents.

You can modify the global classpath using the Preferences dialog box. To modify the
document-level classpath setting, you use the Publish Settings dialog box for the FLA file. In
both cases, you can add absolute directory paths (for example, C:/my_classes) and relative
directory paths (for example, ../my_classes or “.”). The order of directories in the dialog
box reflects the order in which they are searched.

By default, the global classpath contains one absolute path and one relative path. The absolute
path is denoted by $(LocalData)/Classes in the Preferences dialog box. The location of the
absolute path is shown here:

■ Windows: Hard Disk\Documents and Settings\user\Local Settings\Application
Data\Adobe\Adobe Flash CS3\language\Configuration\Classes.

■ Macintosh: Hard Disk/Users/user/Library/Application Support/Adobe/Adobe Flash CS3/
language/Configuration/Classes.

The relative path portion of the global classpath is denoted by a single dot (.) and points to
the current document directory. Be aware that relative classpaths can point to different
directories, depending on the location of the document being compiled or published.

You can use the following steps to add a global classpath or edit an existing classpath.

To modify the global classpath:

1. Select Edit > Preferences (Windows) or Flash > Preferences (Macintosh) to open the
Preferences dialog box.

2. Click the ActionScript in the left column, and then click the ActionScript 2.0
Settings button.

3. Click the Browse to Path button to browse to the directory you want to add.

4. Browse to the path that you want to add and click OK.

To delete a directory from the classpath:

1. Select the path in the Classpath list.

N
O

T
E

In Windows, the Application Data folder is hidden by default. To show hidden folders
and files, select My Computer to open Windows Explorer, select Tools>Folder
Options and then select the View tab. Under the View tab, select the Show hidden
files and folders radio button.

N
O

T
E

Do not delete the absolute global classpath. Flash uses this classpath to access
built-in classes. If you accidentally delete this classpath, reinstate it by adding
$(LocalData)/Classes as a new classpath.

204 Classes

2. Click the Remove from Path button.

For information on importing packages, see “Working with packages” on page 191.

Using a document-level classpath

The document-level classpath applies only to FLA files. You set the document-level classpath
in the Publish Settings dialog box for a particular FLA file (File > Publish Settings, then click
the Flash tab, and then click ActionScript 2.0 Settings). The document-level classpath is
empty by default. When you create and save a FLA file in a directory, that directory becomes
a designated classpath directory.

When you create classes, in some cases you might want to store them in a directory that you
then add to the list of global classpath directories in the following situations:

■ If you have a set of utility classes that all your projects use
■ If you want to check the syntax of your code (click the Check Syntax button) that’s within

the external ActionScript file

Creating a directory prevents the loss of custom classes if you ever uninstall and reinstall Flash,
especially if the default global classpath directory is deleted and overwritten, because you
would lose any classes that you stored in that directory.

For example, you might create a directory such as the following for your custom classes:

■ Windows: Hard Disk\Documents and Settings\user\custom classes.
■ Macintosh: Hard Disk/Users/user/custom classes.

Then, you would add this path to the list of global classpaths (see “Using a global classpath”
on page 203).

When Flash attempts to resolve class references in a FLA script, it first searches the document-
level classpath specified for that FLA file. If Flash doesn’t find the class in that classpath, or if
that classpath is empty, it searches the global classpath. If Flash doesn’t find the class in the
global classpath, a compiler error occurs.

To modify the document-level classpath:

1. Select File > Publish Settings to open the Publish Settings dialog box.

2. Click the Flash tab.

3. Click the Settings button next to the ActionScript Version pop-up menu.

N
O

T
E

Do not delete the absolute global classpath. Flash uses this classpath to access
built-in classes. If you accidentally delete this classpath, you can reinstate it by
adding $(LocalData)/Classes as a new classpath.

About working with custom classes in an application 205

4. You can either manually type a file path or you can click the Browse to Path button to
browse to the directory you want to add to the classpath.

For more information on packages, see “About packages” on page 189.

How the compiler resolves class references
When Flash attempts to resolve class references in a FLA script, it first searches the document-
level classpath specified for that FLA file. If the class is not found in that classpath, or if that
classpath is empty, Flash searches the global classpath. If the class is not found in the global
classpath, a compiler error occurs.

When you click the Check Syntax button while editing an ActionScript file, the compiler
looks only in the global classpath; ActionScript files aren’t associated with FLA files in Edit
mode and don’t have their own classpath.

Using a class file in Flash
To create an instance of an ActionScript class, use the new operator to invoke the class’s
constructor function. The constructor function always has the same name as the class and
returns an instance of the class, which you typically assign to a variable. For example, if you
were using the User class from “Writing custom class files” on page 196, you would write the
following code to create a new User object:
var firstUser:User = new User();

Use the dot (.) operator to access the value of a property in an instance. Type the name of the
instance on the left side of the dot, and the name of the property on the right side. For
example, in the following statement, firstUser is the instance and username is the property:
firstUser.username

N
O

T
E

To edit an existing classpath directory, select the path in the Classpath list, click the
Browse to Path button, browse to the directory you want to add, and click OK.

N
O

T
E

To delete a directory from the classpath, select the path in the Classpath list, and
click the Remove Selected Path (-) button.

N
O

T
E

In some cases, you don’t need to create an instance of a class to use its properties and
methods. For more information on class (static) members, see “About class (static)
members” on page 258 and “Static methods and properties” on page 210.

206 Classes

You can also use the top-level or built-in classes that make up the ActionScript language in a
Flash document. For example, the following code creates a new Array object and then shows
its length property:
var myArray:Array = new Array("apples", "oranges", "bananas");
trace(myArray.length); // 3

For more information on using custom classes in Flash, see “Example: Using custom class files
in Flash” on page 236. For information on the constructor function, see “Writing the
constructor function” on page 228.

Using methods and properties from a class file
In OOP, members (properties or methods) of a class can be instance members or class
members. Instance members are created for each instance of the class; they are defined to the
prototype of the class when they are initialized in the class definition. In contrast, class
members are created once per class. (Class members are also known as static members.)

Properties are attributes that define an object. For example, length is a property of all arrays
that specifies the number of elements in the array. Methods are functions that you associate
with a class. For more information on functions and methods, see Chapter 5, “Functions and
Methods,” on page 163.

The following example shows you how you would create a method in a class file:
class Sample {
 public function myMethod():Void {
 trace("myMethod");
 }
}

Next you could invoke that method in your document. To invoke an instance method or
access an instance property, you reference an instance of the class. In the following example,
picture01, an instance of the custom Picture class (available in the following exercise),
invokes the showInfo() method:
var img1:Picture = new Picture("http://www.helpexamples.com/flash/images/

image1.jpg");
// Invoke the showInfo() method.
img1.showInfo();

The next example demonstrates how you can write a custom Picture class to hold various
pieces of information about a photo.

About working with custom classes in an application 207

To use the Picture and PictureClass classes in a FLA file:

1. Select File > New and then select ActionScript File. Save the document as Picture.as and
then click OK.

You write your custom Picture class in this document.
2. Type the following ActionScript code into the Script window:

/**
Picture class
author: John Doe
version: 0.53
modified: 6/24/2005
copyright: Adobe Systems Incorporated

The Picture class is used as a container for an image and its URL.
*/

class Picture {
private var __infoObj:Object;

public function Picture(src:String) {
this.__infoObj = new Object();
this.__infoObj.src = src;

}

public function showInfo():Void {
trace(this.toString());

}
private function toString():String {

return "[Picture src=" + this.__infoObj.src + "]";
}

public function get src():String {
return this.__infoObj.src;

}
public function set src(value:String):Void {

this.__infoObj.src = value;
}

}

3. Save the ActionScript file.

4. Select File > New and then select Flash Document to create a new FLA file. Save it as
picture_test.fla in the same directory as you saved the Picture class file.

208 Classes

5. Type the following ActionScript code into Frame 1 of the Timeline:
var picture1:Picture = new Picture("http://www.helpexamples.com/flash/

images/image1.jpg");
picture1.showInfo();
this.createEmptyMovieClip("img_mc", 9);
img_mc.loadMovie(picture1.src);

6. Save the Flash document.

7. Select Control > Test Movie to test the document.

The following text is displayed in the Output panel:
[Picture src=http://www.helpexamples.com/flash/images/image1.jpg]

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmlMenu() constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

■ XmlMenu.as
■ xmlmenu.fla

About public, private, and static methods and
properties (members)
When you write ActionScript class files in an external script file, there are four types of
methods and properties that you can create: public methods and properties, private methods
and properties, public static methods and properties, and private static methods and
properties. These methods and properties define how Flash can access variables, and they
allow you to specify what parts of your code can access certain methods or properties.

When you are building class-based applications, whether the application is small or large, it is
especially important to consider whether a method or property should be private or public.
Considering this ensures that your code is as secure as possible. For example, if you were
building a User class, you might not want to allow people using the class to be able to change
a user’s ID. By setting the class property (sometimes referred to as an instance member) to
private, you can limit access to the property to code within the class or subclasses of that
class, meaning that no users can change that property directly.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

About working with custom classes in an application 209

Public methods and properties

The public keyword specifies that a variable or function is available to any caller. Because
variables and functions are public by default, the this keyword is used primarily for stylistic
and readability benefits, indicating that the variable exists in the current scope. For example,
you might want to use the this keyword for consistency in a block of code that also contains
private or static variables. The this keyword can be used with either the public or
private keyword.

The following Sample class already has a public method named myMethod():
class Sample {

private var ID:Number;
public function myMethod():Void {

this.ID = 15;
trace(this.ID); // 15
trace("myMethod");

}
}

If you want to add a public property, you use the word “public” instead of “private,” as you
can see in the following sample code:
class Sample {

private var ID:Number;
public var email:String;
public function myMethod():Void {

trace("myMethod");
}

}

Because the email property is public, you can change it within the Sample class, or directly
within a FLA.

Private methods and properties

The private keyword specifies that a variable or function is available only to the class that
declares or defines it or to subclasses of that class. By default, a variable or function is public,
and available to any caller. Use the this keyword if you want to restrict access to a variable or
function, as you can see in the following example:
class Sample {

private var ID:Number;
public function myMethod():Void {

this.ID = 15;
trace(this.ID); // 15
trace("myMethod");

}
}

210 Classes

If you want to add a private property to the previous class, you simply use the keyword
private before the var keyword.

If you attempt to access the private ID property from outside the Sample class, you get a
compiler error and a message in the Output panel. The message indicates that the member is
private and cannot be accessed.

Static methods and properties

The static keyword specifies that a variable or function is created only once per class rather
than in every object based on that class. You can access a static class member without creating
an instance of the class. Static methods and properties can be set in either the public or
private scope.

Static members, also called class members, are assigned to the class, not to any instance of the
class. To invoke a class method or access a class property, you reference the class name, rather
than a specific instance of the class, as shown in the following code:
trace(Math.PI / 8); // 0.392699081698724

If you type this single line of code in the script pane of the Actions panel, you see a result trace
in the Output panel.

For example, in the previous Sample class example, you could create a static variable to keep
track of how many instances of the class have been created, as demonstrated in the
following code:
class Sample {

public static var count:Number = 0;
private var ID:Number;
public var email:String;
public function Sample() {

Sample.count++;
trace("count updated: " + Sample.count);

}
public function myMethod():Void {

trace("myMethod");
}

}

Every time you create a new instance of the Sample class, the constructor method traces the
total number of Sample class instances that have been defined so far.

Some of the top-level ActionScript classes have class members (or static members), as you saw
earlier in this section when you called the Math.PI property. Class members (properties and
methods) are accessed or invoked on the class name, not on an instance of the class.
Therefore, you don’t create an instance of the class to use those properties and methods.

About working with custom classes in an application 211

For example, the top-level Math class consists only of static methods and properties. To call
any of its methods, you don’t create an instance of the Math class. Instead, you simply call the
methods on the Math class itself. The following code calls the sqrt() method of the
Math class:
var squareRoot:Number = Math.sqrt(4);
trace(squareRoot); // 2

The following code invokes the max() method of the Math class, which determines the larger
of two numbers:
var largerNumber:Number = Math.max(10, 20);
trace(largerNumber); // 20

For more information on creating class members, see “About class members” on page 211 and
“Using class members” on page 214.

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmlMenu() constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

■ XmlMenu.as
■ xmlmenu.fla

About class members
Most of the members (methods and properties) discussed so far in this chapter are of a type
called instance members. For each instance member, there’s a unique copy of that member in
every instance of the class. For example, the email member variable of the Sample class has an
instance member, because each person has a different e-mail address.

Another type of member is a class member. There is only one copy of a class member, and you
use it for the entire class. Any variable declared within a class, but outside a function, is a
property of the class. In the following example, the Person class has two properties, age and
username, of type Number and String, respectively:
class Person {

public var age:Number;
public var username:String;

}

http://www.adobe.com/go/learn_fl_samples

212 Classes

Similarly, any function declared within a class is considered a method of the class. In the
Person class example, you can create a method called getInfo():
class Person {

public var age:Number;
public var username:String;
public function getInfo():String {

// getInfo() method definition
}

}

In the previous code snippet the Person class’s getInfo() method, as well as the age and
username properties, are all public instance members. The age property would not be a good
class member, because each person has a different age. Only properties and methods that are
shared by all individuals of the class should be class members.

Suppose that you want every class to have a species variable that indicates the proper Latin
name for the species that the class represents. For every Person object, the species is Homo
sapiens. It would be wasteful to store a unique copy of the string "Homo sapiens" for every
instance of the class, so this member should be a class member.

Class members are declared with the static keyword. For example, you could declare the
species class member with the following code:
class Person {
 public static var species:String = "Homo sapiens";
 // ...
}

You can also declare methods of a class to be static, as shown in the following code:
public static function getSpecies():String {

return Person.species;
}

Static methods can access only static properties, not instance properties. For example, the
following code results in a compiler error because the class method getAge() references the
instance variable age:
class Person {

public var age:Number = 15;
// ...
public static function getAge():Number {

return age; /* **Error**: Instance variables cannot be accessed in
static functions. */
}

}

To solve this problem, you could either make the method an instance method or make the
variable a class variable.

About working with custom classes in an application 213

For more information on class members (also called static properties), see “Static methods and
properties” on page 210.

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmlMenu() constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

■ XmlMenu.as
■ xmlmenu.fla

Using the Singleton design pattern
A common way to use class members is with the Singleton design pattern. A design pattern
defines a formal approach for structuring your code. Typically, you might structure a design
pattern as a solution for a common programming problem. There are many established design
patterns, such as Singleton. The Singleton design pattern makes sure that a class has only one
instance and provides a way of globally accessing the instance. For detailed information on the
Singleton design pattern, see www.adobe.com/devnet/coldfusion/articles/
design_patterns.html.

Often you encounter situations when you need exactly one object of a particular type in a
system. For example, in a chess game, there is only one chessboard, and in a country, there is
only one capital city. Even though there is only one object, you should encapsulate the
functionality of this object in a class. However, you might need to manage and access the one
instance of that object. Using a global variable is one way to do this, but global variables are
not desirable for most projects. A better approach is to make the class manage the single
instance of the object itself using class members. The following example shows a typical
Singleton design pattern usage, where the Singleton instance is created only once.

To use the Singleton design pattern:

1. Select File > New and then select ActionScript File. Save the document as Singleton.as.

2. Type the following ActionScript code into the Script window:
/**

Singleton class
author: John Doe
version: 0.53
modified: 6/24/2008
copyright: Adobe Systems Incorporated

*/

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/devnet/mx/coldfusion/articles/design_patterns.html
http://www.adobe.com/devnet/mx/coldfusion/articles/design_patterns.html

214 Classes

class Singleton {
private static var instance:Singleton = null;
public function trackChanges():Void {

trace("tracking changes.");
}
public static function getInstance():Singleton {

if (Singleton.instance == null) {
trace("creating new Singleton.");
Singleton.instance = new Singleton();

}
return Singleton.instance;

}
}

3. Save the Singleton.as document.

4. Select File > New and then select Flash Document to create a new FLA file, and save it as
singleton_test.fla in the same directory as you saved the Singleton class file.

5. Type the following ActionScript code into Frame 1 of the Timeline:
Singleton.getInstance().trackChanges(); // tracking changes.

var s:Singleton = Singleton.getInstance(); // tracking changes.
s.trackChanges();

6. Save the Flash document.

7. Select Control > Test Movie to test the document.

The Singleton object is not created until you need it—that is, until some other code asks for it
by calling the getInstance() method. This is typically called lazy creation, and it can help
make your code more efficient in many circumstances.

Remember not to use too few or too many class files for your application, because doing so
can lead to poorly designed class files, which are not beneficial to the application’s
performance or to your workflow. You should always attempt to use class files instead of
placing code in other places (such as timelines); however, avoid creating many classes that
have only a small amount of functionality or only a few classes that handle a lot of
functionality. Both of these scenarios might indicate poor design.

Using class members
One use of class (static) members is to maintain state information about a class and its
instances. For example, suppose you want to keep track of the number of instances that have
been created from a particular class. An easy way to do this is to use a class property that
increments each time a new instance is created.

About working with custom classes in an application 215

In the following example, you’ll create a class called Widget that defines a single, static
instance counter named widgetCount. Each time a new instance of the class is created, the
value of widgetCount increments by 1 and the current value of widgetCount is displayed in
the Output panel.

To create an instance counter using a class variable:

1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:
class Widget {

//Initialize the class variable
public static var widgetCount:Number = 0;
public function Widget() {

Widget.widgetCount++;
trace("Creating widget #" + Widget.widgetCount);

}
}

The widgetCount variable is declared as static, so it initializes to 0 only once. Each time
the Widget class’s constructor statement is called, it adds 1 to widgetCount and then
shows the number of the current instance that’s being created.

3. Save your file as Widget.as.

4. Select File > New and then select Flash Document to create a new FLA, and save it as
widget_test.fla in the same directory as Widget.as.

5. In widget_test.fla, type the following code into Frame 1 of the Timeline:
// Before you create any instances of the class,
// Widget.widgetCount is zero (0).
trace("Widget count at start: " + Widget.widgetCount); // 0
var widget1:Widget = new Widget(); // 1
var widget2:Widget = new Widget(); // 2
var widget3:Widget = new Widget(); // 3
trace("Widget count at end: " + Widget.widgetCount); // 3

6. Save the changes to widget_test.fla.

7. Select Control > Test Movie to test the file.

Flash displays the following information in the Output panel:
Widget count at start: 0
Creating widget # 1
Creating widget # 2
Creating widget # 3
Widget count at end: 3

216 Classes

About getter and setter methods
Getter and setter methods are accessor methods, meaning that they are generally a public
interface to change private class members. You use getter and setter methods to define a
property. You access getter and setter methods as properties outside the class, even though you
define them within the class as methods. Those properties outside the class can have a
different name from the property name in the class.

There are some advantages to using getter and setter methods, such as the ability to let you
create members with sophisticated functionality that you can access like properties. They also
let you create read-only and write-only properties.

Even though getter and setter methods are useful, you should be careful not to overuse them
because, among other issues, they can make code maintenance more difficult in certain
situations. Also, they provide access to your class implementation, like public members. OOP
practice discourages direct access to properties within a class.

When you write classes, you are always encouraged to make as many as possible of your
instance variables private and add getter and setter methods accordingly. This is because there
are several times when you may not want to let users change certain variables within your
classes. For example, if you have a private static method that tracks the number of instances
created for a specific class, you don’t want a user to modify that counter using code. Only the
constructor statement should increment that variable whenever it’s called. In this situation,
you might create a private instance variable and allow a getter method only for the counter
variable, which means users are able to retrieve the current value only by using the getter
method, and they won’t be able to set new values using the setter method. Creating a getter
without a setter is a simple way of making certain variables in your class read-only.

Using getter and setter methods
The syntax for getter and setter methods is as follows:

■ A getter method does not take any parameters and always returns a value.
■ A setter method always takes a parameter and never returns a value.

Classes typically define getter methods that provide read access and setter methods that
provide write access to a given property. For example, imagine a class that contains a property
called userName:
private var userName:String;

Instead of allowing instances of the class to directly access this property (user.userName =
"Buster", for example), the class might have two methods, getUserName() and
setUserName(), that would be implemented as shown in the next example.

About working with custom classes in an application 217

To use getter and setter methods:

1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:
class Login {

private var __username:String;
public function Login(username:String) {

this.__username = username;
}
public function getUserName():String {

return this.__username;
}
public function setUserName(value:String):Void {

this.__username = value;
}

}

3. Save the ActionScript document as Login.as.

As you can see, getUserName() returns the current value of userName, and
setUserName() sets the value of userName to the string parameter passed to the method.

4. Select File > New and then select Flash Document to create a new FLA, and save it as
login_test.fla in the same directory as Login.as.

5. Add the following ActionScript to Frame 1 of the main Timeline:
var user:Login = new Login("RickyM");

// calling getUserName() method
var userName:String = user.getUserName();
trace(userName); // RickyM

// calling setUserName() method
user.setUserName("EnriqueI");
trace(user.getUserName()); // EnriqueI

6. Select Control > Test Movie to test the file.

Flash displays the following information in the Output panel:
RickyM
EnriqueI

However, if you want to use a more concise syntax, you can use implicit getter and setter
methods. Implicit getter and setter methods let you access class properties in a direct manner,
while maintaining good OOP practice.

218 Classes

To define these methods, use the get and set method attributes. You create methods that get
or set the value of a property, and add the keyword get or set before the method name, as
shown in the next example.

To use implicit getter and setter methods:

1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:
class Login2 {

private var __username:String;
public function Login2(username:String) {

this.__username = username;
}
public function get userName():String {

return this.__username;
}
public function set userName(value:String):Void {

this.__username = value;
}

}

3. Save the ActionScript document as Login2.as.

Remember that a getter method does not take any parameters. A setter method must take
exactly one required parameter. A setter method can have the same name as a getter
method in the same scope. Getter and setter methods cannot have the same names as
other properties. For example, in the previous example code you defined getter and setter
methods named userName; in this case you could not also have a property named
userName in the same class.

4. Select File > New and then select Flash Document to create a new FLA, and save it as
login2_test.fla in the same directory as Login2.as.

5. Add the following ActionScript to Frame 1 of the main Timeline:
var user:Login2 = new Login2("RickyM");

// calling "get" method
var userNameStr:String = user.userName;
trace(userNameStr); // RickyM

// calling "set" method
user.userName = "EnriqueI";
trace(user.userName); // EnriqueI

N
O

T
E

Implicit getter and setter methods are syntactic shorthand for the Object.addProperty()
method found in ActionScript 1.0.

About working with custom classes in an application 219

Unlike ordinary methods, you invoke getter and setter methods without any parentheses
or arguments. You invoke getter and setter methods as you would a property by the
same name.

6. Save the Flash document and select Control > Test Movie to test the file.

Flash displays the following information in the Output panel:
RickyM
EnriqueI

About dynamic classes
Adding the dynamic keyword to a class definition specifies that objects based on the specified
class can add and access dynamic properties at runtime. You should create dynamic classes
only if you specifically require this functionality.

Type checking on dynamic classes is less strict than type checking on nondynamic classes,
because members accessed inside the class definition and on class instances are not compared
with those defined in the class scope. Class member functions, however, can still be type
checked for return types and parameter types.

For information on creating dynamic classes, see “Creating dynamic classes” on page 219.

Creating dynamic classes
By default, the properties and methods of a class are fixed. That is, an instance of a class can’t
create or access properties or methods that weren’t originally declared or defined by the class.
For example, consider a Person class that defines two properties, userName and age.

To create a class that is not dynamic:

1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following ActionScript into the Script window:
class Person {

public var userName:String;
public var age:Number;

}

If, in another script, you create an instance of the Person class and try to access a property
of the class that doesn’t exist, the compiler generates an error.

3. Save the file on your hard disk as Person.as.

N
O

T
E

You cannot use getter and setter method attributes in interface method declarations.

220 Classes

4. Select File > New and then select Flash Document to create a new FLA file, and then
click OK.

5. Select File > Save As, name the file person_test.fla, and save the file in the same directory
as the Person class you created earlier.

6. Add the following code to create a new instance of the Person class (firstPerson), and try
to assign a value to a property called hairColor (which doesn’t exist in the Person class):
var firstPerson:Person = new Person();
firstPerson.hairColor = "blue"; // Error. There is no property with the

name 'hairColor'.

7. Save the Flash document.

8. Select Control > Test Movie to test the code.

This code causes a compiler error because the Person class doesn’t declare a property
named hairColor. In most cases, this is exactly what you want to happen. Compiler
errors might not seem desirable, but they are very beneficial to programmers: good
error messages help you to write correct code by pointing out mistakes early in the
coding process.

In some cases, however, you might want to add and access properties or methods of a class at
runtime that aren’t defined in the original class definition. The dynamic class modifier lets
you do just that.

To create a dynamic class:

1. Select File > New and then select ActionScript File, and then click OK.

2. Select File > Save As and name the file Person2.as. Save the file on your hard disk.

3. Type the following code into the Script window:
dynamic class Person2 {

public var userName:String;
public var age:Number;

}

This ActionScript adds the dynamic keyword to the Person class in the previous example.
Instances of the Person2 class can add and access properties and methods that are not
defined in this class.

4. Save your changes to the ActionScript file.

5. Select File > New and then select Flash Document to create a new FLA file, and then
click OK.

6. Select File > Save As and name the new file person2_test.fla. Save it in the same directory
as Person2.as.

About working with custom classes in an application 221

7. Type the following code to create a new instance of the Person2 class (firstPerson), and
assign a value to a property called hairColor (which doesn’t exist in the Person2 class).
var firstPerson:Person2 = new Person2();
firstPerson.hairColor = "blue";
trace(firstPerson.hairColor); // blue

8. Save your changes to the person2_test.fla file.

9. Select Control > Test Movie to test the code.

Because the custom Flash class is dynamic, you can add methods and properties to the
class at runtime (when the SWF file plays). When you test the code the text blue should
be displayed in the Output panel.

When you develop applications, you wouldn’t want to make classes dynamic unless you
needed to. One reason not to use dynamic classes is that type checking on dynamic classes is
less strict than type checking on nondynamic classes, because members accessed inside the
class definition and on class instances are not compared with those defined in the class
scope. Class member functions, however, can still be type checked for return types and
parameter types.

Subclasses of dynamic classes are also dynamic, with one exception. Subclasses of the
MovieClip class are not dynamic by default, even though the MovieClip class itself is
dynamic. This implementation provides you with more control over subclasses of the
MovieClip class, because you can choose to make your subclasses dynamic or not:
class A extends MovieClip {} // A is not dynamic
dynamic class B extends A {} // B is dynamic
class C extends B {} // C is dynamic
class D extends A {} // D is not dynamic
dynamic class E extends MovieClip{} // E is dynamic

For information on subclasses, see Chapter 7, “Inheritance,” on page 263.

About using encapsulation
In elegant object-oriented design, objects are seen as “black boxes” that contain, or
encapsulate, functionality. A programmer should be able to interact with an object by knowing
only its properties, methods, and events (its programming interface), without knowing the
details of its implementation. This approach enables programmers to think at higher levels of
abstraction and provides an organizing framework for building complex systems.

222 Classes

Encapsulation is why ActionScript 2.0 includes, for example, member access control, so that
details of the implementation can be made private and invisible to code outside an object.
The code outside the object is forced to interact with the object’s programming interface
rather than with the implementation details. This approach provides some important
benefits; for example, it lets the creator of the object change the object’s implementation
without requiring any changes to code outside of the object, as long as the programming
interface doesn’t change.

An example of encapsulation in Flash would be setting all your member and class variables to
private and forcing people who implement your classes to access these variables using getter
and setter methods. Performing encapsulation this way ensures that if you ever need to change
the structure of the variables in the future, you would need only to change the behavior of the
getter and setter functions rather than force every developer to change the way he or she
accesses the class’s variables.

The following code shows how you could modify the Person class from earlier examples, set
its instance members to private, and define getter and setter methods for the private instance
members:
class Person {

private var __userName:String;
private var __age:Number;
public function get userName():String {

return this.__userName;
}
public function set userName(value:String):Void {

this.__userName = value;
}
public function get age():Number {

return this.__age;
}
public function set age(value:Number):Void {

this.__age = value;
}

}

About using the this keyword in classes
Use the this keyword as a prefix within your classes for methods and member variables.
Although it is not necessary, the this keyword makes it easy to tell that a property or method
belongs to a class when it has a prefix; without the keyword, you cannot tell whether the
property or method belongs to the superclass.

Example: Writing custom classes 223

You can also use a class name prefix for static variables and methods, even within a class. This
helps qualify the references you make, which makes code readable. Depending on the coding
environment you use, adding prefixes might also trigger code hints.

Example: Writing custom classes
Now that you’ve explored the basics of a class file, and what kinds of things it contains, it’s
time to learn some of the general guidelines for creating a class file. The first example in this
chapter shows you how to write classes and package them. The second example shows you
how to use those class files with a FLA file.

As discussed in “Writing custom class files” on page 196, a class consists of two main parts:
the declaration and the body. The class declaration consists minimally of the class statement,
followed by an identifier for the class name, and then left and right curly braces ({}).
Everything inside the braces is the class body, as shown in the following example:
class className {
 // class body
}

Remember: you can define classes only in external ActionScript files. For example, you can’t
define a class in a frame script in a FLA file. Therefore, you create a new file for this example.

In its most basic form, a class declaration consists of the class keyword, followed by the class
name (Person, in this case), and then left and right curly braces ({}). Everything between the
braces is called the class body and is where the class’s properties and methods are defined.

By the end of this example, the basic ordering of your class files is as follows:

■ Documentation comments
■ Class declaration
■ Constructor function
■ Class body

You do not write subclasses in this chapter. For more information on inheritance and
subclassing, see Chapter 7, “Inheritance,” on page 263.

N
O

T
E

You do not have to add these prefixes, and some developers feel it is unnecessary.
Adobe recommends adding the this keyword as a prefix, because it can aid readability
and helps you write clean code by providing context for your methods and variables.

C
A

U
T

IO
N

ActionScript code in external files is compiled into a SWF file when you publish, export,
test, or debug a FLA file. Therefore, if you make any changes to an external file, you must
save the file and recompile any FLA files that use it.

224 Classes

This example includes the following topics:

■ “About general guidelines for creating a class” on page 224
■ “Creating and packaging your class files” on page 226
■ “Writing the constructor function” on page 228
■ “Adding methods and properties” on page 230
■ “Controlling member access in your classes” on page 233
■ “Documenting the classes” on page 234

For samples that demonstrates how to create a dynamic menu with XML data and a custom
class file, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. The sample
calls the ActionScript XmlMenu() constructor and passes it two parameters: the path to the
XML menu file and a reference to the current timeline. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access these
samples:

■ XmlMenu.as
■ xmlmenu.fla

About general guidelines for creating a class
The following points are guidelines to follow when you write custom class files. They help
you write correct and well-formed classes. You practice these guidelines in upcoming
examples.

■ In general, place only one declaration per line, and do not place either the same or
different types of declarations on a single line. Format your declarations as the following
example shows:
private var SKU:Number; // product SKU (identifying) number
private var quantity:Number; // quantity of product

■ Initialize local variables when you declare them, unless that initial value is determined by a
calculation. For information on initializing variables, see “Adding methods and
properties” on page 230.

■ Declare variables before you first use them (including loops). For example, the following
code predeclares the loop iterator variable (i) before using it in the for loop:
var my_array:Array = new Array("one", "two", "three");
var i:Number;
for (i = 0 ; i < my_array.length; i++) {

trace(i + " = " + my_array[i]);
}

http://www.adobe.com/go/learn_fl_samples

Example: Writing custom classes 225

■ Avoid using local declarations that hide higher-level declarations. For example, do not
declare a variable twice, as the following example shows:
// bad code
var counter:Number = 0;
function myMethod() {

var counter:Number;
for (counter = 0; counter <= 4; counter++) {

// statements;
}

}

This code declares the same variable inside an inner block.
■ Do not assign many variables to a single value in a statement, because it is difficult to read,

as you can see in the following ActionScript code samples:
// bad form
xPos = yPos = 15;

or
// bad form
class User {

private var m_username:String, m_password:String;
}

■ Have a good reason for making public instance variables, or public static, class, or member
variables. Make sure that these variables are explicitly public before you create them
this way.

■ Set most member variables to private unless there is a good reason to make them public. It
is much better from a design standpoint to make member variables private and allow
access only to those variables through a small group of getter and setter functions.

About naming class files
Class names must be identifiers—that is, the first character must be a letter, underscore (_), or
dollar sign ($), and each subsequent character must be a letter, number, underscore, or dollar
sign. As a preferred practice, try to always limit class names to letters.

The class name must exactly match the name of the ActionScript file that contains it,
including capitalization. In the following example, if you create a class called Rock, the
ActionScript file that contains the class definition must be named Rock.as:
// In file Rock.as
class Rock {
 // Rock class body
}

226 Classes

You name and create a class definition in the following section. See the section “Creating and
packaging your class files” on page 226 to create, name, and package the class files. For more
information on naming class files, see “Naming classes and objects” on page 673.

Creating and packaging your class files
In this section, you create, name, and package your class files for this example (“Example:
Writing custom classes” on page 223). The following sections show you how to write
complete (yet simple) class files. For detailed information on packages, see “About packages”
on page 189, “A comparison of classes and packages” on page 191, and “Working with
packages” on page 191.

When you create a class file, decide where you want to store the file. In the following steps,
you’ll save the class file and the application FLA file that uses the class file in the same
directory for simplicity. However, if you want to check syntax, you also need to tell Flash how
it can find the file. Typically, when you create an application, you add the directory in which
you store your application and class files to the Flash classpath. For information about
classpaths, see “About setting and modifying the classpath” on page 202.

Class files are also called ActionScript (AS) files. You create AS files in the Flash authoring tool
or by using an external editor. For example, Macromedia Dreamweaver can create AS files.

To create a class file and class declaration:

1. Select File > New and then select Flash Document to create a new FLA document, and then
click OK.

2. Select File > Save As, name the new file package_test.fla, and save the Flash document to
the current directory.

You’ll add content to this Flash document in a future step.
3. Select File > New and then select ActionScript File, and then click OK.

4. Select File > Save As and create a new subdirectory named com, and then do the following:

a. In the com subdirectory, create a new subdirectory named adobe.
b. in the adobe subdirectory, create an new subdirectory named utils.
c. Save the current ActionScript document in the utils directory and name the file

ClassA.as.

N
O

T
E

The name of a class (ClassA) must exactly match the name of the AS file that contains it
(ClassA.as). This is very important; if these two names don’t match exactly, including
capitalization, the class won’t compile.

Example: Writing custom classes 227

5. Type the following code into the Script window:
class com.adobe.utils.ClassA {
}

The preceding code creates a new class named ClassA in the com.adobe.utils package.
6. Save the ClassA.as ActionScript document.

7. Select File > New and then select ActionScript File, and then click OK.

8. Select File > Save As, name the new file ClassB.as, and save it in the same directory as
ClassA.as created in an earlier step.

9. Type the following code into the Script window:
class com.adobe.utils.ClassB {
}

The previous code creates a new class named ClassB in the com.adobe.utils package.
10. Save your changes to both the ClassA.as and ClassB.as class files.

The class files you use in a FLA file import into a SWF file when you compile it. The code
you write in a class file should have a certain methodology and ordering, which are discussed
in the following sections.

If you are creating multiple custom classes, use packages to organize your class files. A package
is a directory that contains one or more class files and resides in a designated classpath
directory. A class name must be fully qualified within the file in which it is declared—that is,
it must reflect the directory (package) in which it is stored. For more information on
classpaths, see “About setting and modifying the classpath” on page 202.

For example, a class named com.adobe.docs.YourClass is stored in the com/adobe/docs
directory. The class declaration in the YourClass.as file looks like this:
class com.adobe.docs.YourClass {

// your class
}

For this reason, it’s good practice to plan your package structure before you begin creating
classes. Otherwise, if you decide to move class files after you create them, you will have to
modify the class declaration statements to reflect their new location.

To package your class files:

1. Decide on the package name you’d like to use.

N
O

T
E

You write the class declaration that reflects the package directory in the following
section, “Example: Writing custom classes” on page 223.

228 Classes

Package names should be intuitive and easily identifiable by fellow developers. Remember
that the package name also matches a specific directory structure. For example, any classes
in the com.adobe.utils package needs to be placed in a com/adobe/utils folder on your
hard drive.

2. Create the required directory structure after you’ve chosen a package name.

For example, if your package was named com.adobe.utils, you would need to create a
directory structure of com/adobe/utils and place your classes in the utils folder.

3. Use the com.adobe.utils prefix for any class you create in this package.

For example, if your class name was ClassA, the full class name would need to be
com.adobe.utils.ClassA within the com/adobe/utils/ClassA.as class file.

4. If you change your package structure at a future point, remember to modify not only the
directory structure, but the package name within each class file, as well as every import
statement or reference to a class within that package.

To continue writing the class files, see “Writing the constructor function” on page 228.

Writing the constructor function
You have already learned how to write the class declaration in “Creating and packaging your
class files” on page 226. In this part of the chapter, you write what’s called the class file’s
constructor function.

Constructors are functions that you use to initialize (define) the properties and methods of a
class. By definition, constructors are functions within a class definition that have the same
name as the class. For example, the following code defines a Person class and implements a
constructor function. In OOP, the constructor function initializes each new instance of
a class.

A class’s constructor is a special function that is called automatically when you create an
instance of a class using the new operator. The constructor function has the same name as the
class that contains it. For example, the Person class you created contained the following
constructor function:
// Person class constructor function
public function Person (uname:String, age:Number) {
 this.__name = uname;
 this.__age = age;
}

N
O

T
E

You learn how to write the comments, statements, and declarations in later sections.

Example: Writing custom classes 229

Consider the following points when you write constructor functions:

■ If no constructor function is explicitly declared—that is, if you don’t create a function
whose name matches that of the class—the compiler automatically creates an empty
constructor function for you.

■ A class can contain only one constructor function; overloaded constructor functions are
not allowed in ActionScript 2.0.

■ A constructor function should have no return type.

The term constructor is also typically used when you create (instantiate) an object based on a
particular class. The following statements are calls to the constructor functions for the top-
level Array class and the custom Person class:
var day_array:Array = new Array("Sun", "Mon", "Tue", "Wed", "Thu", "Fri",

"Sat");
var somePerson:Person = new Person("Tom", 30);

Next you’ll add a special function called a constructor function.

To add the constructor functions to your class files:

1. Open the ClassA.as class file in the Flash authoring tool.

2. Modify the existing class file so it matches the following code (the changes to make appear
in boldface):
class com.adobe.utils.ClassA {

function ClassA() {
trace("ClassA constructor");

}
}

The previous code defines a constructor method for the ClassA class. This constructor
traces a simple string to the Output panel, which will let you know when a new instance
of the class has been created.

3. Open the ClassB.as class file in the Flash authoring tool.

4. Modify the class file so it matches the following code (the changes to make appear
in boldface):
class com.adobe.utils.ClassB {

function ClassB() {
trace("ClassB constructor");

}
}

N
O

T
E

The following exercise is part of “Example: Writing custom classes” on page 223. If you
do not wish to progress through the example, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

http://www.helpexamples.com/flash/learnas/classes/

230 Classes

5. Save both ActionScript files before you proceed.

To continue writing your class file, see “Adding methods and properties” on page 230.

Adding methods and properties
To create the properties for the ClassA and ClassB classes, use the var keyword to define
variables.

To add properties to the ClassA and ClassB classes:

1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA.as ActionScript file to match the following code (the changes to make
appear in boldface):
class com.adobe.utils.ClassA {

static var _className:String;
function ClassA() {

trace("ClassA constructor");
}

}

The previous block of code adds a single new static variable, _className, which contains
the name of the current class.

3. Modify the ClassB class and add the static variable so it is similar to the previous code.

4. Save both ActionScript files before you proceed.

You use the post-colon syntax (for example, var username:String and var age:Number) in
the variable declarations. This is an example of strict data typing. When you type a variable
using the var variableName:variableType format, the ActionScript compiler ensures that
any values assigned to that variable match the specified type. If the correct data type is not
used in the FLA file importing this class, the compiler throws an error. For more information
on strict data typing, see “About assigning data types and strict data typing” on page 45.

N
O

T
E

The following three exercises are part of “Example: Writing custom classes”
on page 223. If you do not wish to progress through the example, you can download the
class files from www.helpexamples.com/flash/learnas/classes/.

T
IP By convention, class properties are defined at the top of the class body. Defining

them at the top makes the code easier to understand, but isn’t required.

http://www.helpexamples.com/flash/learnas/classes/

Example: Writing custom classes 231

A class’s members consist of properties (variable declarations) and methods (function
definitions). You must declare and define all properties and methods inside the class body (the
curly braces [{}]); otherwise, an error occurs during compilation. For information on
members, see “About public, private, and static methods and properties (members)”
on page 208.

To add methods to the ClassA and ClassB classes:

1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA class file so it matches the following code (the changes to make appear
in boldface):
class com.adobe.utils.ClassA {

static var _className:String;

function ClassA() {
trace("ClassA constructor");

}
function doSomething():Void {

trace("ClassA - doSomething()");
}

}

The block of code in boldface creates a new method in the class, which traces a string to
the Output panel.

3. In ClassA.as, select Tools > Check Syntax to check the syntax of your ActionScript file.

If any errors are reported in the Output panel, compare the ActionScript in your script to
the complete code written in the previous step. If you cannot fix the code errors, copy and
paste the complete code into the Script window before you proceed.

4. Check the syntax of ClassB.as as you did in ClassA.as.

If any errors appear in the Output panel, copy and paste the complete code into the Script
window before you proceed:
class com.adobe.utils.ClassB {

static var _className:String;

function ClassB() {
trace("ClassB constructor");

}
function doSomething():Void {

trace("ClassB - doSomething()");
}

}

232 Classes

5. Save both ActionScript files before you proceed.

You can initialize properties inline—that is, when you declare them—with default values, as
shown in the following example:
class Person {
 var age:Number = 50;
 var username:String = "John Doe";
}

When you initialize properties inline, the expression on the right side of an assignment must
be a compile-time constant. That is, the expression cannot refer to anything that is set or
defined at runtime. Compile-time constants include string literals, numbers, Boolean values,
null, and undefined, as well as constructor functions for the following top-level classes: Array,
Boolean, Number, Object, and String.

To initialize properties inline:

1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA class file so the code matches the following ActionScript (the changes
to make appear in boldface):
class com.adobe.utils.ClassA {

static var _className:String = "ClassA";

function ClassA() {
trace("ClassA constructor");

}
function doSomething():Void {

trace("ClassA - doSomething()");
}

}

The only difference between the existing class file and the previous block of code is there is
now a value defined for the static _className variable, “ClassA”.

3. Modify the ClassB class file and add the inline property, changing the value to “ClassB”.

4. Save both ActionScript files before you proceed.

This rule applies only to instance variables (variables that are copied into each instance of a
class), not class variables (variables that belong to the class).

To continue writing your class file, see “Controlling member access in your classes”
on page 233.

N
O

T
E

When you initialize arrays inline, only one array is created for all instances of the class.

Example: Writing custom classes 233

Controlling member access in your classes
By default, any property or method of a class can be accessed by any other class: all members
of a class are public by default. However, in some cases you might want to protect data or
methods of a class from access by other classes. You need to make those members private
(available only to the class that declares or defines them).

You specify public or private members using the public or private member attribute. For
example, the following code declares a private variable (a property) and a private method (a
function). The following class (LoginClass) defines a private property named userName and a
private method named getUserName():
class LoginClass {
 private var userName:String;
 private function getUserName():String {
 return this.userName;
 }
 // Constructor:
 public function LoginClass(user:String) {
 this.userName = user;
 }
}

Private members (properties and methods) are accessible only to the class that defines those
members and to subclasses of that original class. Instances of the original class, or instances of
subclasses of that class, cannot access privately declared properties and methods; that is,
private members are accessible only within class definitions, not at the instance level. In the
following example, you change member access in your class files.

To control member access:

1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA.as ActionScript file so its contents match the following ActionScript
(the changes to make appear in boldface):
class com.adobe.utils.ClassA {

private static var _className:String = "ClassA";

public function ClassA() {
trace("ClassA constructor");

}

N
O

T
E

This exercise is part of “Example: Writing custom classes” on page 223. If you do not
wish to progress through the example, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

http://www.helpexamples.com/flash/learnas/classes/

234 Classes

public function doSomething():Void {
trace("ClassA - doSomething()");

}
}

This previous code sets both methods (the ClassA constructor and the doSomething()
method) as public, meaning that they can be accessed by external scripts. The static
_className variable is set as private, meaning the variable can be accessed only from
within the class and not from external scripts.

3. Modify the ClassB.as ActionScript file and add the same method and property access as the
ClassA class.

4. Save both ActionScript files before you proceed.

An instance of ClassA or ClassB cannot access the private members. For example, the
following code, added to Frame 1 of the Timeline in a FLA file, would result in a compiler
error indicating that the method is private and can’t be accessed:
import com.adobe.utils.ClassA;
var a:ClassA = new ClassA();
trace(a._className); // Error. The member is private and cannot be accessed.

Member access control is a compile-time-only feature; at runtime, Flash Player does not
distinguish between private or public members.

To continue writing your class file, see “Documenting the classes” on page 234.

Documenting the classes
Using comments in your classes and interfaces is an important part of documenting them for
other users. For example, you might want to distribute your class files into the Flash
community, or you might be working with a team of designers or developers who will use
your class files in their work or as part of a project you’re working on. Documentation helps
other users understand the purpose and origins of the class.

There are two kinds of comments in a typical class or interface file: documentation comments
and implementation comments. You use documentation comments to describe the code’s
specifications, but not the implementation. You use implementation comments to comment
out code or to comment on the implementation of particular sections of code. The two kinds
of comments use slightly different delimiters. Documentation comments are delimited with
/** and */, and implementation comments are delimited with /* and */.

N
O

T
E

Documentation comments are not a language construct in ActionScript 2.0. However,
they are a common way of structuring comments in a class file that you can use in your
AS files.

Example: Writing custom classes 235

Use documentation comments to describe interfaces, classes, methods, and constructors.
Include one documentation comment per class, interface, or member, and place it directly
before the declaration.

If you have to document additional information that does not fit into the documentation
comments, use implementation comments (in the format of block comments or single-line
comments, as described in “About comments” on page 95). Implementation comments, if
you add them, directly follow the declaration.

To document your class files:

1. Open ClassA.as and ClassB.as in the Flash authoring tool.

2. Modify the ClassA class file and add the new code to the top of the class file (the changes
to make appear in boldface):
/**

ClassA class
version 1.1
6/21/2005
copyright Adobe Systems Incorporated

 */
class com.adobe.utils.ClassA {

private static var _className:String = "ClassA";

public function ClassA() {
trace("ClassA constructor");

}
public function doSomething():Void {

trace("ClassA - doSomething()");
}

}

The code above added a comment to the top of the class file. It’s always a good idea to add
comments to your ActionScript and Flash files so that you can add useful information
such as the author of the class, date last modified, copyright information, or any potential
issues/bugs that may be present in the file.

3. Add a similar comment to the top of the ClassB.as ActionScript file, changing the class
name and any other information as you see fit.

4. Save both ActionScript files before you proceed.

N
O

T
E

Do not include comments that do not directly relate to the class being read. For example,
do not include comments that describe the corresponding package.

N
O

T
E

The following exercise is part of “Example: Writing custom classes” on page 223. If you
do not wish to progress through the example, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

http://www.helpexamples.com/flash/learnas/classes/

236 Classes

You might also add the block, single-line, or trailing comments within the class’s code. For
information on writing good comments within your code, see “Writing good comments”
on page 677. For general information about comments, see “Single-line comments”
on page 96, “Multiline comments” on page 97, and “Trailing comments” on page 98.

To learn how to use these custom class files in a SWF file, see “Example: Using custom class
files in Flash” on page 236.

Example: Using custom class files
in Flash
This example uses class files that are written in the example called “Example: Writing custom
classes” on page 223, or you can download them from www.helpexamples.com/flash/learnas/
classes/. If you completed “Example: Writing custom classes” on page 223, locate ClassA.as
and ClassB.as on your hard disk.

Since the package name of the ClassA class file is com.adobe.utils.ClassA, you’ll need to
make sure that you save the class files in the proper directory structure. Create a subfolder
named com in the current directory. Within the com folder, add a new folder named adobe.
Add a third, and final, subdirectory within the adobe folder named utils. Save both the
ClassA.as and ClassB.as class files within this utils folder. Now you are ready to proceed with
this example.

You can use the custom classes written in “Example: Writing custom classes” on page 223
with a FLA file. In this example, you use the custom classes to create a small application in
Flash. Your classes compile into the SWF file when you publish the document, and then
everything works together. In the following exercises, you learn how classpaths work, how to
use class files in your application, as well as how to import classes and packages.

To continue this example, proceed to “Importing classes and packages” on page 236.

Importing classes and packages
To reference a class in another script, you must prefix the class name with the class’s package
name. The combination of a class’s name and its package path is the class’s fully qualified class
name. If a class resides in a top-level classpath directory—not in a subdirectory in the
classpath directory—then its class name is also its fully qualified class name.

http://www.helpexamples.com/flash/learnas/classes/
http://www.helpexamples.com/flash/learnas/classes/

Example: Using custom class files in Flash 237

To specify package paths, use dot (.) notation to separate package directory names. Package
paths are hierarchical; that is, each dot represents a nested directory. For example, suppose you
create a class named ClassName that resides in a com/adobe/docs/learnAs2 package in your
classpath. To create an instance of that class, you could specify the fully qualified class name.

You can also use the fully qualified class name to type your variables, as shown in the
following example:
var myInstance:com.adobe.docs.learnAs2.ClassName = new

com.adobe.docs.learnAs2.ClassName();

You can use the import statement to import packages into a script, which lets you use a class’s
abbreviated name rather than its fully qualified name. You can also use the wildcard character
(*) to import all the classes in a package. If you use the wildcard character, you don’t need to
use the fully qualified class name each time you use the class.

For example, suppose that in a script you imported the above class using the import
statement, as shown in the following example:
import com.adobe.docs.learnAs2.util.UserClass;

Later, in the same script, you could reference that class by its abbreviated name, as shown in
the following example:
var myUser:UserClass = new UserClass();

You can use the wildcard character (*) to import all the classes in a given package. Suppose
you have a package named com.adobe.utils that contains two ActionScript class files,
ClassA.as and ClassB.as. In another script, you could import both classes in that package
using the wildcard character, as shown in the following code:
import com.adobe.utils.*;

The following example shows that you can then reference either of the classes directly in the
same script:
var myA:ClassA = new ClassA();
var myB:ClassB = new ClassB();

The import statement applies only to the current script (frame or object) in which it’s called.
If an imported class is not used in a script, the class is not included in the resulting SWF file’s
bytecode, and the class isn’t available to any SWF files that the FLA file containing the import
statement might load.

N
O

T
E

The following exercise is part of “Example: Using custom class files in Flash”
on page 236 which continues the examples “Example: Writing custom classes”. If you
need ClassA and ClassB, you can download the class files from
www.helpexamples.com/flash/learnas/classes/.

http://www.helpexamples.com/flash/learnas/classes/

238 Classes

To import a class or package:

1. Open the file called package_test.fla.

2. Type the following code into the Script window:
import com.adobe.utils.*;
var a = new ClassA(); // ClassA constructor
var b = new ClassB(); // ClassB constructor

The previous block of code begins by importing each of the classes within the
com.adobe.utils package by using the wildcard (*) character. Next, you create a new
instance of the ClassA class, which causes the constructor method to trace a message to the
Output panel. An instance of the ClassB class is also created, which sends debugging
messages to the Output panel.

3. Save your changes to the Flash document before you proceed.

To continue using these class files in a Flash file, see “Creating instances of classes in an
example” on page 238.

Creating instances of classes in an example
Instances are objects that contain all the properties and methods of a particular class. For
example, arrays are instances of the Array class, so you can use any of the methods or
properties of the Array class with any array instance. Or you can create you own class, such as
UserSettings, and then create an instance of the UserSettings class.

Continuing the example you started in “Example: Using custom class files in Flash”
on page 236, you modified FLA file to import the classes you wrote so that you don’t have to
always refer to them by their fully qualified names.

The next step in this example (“Example: Using custom class files in Flash” on page 236) is to
create an instance of the ClassA and ClassB classes in a script, such as a frame script in a
package_test.fla Flash document, and assign it to a variable. To create an instance of a custom
class, you use the new operator in the same way you would when creating an instance of a top-
level ActionScript class (such as the Date or Array class). You refer to the class using its fully
qualified class name, or import the class (as demonstrated in “Importing classes and packages”
on page 236.)

N
O

T
E

The following exercise is part of “Example: Using custom class files in Flash”
on page 236 which continues the examples “Example: Writing custom classes”.

Assigning a class to symbols in Flash 239

To create a new instance of the ClassA and ClassB classes:

1. Open the file called package_test.fla.

2. Type the following boldface code into the Script window:
import com.adobe.utils.*;
var a:ClassA = new ClassA(); // ClassA constructor
a.doSomething(); // call the ClassA's doSomething() method
var b:ClassB = new ClassB(); // ClassB constructor
b.doSomething(); // call the ClassB's doSomething() method

Data typing your objects in this code example enables the compiler to ensure that you
don’t try to access properties or methods that aren’t defined in your custom class. For more
information on strict data typing, see “About assigning data types and strict data typing”
on page 45. The exception to data typing your objects is if you declare the class to be
dynamic using the dynamic keyword. See “Creating dynamic classes” on page 219.

3. Save your changes to the FLA file before you proceed.

You should now have a basic understanding of how to create and use classes in your Flash
documents. Remember that you can also create instances of top-level ActionScript or built-in
classes (see “About working with built-in classes” on page 256).

To continue using these class files in a Flash file, see “Assigning a class to symbols in Flash”
on page 239.

Assigning a class to symbols in Flash
You can also assign a class to symbols that you might use in a Flash file, such as a movie clip
object on the Stage.

To assign a class to a movie clip symbol:

1. Select File > New and then select ActionScript File, and then click OK.

2. Select File > Save As, name the file Animal.as, and save the file on your hard disk.

3. Type the following code into the Script window:
class Animal {

public function Animal() {
trace("Animal::constructor");

}
}

This ActionScript creates a new class called Animal that has a constructor method that
traces a string to the Output panel.

4. Save your changes to the ActionScript file.

240 Classes

5. Select File > New and then select Flash Document to create a new FLA file, and then
click OK.

6. Select File > Save As, name the file animal_test.fla, and save the file to the same folder as
the Animal.as file you created in step 2.

7. Select Insert > New Symbol to launch the Create New Symbol dialog box.

8. Enter a symbol name of animal, and select the Movie Clip option.

9. Click the Advanced button in the lower-right corner of the Create New Symbol dialog box
to enable more options.

The Advanced button is available when you are in the basic mode of the Create New
Symbol dialog box.

10. Click the Export for ActionScript check box in the Linkage section.

Enabling this option allows you to dynamically attach instances of this symbol to your
Flash documents during runtime.

11. Enter an identifier value of animal_id, and set the ActionScript 2.0 Class to Animal (to
match the class name specified in step 3).

12. Select the Export in First Frame check box and click OK to apply your changes and close
the dialog box.

13. Save the Flash document and select Control > Test Movie.

The Output panel displays the text from your Animal class’s constructor function.

Compiling and exporting classes
By default, classes used by a SWF file are packaged and exported in the SWF file’s first frame.
You can also specify a different frame where your classes are packaged and exported. This is
useful, for example, if a SWF file uses many classes that require a long time to download (such
as components). If the classes are exported in the first frame, the user has to wait until all the
class code has downloaded before that frame appears. By specifying a later frame in the
timeline, you could display a short-loading animation in the first few frames of the timeline
while the class code in the later frame downloads.

To specify the export frame for classes for a Flash document:

1. Select File > New and then select Flash Document. Save the new document as
exportClasses.fla.

N
O

T
E

If you need to modify the Movie Clip’s Linkage properties, you can right-click the
symbol in the document’s library and select Properties or Linkage from the context
menu.

Compiling and exporting classes 241

2. Rename the default layer to content, drag a ProgressBar component from the Components
panel to the Stage, and give it an instance name of my_pb.

3. Create a new layer, drag it above the content layer, and rename it actions.

4. Add the following ActionScript code to Frame 1 of the actions layer on the main Timeline:
my_pb.indeterminate = true;

5. Create a new keyframe on Frame 2 of the actions layer and add the following ActionScript
code:
var classesFrame:Number = 10;
if (_framesloaded < classesFrame) {

trace(this.getBytesLoaded() + " of " + this.getBytesTotal() + " bytes
loaded");
gotoAndPlay(1);

} else {
gotoAndStop(classesFrame);

}

6. Create a new keyframe on Frame 10 of the actions layer and add the following
ActionScript:
stop();

7. Create a new keyframe on Frame 10 of the content layer and drag several components onto
the Stage.

8. Right-click each component (except the ProgressBar) in the Library panel and select
Linkage from the context menu to launch the Linkage Properties dialog box.

9. In the Linkage Properties dialog box, make sure that Export for ActionScript is selected,
deselect the Export in First Frame check box, and click OK.

10. Select File > Publish Settings.

11. In the Publish Settings dialog box, select the Flash tab.

12. Click the Settings button next to the ActionScript version pop-up menu to open the
ActionScript Settings dialog box.

13. In the Export Frame for Classes text box, enter the number of the frame where you want
to export your class code (Frame 10).

If the frame specified does not exist in the timeline, you get an error message when you
publish your SWF file.

14. Click OK to close the ActionScript Settings dialog box, and then click OK to close the
Publish Settings dialog box.

242 Classes

15. Select Control > Test Movie to test the Flash document. If the Components load too
quickly, select View > Simulate Download from the SWF file. Flash simulates downloading
the Flash document at a lower speed, which allows you to see the progress bar component
animate as the class files download.

For more information on ASO files, see “Using ASO files” on page 242.

Using ASO files
During compilation, Flash sometimes creates files with .aso extensions in the /aso
subdirectory of the default global classpath directory (see “About setting and modifying the
classpath” on page 202). The .aso extension stands for ActionScript object (ASO). For each
ActionScript 2.0 file that is implicitly or explicitly imported and successfully compiled, Flash
generates an ASO file. The file contains the bytecode that’s produced from the associated
ActionScript (AS) file. Therefore, these files contain the compiled form (the bytecode) of a
class file.

Flash needs to regenerate an ASO file only when the following scenarios occur:

■ The corresponding AS file has been modified.
■ ActionScript files that contain definitions imported or used by the corresponding

ActionScript file have been modified.
■ ActionScript files included by the corresponding ActionScript file have been modified.

The compiler creates ASO files for caching purposes. You might notice that your first
compilation is slower than subsequent compilations. This is because only the AS files that
have changed are recompiled into ASO files. For unchanged AS files, the compiler reads the
already-compiled bytecode directly out of the ASO file instead of recompiling the AS file.

The ASO file format is an intermediate format developed for internal use only. It is not a
documented file format and is not intended to be redistributed.

If you experience problems in which Flash appears to be compiling older versions of a file you
have edited, delete the ASO files and then recompile. If you plan to delete ASO files, delete
them when Flash is not performing other operations, such as checking syntax or exporting
SWFs.

Understanding classes and scope 243

To delete ASO files:

If you are editing a FLA file, and you want to delete an ASO file, select one of the following in
the authoring environment:

■ Select Control > Delete ASO Files to delete ASO files and continue editing.
■ Select Control > Delete ASO Files and Test Movie to delete ASO files and test

the application.

If you are editing an ActionScript document in the Script window:

■ Select Control > Delete ASO Files to delete ASO files and continue editing.
■ Select Control > Delete ASO Files and Test Project to delete ASO files and then test

the application.

There is a limit to how much code you can place in a single class: the bytecode for a class
definition in an exported SWF file cannot be larger than 32,767 bytes. If the bytecode is
larger than that limit, a warning message appears.

You can’t predict the size of the bytecode representation of a given class, but classes up to
1,500 lines usually don’t go over the limit.

If your class goes over the limit, move some of the code into another class. In general, it is
good OOP practice to keep classes relatively short.

Understanding classes and scope
When you move ActionScript code into classes, you might have to change how you use the
this keyword. For example, if you have a class method that uses a callback function (such as
the LoadVars class’s onLoad() method), it can be difficult to know whether the this keyword
refers to the class or to the LoadVars object. In this situation, it might be necessary to create a
pointer to the current class, as the next example shows.

244 Classes

To understand scope and external class files:

1. Select File > New and then select ActionScript File, and then click OK.

2. Type or paste the following code into the Script window:
/**

Product class
Product.as

*/
class Product {
 private var productsXml:XML;
 // constructor
 // targetXmlStr - string, contains the path to an XML file
 function Product(targetXmlStr:String) {
 /* Create a local reference to the current class.
 Even if you are within the XML's onLoad event handler, you
 can reference the current class instead of only the XML packet.
 */
 var thisObj:Product = this;
 // Create a local variable, which is used to load the XML file.
 var prodXml:XML = new XML();
 prodXml.ignoreWhite = true;
 prodXml.onLoad = function(success:Boolean) {
 if (success) {
 /* If the XML successfully loads and parses,
 set the class's productsXml variable to the parsed
 XML document and call the init function.
 */
 thisObj.productsXml = this;
 thisObj.init();
 } else {
 /* There was an error loading the XML file. */
 trace("error loading XML");
 }
 };
 // Begin loading the XML document.
 prodXml.load(targetXmlStr);
 }
 public function init():Void {
 // Display the XML packet.
 trace(this.productsXml);
 }
}

Because you are trying to reference the private member variable within an onLoad handler,
the this keyword actually refers to the prodXml instance and not the Product class, which
you might expect. For this reason, you must create a pointer to the local class file so that
you can directly reference the class from the onLoad handler. You can now use this class
with a Flash document.

Understanding classes and scope 245

3. Save the previous ActionScript code as Product.as.

4. Create a new Flash document named testProduct.fla in the same directory.

5. Select Frame 1 of the main Timeline.

6. Type the following ActionScript into the Actions panel:
var myProduct:Product = new Product("http://www.helpexamples.com/

crossdomain.xml");

7. Select Control > Test Movie to test this code in the test environment.

The contents of the specified XML document appear in the Output panel.

Another type of scope you encounter when working with these classes is static variables and
static functions. The static keyword specifies that a variable or function is created only once
per class rather than being created in every instance of that class. You can access a static class
member without creating an instance of the class by using the syntax
someClassName.username. For more information on static variables and functions, see
“About public, private, and static methods and properties (members)” on page 208 and
“Using class members” on page 214.

Another benefit of static variables is that static variables don’t lose their values after the
variable’s scope has ended. The following example demonstrates how you can use the static
keyword to create a counter that tracks how many instances of the class Flash has created.
Because the numInstances variable is static, the variable is created only once for the entire
class, not for every single instance.

To use the static keyword:

1. Select File > New and then select ActionScript File, and then click OK.

2. Type the following code into the Script window:
class User {
 private static var numInstances:Number = 0;
 public function User() {
 User.numInstances++;
 }
 public static function get instances():Number {
 return User.numInstances;
 }
}

The previous code defines a User class that tracks the number of times the constructor has
been called. A private, static variable (User.numInstances) is incremented within the
constructor method.

3. Save the document as User.as.

246 Classes

4. Select File > New and then select Flash Document to create a new FLA file, and save the
FLA file in the same directory as User.as.

5. Type the following ActionScript code in Frame 1 of the Timeline:
trace(User.instances); // 0
var user1:User = new User();
trace(User.instances); // 1
var user2:User = new User();
trace(User.instances); // 2

The first line of code calls the static instances() getter method, which returns the value
of the private static numInstances variable. The rest of the code creates new instances of
the User class and displays the current value returned by the instances() getter method.

6. Select Control > Test Movie to test the documents.

For information on using the this keyword in classes, see “About using the this keyword in
classes” on page 222.

About top-level and built-in classes
In addition to the ActionScript core language elements and constructs (for and while loops,
for example) and primitive data types (numbers, strings, and Booleans) described earlier in
this manual (see Chapter 3, “Data and Data Types,” on page 35 and Chapter 4, “Syntax and
Language Fundamentals,” on page 77), ActionScript also provides several built-in classes
(complex data types). These classes provide a variety of scripting features and functionality. You
have used top-level classes and other built-in classes that are part of the ActionScript language
in earlier chapters, and you will use them throughout the remaining chapters. There are many
classes that ship with Flash that you use to create interactivity and functionality in your SWF
files, and you can even build complex applications using them. For example, you can use the
Math class to perform equations in your applications. Or you might use the BitmapData class
to create pixels and scripted animations.

Top-level classes, listed in “Top-level classes” on page 249, are written into Flash Player. In the
Actions toolbox, these classes are located in the ActionScript 2.0 Classes directory. Some of
the top-level classes are based on the ECMAScript (ECMA-262) edition 3 language
specification and are called core ActionScript classes. Examples of core classes are the Array,
Boolean, Date, and Math classes. For more information on packages, see “Working with
packages” on page 191.

About top-level and built-in classes 247

You can find the ActionScript classes installed on your hard disk. You can find the classes
folders here:

■ Windows: Hard Disk\Documents and Settings\user\Local Settings\Application
Data\Adobe\Flash CS3\language\Configuration\Classes.

■ Macintosh: Hard Disk/Users/user/Library/Application Support/Adobe/Adobe Flash CS3/
language/Configuration/Classes.

Do note the Read Me document located in this directory for more information about
its structure.

To understand the distinction between core ActionScript classes and those specific to Flash,
consider the distinction between core and client-side JavaScript. The client-side JavaScript
classes provide control over the client environment (the web browser and web page content),
and the classes specific to Flash provide runtime control over the appearance and behavior of a
Flash application.

The rest of the built-in ActionScript classes are specific to Flash and the Flash Player object
model. Examples of these classes are the Camera, MovieClip, and LoadVars classes. Other
classes are organized into packages, such as flash.display. All of these classes are sometimes
referred to as built-in classes (predefined classes that you can use for adding functionality to
your applications).

The following sections introduce the built-in ActionScript classes, and describe the
fundamental tasks you perform with these built-in classes. For an overview of working with
classes and objects in object-oriented programming, see “About working with built-in classes”
on page 256. Code examples using these classes are included throughout this manual.

For information on language elements (such as constants, operators, and directives), see
Chapter 4, “Syntax and Language Fundamentals,” on page 77.

N
O

T
E

In Windows, the Application Data folder is hidden by default. To show hidden folders and
files, select My Computer to open Windows Explorer, select Tools>Folder Options and
then select the View tab. Under the View tab, select the Show hidden files and folders
radio button.

248 Classes

For more information on top-level and built-in classes, see the following topics:

■ “Top-level classes” on page 249
■ “The flash.display package” on page 252
■ “The flash.external package” on page 253
■ “The flash.filters package” on page 253
■ “The flash.geom package” on page 254
■ “The flash.net package” on page 255
■ “The flash.text package” on page 255
■ “The mx.lang package” on page 255
■ “The System and TextField packages” on page 256

Other language elements
There are other language elements that make up ActionScript, outside of classes. These
include directives, constants, global functions, global properties, operators, and statements.
For information on how to use each of these language elements, see the following topics:

■ Chapter 4, “Syntax and Language Fundamentals”
■ Chapter 5, “Functions and Methods”

You can find a list of these language elements in the following sections of the ActionScript 2.0
Language Reference:

■ Compiler Directives
■ Constants
■ Global Functions
■ Global Properties
■ Operators
■ Statements

About top-level and built-in classes 249

Top-level classes
The top level contains the ActionScript classes and global functions, many of which provide
core functionality for your applications. Core classes, borrowed directly from ECMAScript,
include Array, Boolean, Date, Error, Function, Math, Number, Object, String, and System.
To find more information on each class, see the following table.

N
O

T
E

The CustomActions and XMLUI classes are available only in the Flash authoring
environment.

Class Description

Accessibility The Accessibility class manages communication between SWF files
and screen reader applications. You use the methods of this class with
the global _accProps property to control accessible properties for movie
clips, buttons, and text fields at runtime. See Accessibility.

Array The Array class represents arrays in ActionScript and all array objects
are instances of this class. The Array class contains methods and
properties for working with array objects. See Array.

AsBroadcaster Provides event notification and listener management capabilities that
can be added to other objects. See AsBroadcaster.

Boolean The Boolean class is a wrapper for Boolean (true or false) values. See
Boolean.>.

Button The Button class provides methods, properties, and event handlers for
working with buttons. See Button. Note that the built-in Button class is
different from the Button component class, associated with the version
2 component, Button.

Camera The Camera class provides access to the user’s camera, if one is
installed. When used with Flash Media Server, your SWF file can
capture, broadcast, and record images and video from a user’s camera.
See Camera.

Color The Color class lets you set the RGB color value and color transform of
movie clip instances and retrieve those values after you set them. The
Color class is deprecated in Flash Player 8 in favor of the
ColorTransform class. For information on color transforms, see
ColorTransform (flash.geom.ColorTransform).

250 Classes

ContextMenu The ContextMenu class lets you control the contents of the Flash
Player context menu at runtime. You can associate separate
ContextMenu objects with MovieClip, Button, or TextField objects by
using the menu property available to those classes. You can also add
custom menu items to a ContextMenu object by using the
ContextMenuItem class. See ContextMenu.

ContextMenuItem The ContextMenuItem class lets you create new menu items that
appear in the Flash Player context menu. You add new menu items that
you create with this class to the Flash Player context menu by using the
ContextMenu class. See ContextMenuItem.

CustomActions The CustomActions class lets you manage any custom actions that are
registered with the authoring tool. See CustomActions.

Date The Date class shows how dates and times are represented in
ActionScript, and it supports operations for manipulating dates and
times. The Date class also provides the means for obtaining the current
date and time from the operating system. See Date.

Error The Error class contains information about runtime errors that occur in
your scripts. You typically use the throw statement to generate an error
condition, which you can handle using a try..catch..finally
statement. See Error.

Function The Function class is the class representation of all ActionScript
functions, including those native to ActionScript and those that you
define. See Function.

Key The Key class provides methods and properties for getting information
about the keyboard and key presses. See Key.

LoadVars The LoadVars class lets you transfer variables between a SWF file and
a server in name-value pairs. See LoadVars.

LocalConnection The LocalConnection class lets you develop SWF files that send
instructions to each other without using the fscommand() method or
JavaScript. See LocalConnection.

Math The Math class provides convenient access to common mathematical
constants and provides several common mathematical functions. All
the properties and methods of the Math class are static and must be
called with the syntax Math.method(parameter) or Math.constant. See
Math.

Microphone The Microphone class provides access to the user’s microphone, if one
is installed. When used with Flash Media Server, your SWF file can
broadcast and record audio from a user’s microphone. See
Microphone.

Class Description

About top-level and built-in classes 251

Mouse The Mouse class provides control over the mouse in a SWF file; for
example, this class lets you hide or show the mouse pointer. See
Mouse.

MovieClip Every movie clip in a SWF file is an instance of the MovieClip class.
You use the methods and properties of this class to control movie clip
objects. See MovieClip.

MovieClipLoader This class lets you implement listener callbacks that provide status
information while SWF, JPEG, GIF, and PNG files load into movie clip
instances. See MovieClipLoader.

NetConnection The NetConnection class establishes a local streaming connection for
playing a Flash Video (FLV) file from an HTTP address or from the local
file system. See NetConnection.

NetStream The NetStream class controls playback of FLV files from a local file
system or HTTP address. See NetStream.

Number The Number class is a wrapper for the primitive number data type. See
Number.

Object The Object class is at the root of the ActionScript class hierarchy; all
other classes inherit its methods and properties. See Object.

PrintJob The PrintJob class lets you print content from a SWF file, including
content that is rendered dynamically, and multipage documents. See
PrintJob.

Selection The Selection class lets you set and control the text field in which the
insertion point is located (the text field that has focus). See Selection.

SharedObject The SharedObject class offers persistent local data storage on the
client computer, similar to cookies. This class offers real-time data
sharing between objects on the client’s computer. See SharedObject.

Sound The Sound class provides control over sounds in a SWF file. See
Sound.

Stage The Stage class provides information about a SWF file’s dimensions,
alignment, and scale mode. It also reports Stage resize events. See
Stage.

String The String class is a wrapper for the string primitive data type, which
lets you use the methods and properties of the String object to
manipulate primitive string value types. See String.

Class Description

252 Classes

The flash.display package
The flash.display package contains the BitmapData class that you can use to build
visual displays.

System The System class provides information about Flash Player and the
system on which Flash Player is running (for example, screen resolution
and current system language). It also lets you show or hide the Flash
Player Settings panel and modify SWF file security settings. See
System.

TextField The TextField class provides control over dynamic and input text fields,
such as retrieving formatting information, invoking event handlers, and
changing properties such as alpha or background color. See TextField.

TextFormat The TextFormat class lets you apply formatting styles to characters or
paragraphs in a TextField object. See TextFormat.

TextSnapshot The TextSnapshot object lets you access and lay out static text inside a
movie clip. See TextSnapshot.

Video The Video class lets you show video objects in a SWF file. You can use
this class with Flash Media Server to display live streaming video in a
SWF file, or within Flash to display a Flash Video (FLV) file. See Video.

XML This class contains methods and properties for working with XML
objects. See XML.

XMLNode The XMLNode class represents a single node in an XML document
tree. It is the XML class’s superclass. See XMLNode.

XMLSocket The XMLSocket class lets you create a persistent socket connection
between a server computer and client running Flash Player. Client
sockets enable low-latency data transfer, such as that which is required
for real-time chat applications. See XMLSocket.

XMLUI The XMLUI object enables communication with SWF files that are
used as a custom user interface for the Flash authoring tool’s
extensibility features (such as Behaviors, Commands, Effects, and
Tools). See XMLUI.

Class Description

BitmapData The BitmapData class lets you create arbitrarily sized transparent or
opaque bitmap images in the document and manipulate them in various
ways at runtime. See BitmapData (flash.display.BitmapData).

Class Description

About top-level and built-in classes 253

The flash.external package
The flash.external package lets you communicate with the Flash Player container using
ActionScript code. For example, if you embed a SWF file in an HTML page, that HTML
page is the container. You would be able to communicate with the HTML page using the
ExternalInterface class and JavaScript. Also called the External API.

The flash.filters package
The flash.filters package contains classes for the bitmap filter effects available in Flash Player
8. Filters let you apply rich visual effects, such as blur, bevel, glow, and drop shadows, to
Image and MovieClip instances. For more information on each class, see the cross references
provided in the following table.

Class Description

ExternalInterface The ExternalInterface class is the External API, a subsystem that
enables communications between ActionScript and the Flash Player
container (such as an HTML page using JavaScript) or a desktop
application that uses Flash Player. See ExternalInterface
(flash.external.ExternalInterface).

Class Description

BevelFilter The BevelFilter class lets you add a bevel effect to a movie clip
instance. See BevelFilter (flash.filters.BevelFilter).

BitmapFilter The BitmapFilter class is a base class for all filter effects. See
BitmapFilter (flash.filters.BitmapFilter).

BlurFilter The BlurFilter class lets you apply a blur effect to movie clip
instances. See BlurFilter (flash.filters.BlurFilter).

ColorMatrixFilter The ColorMatrixFilter class lets you apply a 4 x 5 matrix
transformation on the ARGB color and alpha values of every pixel
on the input image. After applying the transformation, you can
produce a result with a new set of ARGB color and alpha values.
See ColorMatrixFilter (flash.filters.ColorMatrixFilter).

ConvolutionFilter The ConvolutionFilter class lets you apply a matrix convolution
filter effect. See ConvolutionFilter (flash.filters.ConvolutionFilter).

DisplacementMapFilter The DisplacementMapFilter class lets you use the pixel values
from a specified image (the displacement map image) to spatially
displace the original instance (a movie clip) that you apply the filter
to. See DisplacementMapFilter
(flash.filters.DisplacementMapFilter).

254 Classes

The flash.geom package
The flash.geom package contains geometry classes, such as points, rectangles, and
transformation matrices. These classes support the BitmapData class and the bitmap caching
feature. For more information on each class, see the cross references provided in the
following table.

DropShadowFilter The DropShadowFilter class lets you add a drop shadow to a
movie clip. See DropShadowFilter
(flash.filters.DropShadowFilter).

GlowFilter The GlowFilter class lets you add a glow effect to a movie clip. See
GlowFilter (flash.filters.GlowFilter).

GradientBevelFilter The GradientBevelFilter class lets you apply a gradient bevel effect
to a movie clip. See GradientBevelFilter
(flash.filters.GradientBevelFilter).

GradientGlowFilter The GradientGlowFilter class lets you apply a gradient glow effect
to a movie clip. See GradientGlowFilter
(flash.filters.GradientGlowFilter).

Class Description

ColorTransform The ColorTransform class lets you mathematically set the RGB color
value and color transform of an instance. You can retrieve these values
after they have been set. See ColorTransform
(flash.geom.ColorTransform).

Matrix Represents a transformation matrix that determines how to map points
from one coordinate space to another. See Matrix (flash.geom.Matrix).

Point The Point object represents a location in a two-dimensional coordinate
system, where x represents the horizontal axis and y represents the
vertical axis. See Point (flash.geom.Point).

Rectangle The Rectangle class is used to create and modify Rectangle objects.
See Rectangle (flash.geom.Rectangle).

Transform Collects data about color transformations and coordinate
manipulations that are applied to an object instance. See Transform
(flash.geom.Transform).

Class Description

About top-level and built-in classes 255

The flash.net package
The flash.net package contains classes that let you upload and download one or more files
between a user’s computer and the server. For more information on each class, see the cross
references provided in the following table.

The flash.text package
The flash.text package contains the TextRenderer class for working with advanced anti-
aliasing in available in Flash Player 8.

The mx.lang package
The mx.lang package contains the Locale class for working with multilanguage text.

Class Description

FileReference The FileReference class lets you upload and download one or more
files between a user’s computer and a server. See FileReference
(flash.net.FileReference).

FileReferenceList The FileReferenceList class lets you upload one or more files from a
user’s computer to a server. See FileReferenceList
(flash.net.FileReferenceList).

Class Description

TextRenderer This class provides functionality for the advanced anti-aliasing
capability in Flash Player 8. See TextRenderer
(flash.text.TextRenderer).

Class Description

Locale This class lets you control how multilanguage text displays in a SWF
file. See Locale (mx.lang.Locale).

256 Classes

The System and TextField packages
The System package contains the capabilities, IME, and security classes. These classes deal
with client settings that might affect your application in Flash Player. For more information
on each class, see the cross references provided in the following table.

The TextField package contains the StyleSheet class that you can use to apply CSS styles
to text.

About working with built-in classes
In object-oriented programming (OOP), a class defines a category of object. A class describes
the properties (data) and behavior (methods) for an object, much like an architectural
blueprint describes the characteristics of a building. For information on classes and other
object-oriented programming concepts, see the following sections:

■ “Object-oriented programming fundamentals” on page 193
■ “Writing custom class files” on page 196

Flash has many built-in classes that you can use in your code (see “About top-level and built-
in classes” on page 246), which helps you easily add interactivity to your applications. To use
the properties and methods defined by a built-in class, you generally first create an instance of
that class (except for classes that have static members). The relationship between an instance
and its class is similar to the relationship between a house and its architectural blueprints, as
discussed in “About top-level and built-in classes” on page 246.

Class Description

capabilities The capabilities class determines the abilities of the system and Flash
Player that’s hosting the SWF file. This lets you customize content for
different formats. See capabilities (System.capabilities).

IME The IME class lets you directly manipulate the operating system’s input
method editor (IME) that’s within the Flash Player application running
on a client computer. See IME (System.IME).

security The security class contains methods that specify how SWF files in
different domains can communicate with each other. See security
(System.security).

Class Description

StyleSheet The StyleSheet class lets you create a style sheet object that contains
text formatting rules such as font size, color, and other formatting
styles. See StyleSheet (TextField.StyleSheet).

About working with built-in classes 257

For more information on using classes that are built into Flash, see the following topics:

■ “About creating a new instance of a built-in class” on page 257
■ “Accessing built-in object properties” on page 257
■ “About calling built-in object methods” on page 258
■ “About class (static) members” on page 258
■ “Preloading class files” on page 260
■ “Excluding classes” on page 259

About creating a new instance of a built-in class
To create an instance of an ActionScript class, use the new operator to invoke the class’s
constructor function. The constructor function always has the same name as the class, and
returns an instance of the class, which you typically assign to a variable.

For example, the following code creates a new Sound object:
var song_sound:Sound = new Sound();

In some cases, you don’t need to create an instance of a class to use its properties and methods.
For more information, see “About class (static) members” on page 258.

Accessing built-in object properties
Use the dot (.) operator to access the value of a property in an object. Put the name of the
object on the left side of the dot, and put the name of the property on the right side. For
example, in the following statement, my_obj is the object and firstName is the property:
my_obj.firstName

The following code creates a new Array object and then shows its length property:
var my_array:Array = new Array("apples", "oranges", "bananas");
trace(my_array.length); // 3

You can also use the array access operator ([]) to access the properties of an object, such as
using the array access operator for debugging purposes. The following example loops over an
object to display each of its properties.

To loop over the contents of an object:

1. Create a new Flash document and save it as forin.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var results:Object = {firstName:"Tommy", lastName:"G", age:7, avg:0.336,

b:"R", t:"L"};
for (var i:String in results) {

258 Classes

 trace("the value of [" + i + "] is: " + results[i]);
}

The previous code defines a new Object named results and defines values for firstName,
lastName, age, avg, b, and t. A for..in loop traces each property in the results object
and traces their value to the Output panel.

3. Select Control > Test movie to test the Flash document.

For more information on operators, including dot and array access operators, see “About
operators” on page 137. For more information on methods and properties, see Chapter 5,
“Functions and Methods,” on page 163. For examples of working with properties of the built-
in MovieClip class, see Chapter 10, “Working with Movie Clips,” on page 313 For examples
of working with the properties of the TextField, String, TextRenderer, and TextFormat classes,
see Chapter 11, “Working with Text and Strings,” on page 343.

About calling built-in object methods
You call an object’s method by using the dot (.) operator followed by the method. For
example, the following code creates a new Sound object and calls its setVolume() method:
var my_sound:Sound = new Sound(this);
my_sound.setVolume(50);

For examples of working with methods of the built-in MovieClip class, see Chapter 10,
“Working with Movie Clips,” on page 313. For examples of working with methods of the
built-in TextField, String, TextRenderer, and TextFormat classes, see Chapter 11, “Working
with Text and Strings,” on page 343.

About class (static) members
Some built-in ActionScript classes have class members (static members). Class members
(properties and methods) are accessed or invoked on the class name, not on an instance of the
class. Therefore, you don’t create an instance of the class to use those properties and methods.

For example, all the properties of the Math class are static. The following code invokes the
max() method of the Math class to determine the larger of two numbers:
var largerNumber:Number = Math.max(10, 20);
trace(largerNumber); // 20

For more information on static methods of the Math class, and examples of using them, see
Math in the ActionScript 2.0 Language Reference.

About working with built-in classes 259

Excluding classes
To reduce the size of a SWF file, you might want to exclude classes from compilation but still
be able to access and use them for type checking. For example, you might want to do this if
you are developing an application that uses multiple SWF files or shared libraries, especially
those that access many of the same classes. Excluding classes helps you avoid duplicating
classes in those files.

For more information on excluding classes, see the following topics:

■ “Preloading class files” on page 260

To exclude classes from compilation:

1. Create a new XML file.

2. Name the XML file FLA_filename_exclude.xml, where FLA_filename is the name of your
FLA file without the extension.

For example, if your FLA file is sellStocks.fla, the XML filename must be
sellStocks_exclude.xml.

3. Save the file in the same directory as the FLA file.

4. Place the following tags in the XML file:
<excludeAssets>

<asset name="className1" />
<asset name="className2" />

</excludeAssets>

The values you specify for the name attributes in the <asset> tags are the names of classes
you want to exclude from the SWF file. Add as many as you require for your application.
For example, the following XML file excludes the mx.core.UIObject and mx.screens.Slide
classes from the SWF file:
<excludeAssets>

<asset name="mx.core.UIObject" />
<asset name="mx.screens.Slide" />

</excludeAssets>

For information on preloading classes, see “Preloading class files” on page 260.

260 Classes

Preloading class files
This section describes some of the methodologies for preloading and exporting classes in Flash
(including the classes that components in version 2 of the Component Architecture use).
Preloading involves loading some of the data for a SWF file before the user starts interacting
with it. Flash imports classes on the first frame of a SWF file when you use external classes,
and this data is the first element to load into a SWF file. It is similar for the component
classes, because the framework for components also loads into the first frame of a SWF file.
When you build large applications, the loading time can be lengthy when you must import
data, so you must deal with this data intelligently, as the following procedures show.

Because the classes are the first data to load, you might have problems creating a progress bar
or loading animation if the classes load before the progress bar, because you probably want the
progress bar to reflect the loading progress of all data (including classes). Therefore, you want
to load the classes after other parts of the SWF file, but before you use components.

The following procedure shows you how to change the frame in which classes load into a
SWF file.

To select a different frame for the classes to load into a SWF file:

1. Select File > Publish Settings.

2. Select the Flash tab, and click the Settings button.

3. In the Export Frame for Classes text box, type the number of a new frame to determine
when to load the classes.

4. Click OK.

You cannot use any classes until the playhead reaches the frame you choose to load them into.
For example, version 2 components require classes for their functionality, so you must load
components after the Export frame for ActionScript 2.0 classes. If you export for Frame 3,
you cannot use anything from those classes until the playhead reaches Frame 3 and loads
the data.

About working with built-in classes 261

If you want to preload a file that uses classes, such as version 2 component classes, you must
preload the components in the SWF file. To accomplish this, you must set your components
to export for a different frame in the SWF file. By default, the UI components export in
Frame 1 of the SWF file, so make sure that you deselect Export in First Frame from the
component’s Linkage dialog box.

If components do not load on the first frame, you can create a custom progress bar for the first
frame of the SWF file. Do not reference any components in your ActionScript or include any
components on the Stage until you load the classes for the frame you specified in the Export
Frame for Classes text box.

N
O

T
E

If you add a component to the Stage using ActionScript, then you need to drag an
instance of the component you want to add onto the pasteboard (the area around the
Stage). This tells Flash that you’re using the component in your application, and that its
not an unused library item. Remember, Flash does not add unused library items to SWF
files.

C
A

U
T

IO
N

You must export components after the ActionScript classes that they use.

262 Classes

263

7
CHAPTER 7

Inheritance

In Chapter 6, “Classes,” you learned how to write class files and how classes help you organize
code into external files. The chapter also demonstrated how you can organize class files into
related packages. This chapter aims to show you how to write more advanced classes that
extend the functionality of an existing class. This is a useful subject, because you might find
yourself extending your own custom classes or existing classes so that you can add new
methods and properties.

For more information on inheritance, see “About inheritance” on page 263. For more
information on methods and properties, see Chapter 5, “Functions and Methods,” on
page 163.

For more information on inheritance, see the following topics:
About inheritance .263

About writing subclasses in Flash. .265

Using polymorphism in an application . 271

About inheritance
In Chapter 6, “Classes,” you saw how you could create a class file to create your own custom
data types. Learning how to create custom class files shows you how to move code off the
timeline and into external files. Moving code into external files makes it easier to edit your
code. Now that you’re familiar with the basics of creating your own custom classes, you learn
about an object-oriented programming (OOP) technique called subclassing or extending a
class, which lets you create new classes based on an existing class.

One of the benefits of OOP is that you can create subclasses of a class. The subclass inherits all
the properties and methods of a superclass. For example, if you extend (or subclass) the
MovieClip class, you are creating a custom class that extends the MovieClip class. Your
subclass inherits all of the properties and methods of the MovieClip class. Or you might create
a set of classes that extends from a custom superclass. For example, the Lettuce class might
extend from the Vegetable superclass.

264 Inheritance

Your subclass typically defines additional methods and properties that you can use in your
application, hence it extends the superclass. Subclasses can also override (provide their own
definitions for) methods inherited from a superclass. If a subclass overrides a method inherited
from its superclass, you can no longer access the superclass’s definition within the subclass.
The only exception to the above rule is that, if you are within the subclass’s constructor
function, you call the superclass’s constructor using the super statement. For more
information on overriding, see “Overriding methods and properties” on page 268.

For example, you might create a Mammal class that defines certain properties and behaviors
that are common to all mammals. You could then create a Cat subclass that extends the
Mammal class. Using subclasses lets you reuse code so that instead of re-creating all the code
common to both classes you could simply extend an existing class. Another subclass, the
Siamese class, could extend the Cat class, and so on. In a complex application, determining
how to structure the hierarchy of your classes is a large part of the design process.

Inheritance and subclassing are very useful in larger applications, because they let you create a
series of related classes that can share functionality. For example, you could create an
Employee class that defines the basic methods and properties of a typical employee within a
company. You could then create a new class called Contractor that extends the Employee class
and inherits all of its methods and properties. The Contractor class could add its own specific
methods and properties, or it could override methods and properties that are defined in the
Employee superclass. You could then create a new class called Manager, which also extends the
Employee class and defines additional methods and properties such as hire(), fire(),
raise(), and promote(). You could even extend a subclass, such as Manager, and create a
new class called Director, which again adds new methods or overrides existing methods.

Each time that you extend an existing class, the new class inherits all the current methods and
properties of the subclass. If each class wasn’t related, you’d have to rewrite each method and
property in each separate class file, even if the functionality was the same in the fellow classes.
You would have to spend a lot more time not only coding, but also debugging your
application and maintaining a project if similar logic changed in multiple files.

In ActionScript, you use the extends keyword to establish inheritance between a class and its
superclass, or to extend an interface. For more information on using the extends keyword,
see “About writing subclasses in Flash” on page 265 and “About writing a subclass”
on page 265. For additional information on the extends keyword, see extends statement in
the ActionScript 2.0 Language Reference.

About writing subclasses in Flash 265

About writing subclasses in Flash
In object-oriented programming, a subclass can inherit the properties and methods of another
class, called the superclass. You can extend your own custom classes as well as many of the core
and Flash Player ActionScript classes. You cannot extend the TextField class.

To create this kind of relationship between two classes, you use the class statement’s extends
clause. To specify a superclass, you use the following syntax:
class SubClass extends SuperClass {}

The class you specify in SubClass inherits all the properties and methods defined
in SuperClass.

For example, you might create a Mammal class that defines properties and methods common
to all mammals. To create a variation of the Mammal class, such as a Marsupial class, you
would extend the Mammal class—that is, create a subclass of the Mammal class, as follows:
class Marsupial extends Mammal {}

The subclass inherits all the properties and methods of the superclass, including any
properties or methods that you have declared to be private using the private keyword.

For more information on extending classes, see the following topics:

■ “About writing a subclass” on page 265
■ “Overriding methods and properties” on page 268

For more information on private members, see “About public, private, and static methods and
properties (members)” on page 208. For an example that creates a subclass, see “Example:
Extending the Widget class” on page 266.

About writing a subclass
The following code defines the custom class JukeBox, which extends the Sound class. It
defines an array called song_arr and a method called playSong(), which plays a song and
invokes the loadSound() method that it inherits from the Sound class.
class JukeBox extends Sound {
 public var song_arr:Array = new Array("beethoven.mp3", "bach.mp3",

"mozart.mp3");
 public function playSong(songID:Number):Void {
 super.loadSound(song_arr[songID], true);
 }
}

266 Inheritance

If you don’t place a call to super() in the constructor function of a subclass, the compiler
automatically generates a call to the constructor of its immediate superclass with no
parameters as the first statement of the function. If the superclass doesn’t have a constructor,
the compiler creates an empty constructor function and then generates a call to it from the
subclass. However, if the superclass takes parameters in its definition, you must create a
constructor in the subclass and call the superclass with the required parameters.

Multiple inheritance, or inheriting from more than one class, is not allowed in ActionScript
2.0. However, classes can effectively inherit from multiple classes if you use individual
extends statements, as shown in the following example:
// not allowed
class C extends A, B {} // **Error: A class may not extend more than one

class.

// allowed
class B extends A {}
class C extends B {}

You can also use interfaces to implement a limited form of multiple inheritance. For more
information on interfaces, see Chapter 8, “Interfaces,” on page 275. For an example that
creates a subclass, see “Example: Extending the Widget class” on page 266. For additional
information on super, see super statement in the ActionScript 2.0 Language Reference.

Example: Extending the Widget class
Class members propagate to subclasses of the superclass that defines those members. The next
example demonstrates how you could create a Widget class, which you extend (subclass) by
writing a class named SubWidget.

To create the Widget class and SubWidget subclass:

1. Create a new ActionScript file and save it as Widget.as.

2. Add the following code to the new document:
class Widget {

public static var widgetCount:Number = 0;
public function Widget() {

Widget.widgetCount++;
}

}

3. Save your changes to the ActionScript file.

4. Create a new ActionScript file and save it as SubWidget.as in the same directory as the
Widget class.

About writing subclasses in Flash 267

5. In SubWidget.as, type the following code into the Script window:
class SubWidget extends Widget {

public function SubWidget() {
trace("Creating subwidget #" + Widget.widgetCount);

}
}

6. Save your changes to SubWidget.as.

7. Create a new FLA file, and save it as subWidgetTest.fla in the same directory as the
previous ActionScript class files.

8. In the subWidgetTest.fla file, type the following code into Frame 1 of the main Timeline:
var sw1:SubWidget = new SubWidget();
var sw2:SubWidget = new SubWidget();
trace("Widget.widgetCount = " + Widget.widgetCount);
trace("SubWidget.widgetCount = " + SubWidget.widgetCount);

The previous code creates two instances of the SubWidget class: sw1 and sw2. Each call to
the SubWidget constructor traces the current value of the static Widget.widgetCount
property. Because the SubWidget class is a subclass of the Widget class, you can access the
widgetCount property through the SubWidget class, and the compiler rewrites the
reference (in the bytecode, not in your ActionScript file) as Widget.widgetCount. If you
try to access the static widgetCount property off of instances of the Widget or SubWidget
class, like sw1 or sw2, the compiler throws an error.

9. Save your changes to the document.

10. Select Control > Test Movie to test the Flash document.

The Output panel displays the following output:
Creating subwidget #1
Creating subwidget #2
Widget.widgetCount = 2
SubWidget.widgetCount = 2

You see this output because even though the Widget class’s constructor is never explicitly
called, the SubWidget class’s constructor calls it for you. This causes the Widget class’s
constructor to increment the Widget class’s static widgetCount variable.
The ActionScript 2.0 compiler can resolve static member references within
class definitions.

268 Inheritance

If you don’t specify the class name for the Widget.widgetCount property but instead refer
only to widgetCount, the ActionScript 2.0 compiler resolves the reference to
Widget.widgetCount and correctly exports that property. Similarly, if you refer to the
property as SubWidget.widgetCount, the compiler rewrites the reference (in the
bytecode, not in your ActionScript file) as Widget.widgetCount because SubWidget is a
subclass of the Widget class.

For optimal readability of your code, Adobe recommends that you always use explicit
references to static member variables in your code, as shown in the previous example. Using
explicit references means that you can easily identify where the definition of a static
member resides.

Overriding methods and properties
When a subclass extends a superclass, the subclass inherits all of the superclass’s methods and
properties. One of the advantages of working with classes and extending classes is that it
allows you not only to provide new functionality to an existing class but also to modify
existing functionality. For example, consider the Widget class that you created in “Example:
Extending the Widget class” on page 266. You could create a new method in your superclass
(Widget) and then either override the method in your subclass (SubWidget) or just use the
inherited method from the Widget class. The following example shows how you can override
existing methods in your classes.

To override methods in a subclass:

1. Create a new ActionScript document and save it as Widget.as.

2. In Widget.as, type the following ActionScript code into the Script window.

Note: If you created the Widget class in an earlier example, modify the existing code by
adding the doSomething() method, as follows:

class Widget {
public static var widgetCount:Number = 0;
public function Widget() {

Widget.widgetCount++;
}
public function doSomething():Void {

trace("Widget::doSomething()");
}

}

C
A

U
T

IO
N

If you try to access the static widgetCount variable from the Widget class using the
sw1 or sw2 instances, Flash generates an error telling you that static members can
be accessed only directly through classes.

About writing subclasses in Flash 269

3. Save your changes to the ActionScript document.

The Widget class now defines a constructor and a public method called doSomething().
4. Create a new ActionScript file named SubWidget.as and save it in the same directory

as Widget.as.

5. In SubWidget.as, type the following ActionScript code into the Script window:
class SubWidget extends Widget {

public function SubWidget() {
trace("Creating subwidget # " + Widget.widgetCount);
doSomething();

}
}

6. Save your changes to SubWidget.as.

Notice that the SubWidget class’s constructor calls the doSomething() method that you
defined in the superclass.

7. Create a new Flash document and save it as subWidgetTest.fla in the same directory as the
ActionScript documents.

8. In subWidgetTest.fla, type the following ActionScript into Frame 1 of the main Timeline:
var sw1:SubWidget = new SubWidget();
var sw2:SubWidget = new SubWidget();

9. Save your changes to the Flash document.

10. Select Control > Test Movie to test the Flash document. You see the following output in
the Output panel:
Creating subwidget # 1
Widget::doSomething()
Creating subwidget # 2
Widget::doSomething()

This output shows that the SubWidget class’s constructor calls the constructor of its
superclass (Widget), which increments the static widgetCount property. The SubWidget’s
constructor traces the superclass’s static property and calls the doSomething() method,
which inherits from the superclass.

N
O

T
E

If you created the SubWidget class in “Example: Extending the Widget class”
on page 266, you can use this file instead.

270 Inheritance

11. Open the SubWidget class and add a new method named doSomething(). Modify your
class so that it matches the following code (add the code that’s in boldface):
class SubWidget extends Widget {

public function SubWidget() {
trace("Creating subwidget # " + Widget.widgetCount);
doSomething();

}
public function doSomething():Void {

trace("SubWidget::doSomething()");
}

}

12. Save your changes to the class file, and then open subwidgetTest.fla again.

13. Select Control > Test Movie to test the file. You see the following output in the
Output panel:
Creating subwidget # 1
SubWidget::doSomething()
Creating subwidget # 2
SubWidget::doSomething()

The previous output shows that the doSomething() method in the SubWidget class’s
constructor is calling the doSomething() method in the current class instead of
the superclass.
Open the SubWidget class again, and modify the SubWidget class’s constructor to call the
superclass’s doSomething() method (add the code that’s in boldface):

public function SubWidget() {
trace("Creating subwidget # " + Widget.widgetCount);
super.doSomething();

}

As demonstrated, you can add the super keyword to call the superclass’s doSomething()
method instead of the doSomething() method in the current class. For additional
information on super, see the super entry in the ActionScript 2.0 Language Reference.

14. Save the SubWidget class file with the modified constructor and select Control > Test
Movie to republish the Flash document.

The Output panel displays the contents of the Widget class’s doSomething() method.

Using polymorphism in an application 271

Using polymorphism in an application
Object-oriented programming lets you express differences between individual classes using a
technique called polymorphism, by which classes can override methods of their superclasses
and define specialized implementations of those methods.

For example, you might start with a class called Mammal that has play() and sleep()
methods. You then create Cat, Monkey, and Dog subclasses to extend the Mammal class. The
subclasses override the play() method from the Mammal class to reflect the habits of those
particular kinds of animals. Monkey implements the play() method to swing from trees; Cat
implements the play() method to pounce at a ball of yarn; Dog implements the play()
method to fetch a ball. Because the sleep() functionality is similar among the animals, you
would use the superclass implementation. The following procedure demonstrates this
example in Flash.

To use polymorphism in an application:

1. Create a new ActionScript document and save it as Mammal.as.

This document is the base class for a few different animal classes that you create in
upcoming steps.

2. In Mammal.as, type the following ActionScript code into the Script window:
class Mammal {

private var _gender:String;
private var _name:String = "Mammal";

// constructor
public function Mammal(gender:String) {

this._gender = gender;
}

public function toString():String {
return "[object " + speciesName + "]";

}
public function play():String {

return "Chase another of my kind.";
}
public function sleep():String {

return "Close eyes.";
}

public function get gender():String {
return this._gender;

}
public function get speciesName():String {

return this._name;
}

272 Inheritance

public function set speciesName(value:String):Void {
this._name = value;

}
}

The previous class defines two private variables, _gender and _name, which are used to
store the animal’s gender and mammal type. Next, the Mammal constructor is defined. The
constructor takes a single parameter, gender, which it uses to set the private _gender
variable defined earlier. Three additional public methods are also specified: toString(),
play(), and sleep(), each of which returns string objects. The final three methods are
getter and setter methods for the mammal’s _gender and _name properties.

3. Save the ActionScript document.

This class serves as the superclass for the Cat, Dog, and Monkey classes, which you create
shortly. You can use the toString() method of the Mammal class to display a string
representation of any Mammal instance (or any instance that extended the
Mammal class).

4. Create a new ActionScript file and save it as Cat.as in the same directory as the Mammal.as
class file you created in step 1.

5. In Cat.as, type the following ActionScript code into the Script window:
class Cat extends Mammal {

// constructor
public function Cat(gender:String) {

super(gender);
speciesName = "Cat";

}

public function play():String {
return "Pounce a ball of yarn.";

}
}

Notice that you are overriding the play() method in the Mammal superclass. The Cat
class defines only two methods, a constructor and a play() method. Since the Cat class
extends the Mammal class, the Mammal classes’s methods and properties are inherited by
the Cat class. For more information on overriding, see “Overriding methods and
properties” on page 268.

6. Save your changes to the ActionScript document.

7. Create a new ActionScript document and save it as Dog.as in the same directory as the two
previous class files.

Using polymorphism in an application 273

8. In Dog.as, type the following ActionScript code into the Script window:
class Dog extends Mammal {

// constructor
public function Dog(gender:String) {

super(gender);
speciesName = "Dog";

}

public function play():String {
return "Fetch a stick.";

}
}

Notice that the Dog class is very similar in structure to the Cat class, except that a few of
the values have changed. Again, the Dog class extends the Mammal class and inherits all
its methods and properties. The Dog constructor takes a single property, gender, which it
passes to the Dog class’s parent class, Mammal. The speciesName variable is also
overridden and set to the string Dog. The play() method is also overridden from the
parent class.

9. Save your changes to the ActionScript document.

10. Create another ActionScript document in the same directory as your other files, and save
it as Monkey.as.

11. In Monkey.as, type the following ActionScript code into the Script window:
class Monkey extends Mammal {

// constructor
public function Monkey(gender:String) {

super(gender);
speciesName = "Monkey";

}

public function play():String {
return "Swing from a tree.";

}
}

Similar to the previous two classes, Cat and Dog, the Monkey class extends the Mammal
class. The Monkey class’s constructor calls the constructor for the Mammal class, passing
the gender to the Mammal’s constructor, as well as setting speciesName to the string
Monkey. The Monkey class also overrides the behavior of the play() method.

12. Save your changes to the ActionScript document.

13. Now that you’ve created three subclasses of the Mammal class, create a new Flash
document called mammalTest.fla.

274 Inheritance

14. In mammalTest.fla, type the following ActionScript code into Frame 1 of the
main Timeline:
var mammals_arr:Array = new Array();
this.createTextField("info_txt", 10, 10, 10, 450, 80);
info_txt.html = true;
info_txt.multiline = true;
info_txt.border = true;
info_txt.wordWrap = true;

createMammals()
createReport()

function createMammals():Void {
mammals_arr.push(new Dog("Female"));
mammals_arr.push(new Cat("Male"));
mammals_arr.push(new Monkey("Female"));
mammals_arr.push(new Mammal("Male"));

}

function createReport():Void {
var i:Number;
var len:Number = mammals_arr.length;
// Display Mammal info in 4 columns of HTML text using tab stops.
info_txt.htmlText = "<textformat tabstops='[110, 200, 300]'>";
info_txt.htmlText += "Mammal\tGender\tSleep\tPlay";
for (i = 0; i < len; i++) {

info_txt.htmlText += "<p>" + mammals_arr[i].speciesName
+ "\t" + mammals_arr[i].gender
+ "\t" + mammals_arr[i].sleep()
+ "\t" + mammals_arr[i].play() + "</p>";

// The trace statement calls the Mammal.toString() method.
trace(mammals_arr[i]);

}
info_txt.htmlText += "</textformat>";

}

The mammalTest.fla code is a bit more complex than the previous classes. First it imports
the three animal classes.

15. Save the Flash document, and then select Control > Test Movie to test the document.

You see the Mammal information displayed in a text field on the Stage, and the following
text in the Output panel:
[object Dog]
[object Cat]
[object Monkey]
[object Mammal]

275

8
CHAPTER 8

Interfaces

In object-oriented programming (OOP), an interface is a document that lets you declare (but
not define) the methods that must appear within a class. When you work in teams of
developers, or build larger applications in Flash, interfaces can be very beneficial during
development. Interfaces allow developers to easily identify the base methods in ActionScript
classes. These methods must be implemented when developers use each interface.

This chapter walks you through a few sample interfaces, and by the end of the chapter you are
able to build your own interface files. If you are not familiar with building classes, make sure
that you read Chapter 6, “Classes,” before you try the tutorials and examples in this chapter.

For more information on working with interfaces, see the following topics:
About interfaces .275

Creating interfaces as data types . 280

Understanding inheritance and interfaces .282

Example: Using interfaces .283

Example: Creating a complex interface .285

About interfaces
In object-oriented programming, interfaces are like classes whose methods are not
implemented (defined)—that is, they otherwise don’t “do” anything. Therefore, an interface
consists of “empty” methods. Another class can then implement the methods declared by the
interface. In ActionScript, the distinction between interface and object is only for compile-
time error checking and language rule enforcement.

276 Interfaces

An interface is not a class; however, this is not altogether true in ActionScript at runtime
because an interface is abstract. ActionScript interfaces do exist at runtime to allow type
casting (changing an existing data type to a different type). The ActionScript 2.0 object model
does not support multiple inheritance. Therefore, a class can inherit from a single parent class.
This parent class can be either a core or Flash Player class or a user-defined (custom) class. You
can use interfaces to implement a limited form of multiple inheritance, by which a class
inherits from more than one class.

For example, in C++, the Cat class could extend the Mammal class as well as a Playful class,
which has methods chaseTail() and eatCatNip(). Like Java, ActionScript 2.0 does not
allow a class to extend multiple classes directly but does allow a class to extend a single class
and implement multiple interfaces. So you could create a Playful interface that declares the
chaseTail() and eatCatNip() methods. A Cat class, or any other class, could then
implement this interface and provide definitions for those methods.

You can also think of an interface as a “programming contract” that you can use to enforce
relationships between otherwise unrelated classes. For example, suppose you are working with
a team of programmers, each of whom is working on a different class within the same
application. While designing the application, you agree on a set of methods that the different
classes use to communicate. You create an interface that declares these methods, their
parameters, and their return types. Any class that implements this interface must provide
definitions for those methods; otherwise, a compiler error results. The interface is like a
communication protocol to which all the classes must adhere.

One way to do this would be to create a class that defines all these methods and then have
each class extend, or inherit from, this superclass. But because the application consists of
classes that are unrelated, it doesn’t make sense to put them all into a common class hierarchy.
A better solution is to create an interface that declares the methods these classes use to
communicate, and then have each class implement (provide its own definitions for) those
methods.

You can usually program successfully without using interfaces. When used appropriately,
however, interfaces can make the design of your applications more elegant, scalable, and
maintainable.

ActionScript interfaces exist at runtime to allow type casting; see Chapter 3, “About casting
objects,” on page 75. An interface is not an object or a class, but the workflow is similar to
working with classes. For more information on the class workflow, see “Writing custom class
files” on page 196. For a tutorial on creating an application with interfaces, see “Example:
Using interfaces” on page 283.

About interfaces 277

For more information on using interfaces, see the following sections:

■ “About the interface keyword” on page 277
■ “About naming interfaces” on page 277
■ “Defining and implementing interfaces” on page 278

About the interface keyword
The interface keyword defines an interface. An interface is similar to a class, with the
following important differences:

■ Interfaces contain only declarations of methods, not their implementation. That is, every
class that implements an interface must provide an implementation for each method
declared in the interface.

■ Only public members are allowed in an interface definition; static and class members are
not permitted.

■ The get and set statements are not allowed in interface definitions.
■ To use the interface keyword, you must specify ActionScript 2.0 and Flash Player 6 or

later in the Flash tab of your FLA file’s Publish Settings dialog box.

The interface keyword is supported only when used in external script files, not in scripts
that you write in the Actions panel.

About naming interfaces
Interface names have an uppercase first letter, the same as class names. Interface names are
usually adjectives, such as Printable. The following interface name, IEmployeeRecords,
uses an initial uppercase letter and concatenated words with mixed case:
interface IEmployeeRecords {}

For more information on naming conventions, see Chapter 17, “Best Practices and Coding
Conventions for ActionScript 2.0,” on page 665.

N
O

T
E

Some developers start interface names with an uppercase “I” to distinguish them from
classes. This is a good practice to adopt because it lets you quickly distinguish between
interfaces and regular classes.

278 Interfaces

Defining and implementing interfaces
The process for creating an interface is the same as for creating a class. Like classes, you can
define interfaces only in external ActionScript files. At a minimum, the workflow for creating
an interface involves the following steps:

■ Defining a interface in an external ActionScript file
■ Saving the interface file to a designated classpath directory (a location where Flash looks

for classes) or in the same directory as the application’s FLA file
■ Creating an instance of the class in another script, either in a Flash (FLA) document or an

external script file, or subinterfaces based on the original interface
■ Creating a class that implements the interface in an external script file

You declare an interface using the interface keyword, followed by the interface name, and
then left and right curly braces ({}), which define the body of the interface, as shown in the
following example:
interface IEmployeeRecords {
 // interface method declarations
}

An interface can contain only method (function) declarations, including parameters,
parameter types, and function return types.

For more information on conventions for structuring classes and interfaces, see Chapter 17,
“Best Practices and Coding Conventions for ActionScript 2.0,” on page 665. For a tutorial on
creating an application that uses an interface, see “Example: Using interfaces” on page 283.

For example, the following code declares an interface named IMyInterface that contains two
methods, method1() and method2(). The first method, method1(), has no parameters and
specifies a return type of Void (meaning that it does not return a value). The second method,
method2(), has a single parameter of type String, and specifies a return type of Boolean.

To create a simple interface:

1. Create a new ActionScript file and save it as IMyInterface.as.

2. Type the following ActionScript code into the Script window:
interface IMyInterface {
 public function method1():Void;
 public function method2(param:String):Boolean;
}

3. Save your changes to the ActionScript file.

In order to use the interface within an application, you first need to create a class that
implements your new interface.

About interfaces 279

4. Create a new ActionScript file and save it as MyClass.as in the same directory as the
IMyInterface.as.

5. In the MyClass class file, type the following ActionScript code into the Script window:
class MyClass {
}

In order to instruct the custom class (MyClass) to use your interface (IMyInterface), you
need to use the implements keyword, which specifies that a class must define all the
methods declared in the interface (or interfaces) that you implement.

6. Modify the ActionScript code in MyClass.as (add the boldface code) so it matches the
following snippet:
class MyClass implements IMyInterface {
}

You place the implements keyword after the class name.
7. Click the Check Syntax button.

Flash displays an error in the Output panel stating that MyClass must implement method
X from interface IMyInterface. You see this error message because any class that extends an
interface must define each method that’s listed in the interface document.

8. Modify the MyClass document again (add the boldface code), and write ActionScript code
for the method1() and method2() methods, as shown in the following snippet:
class MyClass implements IMyInterface {

public function method1():Void {
// ...

};
public function method2(param:String):Boolean {

// ...
return true;

}
}

9. Save the MyClass.as document and click Check Syntax.

The Output panel no longer displays any error messages or warnings because you have
now defined the two methods.

The class file that you create is not limited to the public methods that you define in the
interface file. The interface file only outlines the minimum methods that you must
implement, as well as those methods’ properties and return types. Classes that implement a
particular interface almost always include additional methods, variables, and getter and
setter methods.

280 Interfaces

Interface files cannot contain any variable declarations or assignments. Functions that you
declare in an interface cannot contain curly braces. For example, the following interface does
not compile:
interface IBadInterface {

// Compiler error. Variable declarations not allowed in interfaces.
public var illegalVar:String;

// Compiler error. Function bodies not allowed in interfaces.
public function illegalMethod():Void {
}

// Compiler error. Private methods are not allowed in interfaces.
private function illegalPrivateMethod():Void;

// Compiler error. Getters/setters are not allowed in interfaces.
public function get illegalGetter():String;

}

For a tutorial demonstrating how to create a complex interface, see “Example: Using
interfaces” on page 283.

The rules for naming interfaces and storing them in packages are the same as those for classes;
see “About naming class files” on page 225.

Creating interfaces as data types
Like a class, an interface defines a new data type. You can consider any class that implements
an interface to be of the type that is defined by the interface. This is useful for determining
whether a given object implements a given interface. For example, consider the interface
IMovable, which you create in the following example.

To create an interface as a data type:

1. Create a new ActionScript document and save it to your hard disk as IMovable.as.

2. In IMovable.as, type the following ActionScript code into the Script window:
interface IMovable {

public function moveUp():Void;
public function moveDown():Void;

}

3. Save your changes to the ActionScript file.

4. Create a new ActionScript document and save it as Box.as in the same directory as
IMovable.as.

In this document, you create a Box class that implements the IMovable interface that you
created in an earlier step.

Creating interfaces as data types 281

5. In Box.as, type the following ActionScript code into the Script window:
class Box implements IMovable {

public var xPos:Number;
public var yPos:Number;

public function Box() {
}

public function moveUp():Void {
trace("moving up");
// method definition

}
public function moveDown():Void {

trace("moving down");
// method definition

}
}

6. Save your changes to the ActionScript document.

7. Create a new Flash document named boxTest.fla, and then save it in the same directory as
the two previous ActionScript documents.

8. Select Frame 1 of the Timeline, open the ActionScript editor, and then type the following
ActionScript code into the Actions panel (or Script window):
var newBox:Box = new Box();

This ActionScript code creates an instance of the Box class, which you declare as a variable
of the Box type.

9. Save your changes to the Flash document, and then select Control > Test Movie to test the
SWF file.

In Flash Player 7 and later, you can cast an expression to an interface type or other data
type at runtime. Unlike Java interfaces, ActionScript interfaces exist at runtime, which
allows type casting. If the expression is an object that implements the interface or has a
superclass that implements the interface, the object is returned. Otherwise, null is
returned. This is useful if you want to ensure that a particular object implements a certain
interface. For more information on type casting, see Chapter 3, “About casting objects,”
on page 75.

10. Add the following code at the end of the ActionScript code in boxTest.fla:
if (IMovable(newBox) != null) {

newBox.moveUp();
} else {

trace("box instance is not movable");
}

282 Interfaces

This ActionScript code checks whether the newBox instance implements the IMovable
interface before you call the moveUp() method on the object.

11. Save the Flash document, and then select Control > Test Movie to test the SWF file.

Because the Box instance implements the IMovable interface, the Box.moveUp() method
is called, and the text “moving up” appears in the Output panel.

For more information about casting, see Chapter 3, “About casting objects,” on page 75.

Understanding inheritance and interfaces
You can use the extends keyword to create subclasses of an interface. This can be very useful
in larger projects for which you might want to extend (or subclass) an existing interface and
add additional methods. These methods must be defined by any classes implementing
that interface.

One consideration you need to make when extending interfaces is that you receive error
messages in Flash if multiple interface files declare functions with the same names but have
different parameters or return types.

The following example demonstrates how you can subclass an interface file using the extends
keyword.

To extend an interface:

1. Create a new ActionScript file, and then save it as Ia.as.

2. In Ia.as, type the following ActionScript code into the Script window:
interface Ia {

public function f1():Void;
public function f2():Void;

}

3. Save your changes to the ActionScript file.

4. Create a new ActionScript file and save it as Ib.as in the same folder as the Ia.as file you
created in step 1.

5. In Ib.as, type the following ActionScript code into the Script window:
interface Ib extends Ia {

public function f8():Void;
public function f9():Void;

}

6. Save your changes to the ActionScript file.

7. Create a new ActionScript file and save it as ClassA.as in the same directory as the two
previous files.

Example: Using interfaces 283

8. In ClassA.as, type the following ActionScript code into the Script window:
class ClassA implements Ib {

// f1() and f2() are defined in interface Ia.
public function f1():Void {
}
public function f2():Void {
}

// f8() and f9() are defined in interface Ib, which extends Ia.
public function f8():Void {
}
public function f9():Void {
}

}

9. Save your class file and click the Check Syntax button above the Script window.

Flash doesn’t generate any error messages as long as all four methods are defined and
match the definitions from their respective interface files.

If you want your ClassA class to implement multiple interfaces in the previous example, you
would simply separate the interfaces with commas. Or, if you had a class that extended a
superclass and implemented multiple interfaces, you would use code similar to the following:
class ClassA extends ClassB implements Ib, Ic, Id {...}.

Example: Using interfaces
In this example you create a simple interface that you can reuse between many
different classes.

To build an interface:

1. Create a new ActionScript file and save it as IDocumentation.as.

2. In IDocumentation.as, type the following ActionScript code into the Script window:
interface IDocumentation {

public function downloadUpdates():Void;
public function checkForUpdates():Boolean;
public function searchHelp(keyword:String):Array;

}

3. Save the changes that you made to the ActionScript interface file.

4. Create a new ActionScript file in the same directory as the IDocumentation.as file, and save
this new file as FlashPaper.as.

N
O

T
E

Classes are only able to extend one class in ActionScript 2.0, although you can use
classes to implement as many interfaces as you want.

284 Interfaces

5. In FlashPaper.as, type the following ActionScript code into the Script window:
class FlashPaper implements IDocumentation {
}

6. Save the changes that you made to the ActionScript file.

7. Click the Check Syntax button for your ActionScript class.

You see an error that’s similar to the following message:
Error path\FlashPaper.as: Line 1: The class must implement method

'checkForUpdates' from interface 'IDocumentation'.

 class FlashPaper implements IDocumentation {

Total ActionScript Errors: 1 Reported Errors: 1

This error appears because the current FlashPaper class doesn’t define any of the public
methods that you defined in the IDocumentation interface.

8. Open the FlashPaper.as class file again and modify the existing ActionScript code so that
it matches the following code:
class FlashPaper implements IDocumentation {

private static var __version:String = "1,2,3,4";
public function downloadUpdates():Void {
};
public function checkForUpdates():Boolean {

return true;
};
public function searchHelp(keyword:String):Array {

return []
};

}

9. Save your changes to the ActionScript file, and then click Check Syntax again.

This time you don’t see any errors appear in the Output panel.

10. Open the IDocumentation interface document again, and add the following boldface line
of code (below the searchHelp() method):
interface IDocumentation {

public function downloadUpdates():Void;
public function checkForUpdates():Boolean;
public function searchHelp(keyword:String):Array;
public function addComment(username:String, comment:String):Void;

}

N
O

T
E

You can add as many additional static, public, or private variables or methods as you
want to the FlashPaper class file. The interface file defines only a set of minimum
methods that must appear within any class that implements that interface.

Example: Creating a complex interface 285

11. Save your changes to the interface file, and then reopen the FlashPaper.as document.

12. Click the Check Syntax button, and you see a new error message in the Output panel:
Error path\FlashPaper.as: Line 1: The class must implement method

'addComment' from interface 'IDocumentation'.

 class FlashPaper implements IDocumentation {

Total ActionScript Errors: 1 Reported Errors: 1

You see the previous error because the FlashPaper.as class file no longer defines all the
classes that you outlined in the interface file. To fix this error message, you must either add
the addComment() method to the FlashPaper class or remove the method definition from
the IDocumentation interface file.

13. Add the following method in the FlashPaper class:
public function addComment(username:String, comment:String):Void {

/* Send parameters to server-side page, which inserts comment into
database. */

}

14. Save the changes to FlashPaper.as and click the Check Syntax button and you should no
longer receive any errors.

In the previous section, you created a class-based on the IDocumentation interface file. In this
section you create a new class that also implements the IDocumentation interface, although it
adds some additional methods and properties.

This tutorial demonstrates the usefulness of using interfaces because if you want to create
another class that extends the IDocumentation interface, you can easily identify the methods
that are required within the new class.

Example: Creating a complex interface
The following example shows several ways to define and implement interfaces. In this tutorial
you learn how to create a simple interface file and how to write a class that implements
multiple interfaces, as well as how to have interfaces extend other interfaces to create more
complex data structures.

To create a complex interface:

1. Create a new ActionScript document and save it as InterfaceA.as.

2. Create a new folder called complexInterface and save InterfaceA.as to this directory.

You save all of the files you create for this tutorial in this directory.

286 Interfaces

3. In Interface.as, type the following ActionScript code into the Script window:
// filename: InterfaceA.as
interface InterfaceA {

public function k():Number;
public function n(z:Number):Number;

}

4. Save the ActionScript document and then create a new ActionScript document named
ClassB.as and save it in the complexInterface directory.

ClassB.as implements the InterfaceA interface you created previously.
5. In ClassB.as, type the following ActionScript code into the Script window:

// filename: ClassB.as
class ClassB implements InterfaceA {

public function k():Number {
return 25;

}
public function n(z:Number):Number {

return (z + 5);
}

}

6. Save your changes to the ClassB.as document and then create a new Flash document and
save it as classbTest.fla in the complexInterface directory.

This class file tests the ClassB class you created previously.
7. In classbTest.fla, type the following ActionScript code on Frame 1 of the Timeline:

// filename: classbTest.fla
import ClassB;
var myB:ClassB = new ClassB();
trace(myB.k()); // 25
trace(myB.n(7)); // 12

8. Save your changes to the Flash document, and then select Control >Test Movie to test the
Flash document.

The Output panel displays two numbers, 25 and 12, which are the results of the k() and
n() methods in the ClassB class.

9. Create a new ActionScript file and save it as ClassC.as in the complexInterface directory.

This class file implements the InterfaceA interface that you created in step 1.

Example: Creating a complex interface 287

10. In ClassC.as, type the following ActionScript code into the Script window:
// filename: ClassC.as
class ClassC implements InterfaceA {

public function k():Number {
return 25;

}
// **Error** The class must also implement method 'n' from interface
'InterfaceA'.

}

If you click the Check Syntax button for the ClassC class file, Flash displays an error
message in the Output panel that says the current class must implement the n() method
defined in the InterfaceA interface. When you create classes that implement an interface,
it is important that you define methods for each entry in the interface.

11. Create a new ActionScript document and save it as InterfaceB.as in the complexInterface
directory.

12. In InterfaceB.as, type the following ActionScript code into the Script window:
// filename: InterfaceB.as
interface InterfaceB {

public function o():Void;
}

13. Save your changes to the InterfaceB.as document, and then create a new ActionScript
document and save it in the complexInterface directory as ClassD.as.

This class implements both the InterfaceA interface and the InterfaceB interface you
created in earlier steps. The ClassD class must include method implementations for each
of the methods listed in each of the interface files.

14. In ClassD.as, type the following ActionScript code into the Script window:
// filename: ClassD.as
class ClassD implements InterfaceA, InterfaceB {

public function k():Number {
return 15;

}
public function n(z:Number):Number {

return (z * z);
}
public function o():Void {

trace("o");
}

}

15. Save your changes to the ClassD.as file, and then create a new Flash document and save it
as classdTest.fla.

This Flash document tests the ClassD class that you created previously.

288 Interfaces

16. In classdTest.fla, add the following ActionScript code on Frame 1 of the Timeline:
// filename: classdTest.fla
import ClassD;
var myD:ClassD = new ClassD();
trace(myD.k()); // 15
trace(myD.n(7)); // 49
myD.o(); // o

17. Save your changes to the classdTest.fla file and then select Control > Test Movie to test the
file.

The values 15 and 49 and the letter o should be displayed in the Output panel. These
values are the results of the ClassD.k() method, ClassD.n(), and ClassD.o() methods,
respectively.

18. Create a new ActionScript document and save it as InterfaceC.as.

This interface extends the InterfaceA interface you created earlier, and it adds a new
method definition.

19. In InterfaceC.as, type the following ActionScript code into the Script window:
// filename: InterfaceC.as
interface InterfaceC extends InterfaceA {

public function p():Void;
}

20.Save your changes to the ActionScript file and then create a new ActionScript file and save
it as ClassE.as in the complexInterface directory.

This class implements two interfaces, InterfaceB and InterfaceC.
21. In ClassE.as, type the following ActionScript code into the Script window:

// filename: ClassE.as
class ClassE implements InterfaceB, InterfaceC {

public function k():Number {
return 15;

}
public function n(z:Number):Number {

return (z + 5);
}
public function o():Void {

trace("o");
}
public function p():Void {

trace("p");
}

}

22.Save your changes to the ActionScript document, and then create a new Flash document
and save it as classeTest.fla in the complexInterface directory.

Example: Creating a complex interface 289

23.In classeTest.fla, type the following ActionScript code on Frame 1 of the Timeline:
// filename: classeTest.fla
import ClassE;
var myE:ClassE = new ClassE();
trace(myE.k()); // 15
trace(myE.n(7)); // 12
myE.o(); // o
myE.p(); // p

24.Save the Flash document, and then select Control > Test Movie to test the SWF file.

The values 15, 12, o, and p display in the Output panel. These values are the values that
return from the ClassE.k(), ClassE.n(), ClassE.o(), and ClassE.p() methods. Since
the ClassE class implemented both the InterfaceB and InterfaceC interfaces, each method
from the two interface files must be defined. Although the InterfaceB and InterfaceC
interfaces only define the o() and p() methods, InterfaceC extends InterfaceA. This
means that all of its defined methods, k() and n(), must also be implemented.

290 Interfaces

291

9
CHAPTER 9

Handling Events

Events are actions that occur while a SWF file is playing. An event such as a mouse click or a
keypress is called a user event because it occurs as a result of direct user interaction. An event
that Flash Player generates automatically, such as the initial appearance of a movie clip on the
Stage, is called a system event because it isn’t generated directly by the user.

In order for your application to react to events, you must use event handlers—ActionScript
code associated with a particular object and event. For example, when a user clicks a button
on the Stage, you might advance the playhead to the next frame. Or when an XML file
finishes loading over the network, the contents of that file might appear in a text field.

You can handle events in ActionScript in several ways:

■ “About ActionScript and events” on page 292
■ “Using event listeners” on page 296
■ “Using button and movie clip event handlers” on page 300, specifically, on handler and

onClipEvent handler.
■ “Broadcasting events from component instances” on page 305

Using event handlers with loadMovie (MovieClip.loadMovie method) can be unpredictable.
If you attach an event handler to a button using on(), or if you create a dynamic handler
using an event handler method such as onPress (MovieClip.onPress handler), and then you
call loadMovie(), the event handler is not available after the new content is loaded. However,
if you use onClipEvent handler or on handler to attach an event handler to a movie clip, and
then call loadMovie() on that movie clip, the event handler is still available after the new
content is loaded.

292 Handling Events

For more information on handling events, see the following sections:
About ActionScript and events .292

Using event listeners .296

Using event listeners with components .298

Using button and movie clip event handlers. 300

Broadcasting events from component instances . 305

Creating movie clips with button states . 305

Event handler scope . 306

Scope of the this keyword . 310

Using the Delegate class . 310

About ActionScript and events
In Flash, ActionScript code is executed when an event occurs: for example, when a movie clip
is loaded, when a keyframe on the timeline is entered, or when the user clicks a button. Events
can be triggered either by the user or by the system. Users click mouse buttons and press keys;
the system triggers events when specific conditions are met or processes completed (the SWF
file loads, the timeline reaches a certain frame, a graphic finishes downloading, and so on).

When an event occurs, you write an event handler to respond to the event with an action.
Understanding when and where events occur will help you to determine how and where you
will respond to the event with an action, and which ActionScript tools to use in each case.

Events can be grouped into a number of categories: mouse and keyboard events, which occur
when a user interacts with your Flash application through the mouse and keyboard; clip
events, which occur within movie clips; and frame events, which occur within frames on
the timeline.

Mouse and keyboard events
A user interacting with your SWF file or application triggers mouse and keyboard events. For
example, when the user rolls over a button, the Button.onRollOver or on(rollOver) event
occurs; when the user clicks a button, the Button.onRelease event occurs; if a key on the
keyboard is pressed, the on(keyPress) event occurs. You can write code on a frame or attach
scripts to an instance to handle these events and add all the interactivity you desire.

Using event handler methods 293

Clip events
Within a movie clip, you may react to a number of clip events that are triggered when the user
enters or exits the scene or interacts with the scene by using the mouse or keyboard. You
might, for example, load an external SWF file or JPG image into the movie clip when the user
enters the scene, or allow the user’s mouse movements to reposition elements in the scene.

Frame events
On a main or movie clip timeline, a system event occurs when the playhead enters a
keyframe—this is known as a frame event. Frame events are useful for triggering actions based
on the passage of time (moving through the timeline) or for interacting with elements that are
currently visible on the Stage. When you add a script to a keyframe, it is executed when the
keyframe is reached during playback. A script attached to a frame is called a frame script.

One of the most common uses of frame scripts is to stop the playback when a certain
keyframe is reached. This is done with the stop() function. You select a keyframe and then
add the stop() function as a script element in the Actions panel.

When you’ve stopped the SWF file at a certain keyframe, you need to take some action. You
could, for example, use a frame script to dynamically update the value of a label, to manage
the interaction of elements on the Stage, and so on.

Using event handler methods
An event handler method is a method of a class that is invoked when an event occurs on an
instance of that class. For example, the MovieClip class defines an onPress event handler that
is invoked whenever the mouse is pressed on a movie clip object. Unlike other methods of a
class, however, you don’t invoke an event handler directly; Flash Player invokes it
automatically when the appropriate event occurs.

294 Handling Events

The following ActionScript classes are examples of classes that define event handlers: Button,
ContextMenu, ContextMenuItem, Key, LoadVars, LocalConnection, Mouse, MovieClip,
MovieClipLoader, Selection, SharedObject, Sound, Stage, TextField, XML and XMLSocket.
For more information about the event handlers they provide, see the entries for each class
in ActionScript 2.0 Language Reference. The word handler is added in the title of each
event handler.

By default, event handler methods are undefined: when a particular event occurs, its
corresponding event handler is invoked, but your application doesn’t respond further to the
event. To have your application respond to the event, you define a function with the function
statement and then assign that function to the appropriate event handler. The function you
assign to the event handler is then automatically invoked whenever the event occurs.

An event handler consists of three parts: the object to which the event applies, the name of the
object’s event handler method, and the function you assign to the event handler. The
following example shows the basic structure of an event handler:
object.eventMethod = function () {

// Your code here, responding to event.
}

For example, suppose you have a button named next_btn on the Stage. The following code
assigns a function to the button’s onPress event handler; this function advances the playhead
to the next frame in the current timeline:
next_btn.onPress = function () {

nextFrame();
}

Assigning a function reference In the previous code, the nextFrame() function is
assigned to an event handler for onPress. You can also assign a function reference (name) to
an event handler method and later define the function, as shown in the following example:
// Assign a function reference to button's onPress event handler.
next_btn.onPress = goNextFrame;

// Define goNextFrame() function.
function goNextFrame() {

nextFrame();
}

Notice in the following example that you assign the function reference, not the function’s
return value, to the onPress event handler:
// Incorrect!
next_btn.onPress = goNextFrame();
// Correct.
next_btn.onPress = goNextFrame;

Using event handler methods 295

Receiving passed parameters Some event handlers receive passed parameters that provide
information about the event that occurred. For example, the TextField.onSetFocus event
handler is invoked when a text field instance gains keyboard focus. This event handler receives
a reference to the text field object that previously had keyboard focus.

For example, the following code inserts some text into a text field that no longer has
keyboard focus:
this.createTextField("my_txt", 99, 10, 10, 200, 20);
my_txt.border = true;
my_txt.type = "input";
this.createTextField("myOther_txt", 100, 10, 50, 200, 20);
myOther_txt.border = true;
myOther_txt.type = "input";
myOther_txt.onSetFocus = function(my_txt:TextField) {

my_txt.text = "I just lost keyboard focus";
};

Event handlers for runtime objects You can also assign functions to event handlers for
objects you create at runtime. For example, the following code creates a new movie clip
instance (newclip_mc) and then assigns a function to the clip’s onPress event handler:
this.attachMovie("symbolID", "newclip_mc", 10);
newclip_mc.onPress = function () {

trace("You pressed me");
}

For more information, see “Creating movie clips at runtime” on page 321.

Overriding event handler methods By creating a class that extends an ActionScript class,
you can override event handler methods with the functions that you write. You can define an
event handler in a new subclass that you can then reuse for various objects by linking any
symbol in the library of the extended class to the new subclass. The following code overrides
the MovieClip class’s onPress event handler with a function that decreases the transparency
of the movie clip:
// FadeAlpha class -- sets transparency when you click the movie clip.
class FadeAlpha extends MovieClip {
 function onPress() {
 this._alpha -= 10;
 }
}

For specific instructions on extending an ActionScript class and linking to a symbol in the
library, see the examples in “Assigning a class to symbols in Flash” on page 239. For
information on writing and working with custom classes, see Chapter 6, “Classes.”

296 Handling Events

Using event listeners
Event listeners let an object, called a listener object, receive events broadcast by another object,
called a broadcaster object. The broadcaster object registers the listener object to receive events
generated by the broadcaster. For example, you can register a movie clip object to receive
onResize notifications from the Stage, or a button instance could receive onChanged
notifications from a text field object. You can register multiple listener objects to receive
events from a single broadcaster, and you can register a single listener object to receive events
from multiple broadcasters.

The listener-broadcaster model for events, unlike event handler methods, lets you have
multiple pieces of code listen to the same event without conflict. Event models that do not use
the listener/broadcaster model, such as XML.onLoad(), can be problematic when various
pieces of code are listening to the same event; the different pieces of code have conflicts over
control of that single XML.onLoad callback function reference. With the listener/broadcaster
model, you can easily add listeners to the same event without worrying about code
bottlenecks.

The following ActionScript classes can broadcast events: Key, Mouse, MovieClipLoader,
Selection, Stage, and TextField. To see which listeners are available for a class, see each class
entry in the ActionScript 2.0 Language Reference.

For more information on event listeners, see the following topics:

■ “Event listener model” on page 296
■ “Event listener example” on page 297

For a sample source file, stagesize.fla, that demonstrates how the Stage.scaleMode property
affects the values of Stage.width and Stage.height when the browser window is resized,
see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/StageSize folder to access
the sample.

Event listener model
The event model for event listeners is similar to the model for event handlers (see “About
ActionScript and events” on page 292), with two main differences:

■ You assign the event handler to the listener object, not the object that broadcasts
the event.

■ You call a special method of the broadcaster object, addListener(), which registers the
listener object to receive its events.

http://www.adobe.com/go/learn_fl_samples

Using event listeners 297

The following code outlines the event listener model:
var listenerObject:Object = new Object();
listenerObject.eventName = function(eventObj:Object) {

// Your code here
};
broadcasterObject.addListener(listenerObject);

The code starts with an object, listenerObject, with a property eventName. Your listener
object can be any object, such as an existing object, movie clip, or button instance on the
Stage, or it can be an instance of any ActionScript class. For example, a custom movie clip
could implement the listener methods for Stage listeners. You could even have one object that
listens to several types of listeners.

The eventName property is an event that occurs on broadcasterObject, which then
broadcasts the event to listenerObject. You can register multiple listeners to one
event broadcaster.

You assign a function to the event listener that responds to the event in some way.

Last, you call the addListener() method on the broadcaster object, passing the listener
object to the addListener() method.

To unregister a listener object from receiving events, you call the removeListener() method
of the broadcaster object, passing it the name of the event to remove, and the listener object.
broadcasterObject.removeListener(listenerObject);

Event listener example
The following example shows how to use the onSetFocus event listener in the Selection class
to create a simple focus manager for a group of input text fields. In this case, the border of the
text field that receives keyboard focus is enabled (appears), and the border of the text field that
does not have focus is disabled.

To create a simple focus manager with event listeners:

1. Using the Text tool, create a text field on the Stage.

2. Select the text field, and then in the Property inspector, select Input Text from the Text
Type pop-up menu and click the Show Border Around Text button.

3. Create another input text field below the first one.

Make sure the Show Border Around Text option is not selected for this text field. You can
continue to create input text fields.

4. Select Frame 1 in the Timeline and open the Actions panel (Window > Actions).

298 Handling Events

5. To create an object that listens for focus notification from the Selection class, enter the
following code in the Actions panel:
// Creates listener object, focusListener.
var focusListener:Object = new Object();
// Defines function for listener object.
focusListener.onSetFocus = function(oldFocus_txt:TextField,

newFocus_txt:TextField) {
oldFocus_txt.border = false;
newFocus_txt.border = true;

}

This code creates an object named focusListener that defines an onSetFocus property
and assigns a function to the property. The function takes two parameters: a reference to
the text field that does not have focus and one to the text field that has focus. The
function sets the border property of the text field that does not have focus to false, and
sets the border property of the text field that has focus to true.

6. To register the focusListener object to receive events from the Selection object, add the
following code to the Actions panel:
// Registers focusListener with broadcaster.
Selection.addListener(focusListener);

7. Test the application (Control > Test Movie), click in the first text field, and press the Tab
key to switch focus between fields.

Using event listeners with components
When you work with components, you have a slightly different event-listener syntax.
Components generate events, and you must specifically listen for these events by using either
a listener object or a custom function.

The following example shows how you can use event listeners to monitor the download
progress of a dynamically loaded image.

To listen for Loader component events:

1. Drag an instance of the Loader component onto the Stage from the Components panel.

2. Select the loader, and type my_ldr in the Instance Name text box in the Property inspector.

Using event listeners with components 299

3. Add the following code to Frame 1 of the main Timeline;
System.security.allowDomain("http://www.helpexamples.com");

var loaderListener:Object = new Object();
loaderListener.progress = function(evt_obj:Object):Void {

trace(evt_obj.type); // progress
trace("\t" + evt_obj.target.bytesLoaded + " of " +
evt_obj.target.bytesTotal + " bytes loaded");

}
loaderListener.complete = function(evt_obj:Object):Void {

trace(evt_obj.type); // complete
}

my_ldr.addEventListener("progress", loaderListener);
my_ldr.addEventListener("complete", loaderListener);
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");

This ActionScript code defines a listener object named loaderListener, which listens for
two events: progress and complete. When each of these events are dispatched, their
code is executed, and debugging text is displayed in the Output panel if you test the SWF
file in the authoring tool.
Next you tell the my_ldr instance to listen for each of the two specified events (progress
and complete) and specify the listener object or function to execute when the event is
dispatched. Finally, the Loader.load() method is called, which triggers the image to
begin downloading.

4. Select Control > Test Movie to test the SWF file.

The image downloads into the Loader instance on the Stage, and then several messages are
displayed in the Output panel. Depending on the size of the image you download, and if
the image was cached on the user’s local system, the progress event might be dispatched
numerous times, whereas the complete event is only dispatched after the image is
completely downloaded.
When you work with components and dispatch events, the syntax is slightly different
from the event listeners in previous examples. Most notably, you must use the
addEventListener() method instead of calling addListener(). Secondly, you must
specify the specific event you want to listen for as well as the event listener object
or function.

300 Handling Events

Instead of using a listener object, as in the first procedure under “Using event listeners with
components” on page 298, you can use a custom function. The code in the previous example
could be rewritten as follows:

System.security.allowDomain("http://www.helpexamples.com");

my_ldr.addEventListener("progress", progressListener);
my_ldr.addEventListener("complete", completeListener);
my_ldr.load("http://www.helpexamples.com/flash/images/image1.png");

function progressListener(evt_obj:Object):Void {
trace(evt_obj.type); // progress
trace("\t" + evt_obj.target.bytesLoaded + " of " +
evt_obj.target.bytesTotal + " bytes loaded");

}
function completeListener(evt_obj:Object):Void {

trace(evt_obj.type); // complete
}

Using button and movie clip event
handlers
You can attach event handlers directly to a button or movie clip instance on the Stage by using
the onClipEvent() and on() event handlers. The onClipEvent() event handler broadcasts
movie clip events, and the on() event handler handles button events.

To attach an event handler to a button or movie clip instance, click the button or movie clip
instance on the Stage to bring it in focus, and then enter code in the Actions panel. The title
of the Actions panel reflects that code will be attached to the button or movie clip: Actions
Panel - Button or Actions Panel - Movie Clip. For guidelines about using code that’s attached
to button or movie clip instances, see “Attaching code to objects” on page 680.

N
O

T
E

In the previous examples, the event listeners are always added before the
Loader.load() method is called. If you call the Loader.load() method before you
specify the event listeners, the load might complete before the event listeners are
fully defined. This means that the content might display and the complete event might
not be caught.

N
O

T
E

Do not confuse button and movie clip event handlers with component events, such as
SimpleButton.click, UIObject.hide, and UIObject reveal, which must be
attached to component instances and are discussed in Using ActionScript 2.0
Components.

Using button and movie clip event handlers 301

You can attach onClipEvent() and on() only to movie clip instances that have been placed
on the Stage during authoring. You cannot attach onClipEvent() or on() to movie clip
instances that are created at runtime (using the attachMovie() method, for example). To
attach event handlers to objects created at runtime, use event handler methods or event
listeners. (See “About ActionScript and events” on page 292 and “Using event listeners”
on page 296.)

For more information on button and movie clip event handlers, see the following topics:

■ “Using on and onClipEvent with event handler methods” on page 301
■ “Specifying events for on or onClipEvent methods” on page 303
■ “Attaching or assigning multiple handlers to one object” on page 304

Using on and onClipEvent with event handler
methods
You can, in some cases, use different techniques to handle events without conflict. Using the
on() and onClipEvent() methods doesn’t conflict with using event handler methods that
you define.

For example, suppose you have a button in a SWF file; the button can have an on(press)
handler that tells the SWF file to play, and the same button can have an onPress() method,
for which you define a function that tells an object on the Stage to rotate. When you click the
button, the SWF file plays and the object rotates. Depending on when and what kinds of
events you want to invoke, you can use the on() and onClipEvent() methods, event
handler methods, or both techniques of event handling.

However, the scope of variables and objects in on() and onClipEvent() handlers is different
than in event handler and event listeners. See “Event handler scope” on page 306.

You can also use on() with movie clips to create movie clips that receive button events. For
more information, see “Creating movie clips with button states” on page 305. For
information on specifying events for on() and onClipEvent(), see “Specifying events for on
or onClipEvent methods” on page 303.

N
O

T
E

Attaching onClipEvent() and on() handlers is not a recommended practice. Instead, you
should put your code in frame scripts or in a class file, as demonstrated throughout this
manual. For more information, see “About ActionScript and events” on page 292 and
“Attaching code to objects” on page 680.

302 Handling Events

To use an on handler and onPress event handler:

1. Create a new Flash document and save it as handlers.fla.

2. Select the Rectangle Tool and draw a large square on the Stage.

3. Select the Selection Tool, double-click the square on the Stage, and press F8 to launch the
Convert to Symbol dialog box.

4. Enter a symbol name for the box, set the type to Movie clip and click OK.

5. Give the movie clip on the Stage an instance name of box_mc.

6. Add the following ActionScript directly on the movie clip symbol on the Stage:
on (press) {

trace("on (press) {...}");
}

7. Add the following ActionScript to Frame 1 of the main Timeline:
box_mc.onPress = function() {

trace("box_mc.onPress = function() {...};");
};

8. Select Control > Test Movie to test the Flash document.

When you click the movie clip symbol on the Stage, the following output is sent to the
Output panel:

on (press) {...}
box_mc.onPress = function() {...};

N
O

T
E

Attaching onClipEvent() and on() handlers is not a recommended practice. Instead,
you should put your code in frame scripts or in a class file, as demonstrated
throughout this manual. For more information, see “About ActionScript and events”
on page 292 and “Attaching code to objects” on page 680.

Using button and movie clip event handlers 303

Specifying events for on or onClipEvent methods
To use an on() or onClipEvent() handler, attach it directly to an instance of a button or
movie clip on the Stage and specify the event you want to handle for that instance. For a
complete list of events supported by the on() and onClipEvent() event handlers, see on
handler and onClipEvent handler in the ActionScript 2.0 Language Reference.

For example, the following on() event handler executes whenever the user clicks the button to
which the handler is attached:
on (press) {

trace("Thanks for pressing me.");
}

You can specify two or more events for each on() handler, separated by commas. The
ActionScript in a handler executes when either of the events specified by the handler occurs.
For example, the following on() handler attached to a button executes whenever the mouse
rolls over and then off the button:
on (rollOver, rollOut) {

trace("You rolled over, or rolled out");
}

You can also add key press events using on() handlers. For example, the following code traces
a string when you press the number 3 on the keyboard. Select a button or movie clip instance,
and add the following code to the Actions panel:
on (keyPress "3") {

trace("You pressed 3")
}

Or, if you want to trace when the Enter key is pressed by a user, you could use the following
code format. Select a button or movie clip instance, and add the following code to the Actions
panel:
on (keyPress "<Enter>") {

trace("Enter Pressed");
}

Select Control > Test Movie, and press the Enter key to see the string trace to the Output
panel. If nothing traces, select Control > Disable Keyboard Shortcuts and try again. For more
information on adding keypress interactivity to your applications, see Key.

N
O

T
E

Attaching onClipEvent() and on() handlers is not a recommended practice. Instead, you
should put your code in frame scripts or in a class file, as demonstrated throughout this
manual. For more information, see “About ActionScript and events” on page 292 and
“Attaching code to objects” on page 680.

304 Handling Events

Attaching or assigning multiple handlers to one object
You can also attach more than one handler to an object if you want different scripts to run
when different events occur. For example, you could attach the following onClipEvent()
handlers to the same movie clip instance. The first executes when the movie clip first loads (or
appears on the Stage); the second executes when the movie clip is unloaded from the Stage.
on (press) {

this.unloadMovie()
}
onClipEvent (load) {

trace("I've loaded");
}
onClipEvent (unload) {

trace("I've unloaded");
}

To attach multiple handlers to one object using code that’s placed on the timeline, see the
following example. The code attaches the onPress and onRelease handlers to a movie clip
instance.

To assign multiple handlers to an object:

1. Create a new Flash document, and name it assignMulti.fla.

2. Select Frame 1 of the Timeline, and add the following code in the Actions panel:
this.createEmptyMovieClip("img_mc", 10);
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip) {
 target_mc.onPress = function() {
 target_mc.startDrag();
 };
 target_mc.onRelease = function() {
 target_mc.stopDrag();
 };
}
mclListener.onLoadError = function(target_mc:MovieClip) {
 trace("error downloading image");
}
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

N
O

T
E

Attaching onClipEvent() and on() handlers is not a recommended practice. Instead, you
should put your code in frame scripts or in a class file, as demonstrated throughout this
manual. For more information, see “About ActionScript and events” on page 292 and
“Attaching code to objects” on page 680.

Creating movie clips with button states 305

3. Select Control > Test Movie to test the document.

The image loads into the img_mc instance, and the onPress() and onRelease() event
handlers let you drag the image around the Stage.

Broadcasting events from component
instances
For any component instance, you can specify how an event is handled. Component events are
handled differently than events broadcast from native ActionScript objects.

For more information, see Using ActionScript 2.0 Components.

Creating movie clips with button states
When you attach an on() handler to a movie clip, or assign a function to one of the
MovieClip mouse event handlers for a movie clip instance, the movie clip responds to mouse
events in the same way as a button. You can also create automatic button states (Up, Over,
and Down) in a movie clip by adding the frame labels _up, _over, and _down to the movie
clip’s timeline.

When the user moves the mouse over the movie clip or clicks it, the playhead is sent to the
frame with the appropriate frame label. To designate the hit area that a movie clip uses, you
use the hitArea (MovieClip.hitArea property) property.

To create button states in a movie clip:

1. Create a new Flash document and save it as mcbutton.fla.

2. Using the Rectangle Tool, draw a small rectangle (approximately 100 pixels wide by 20
pixels high) on the Stage.

3. Double-click the shape with the Selection tool and press F8 to launch the Convert to
Symbol dialog box.

4. Enter a symbol name of mcbutton, set the symbol type to movie clip, and click OK.

5. Double-click the movie clip symbol on the Stage to enter symbol-editing mode.

6. Create a new layer in the movie clip’s timeline and rename the new layer labels.

7. Enter a frame label of _up in the Property inspector.

8. Create a new layer above the default layer and labels layer.

306 Handling Events

9. Rename the new layer actions and add the following ActionScript to Frame 1 of the movie
clip’s timeline:
stop();

10. Select Frame 10, all three layers, and select Insert > Timeline > Keyframe.

11. Add a stop() action on Frame 10 of the actions layer, and add a frame label of _over in
frame 10 of the labels layer.

12. Select the rectangle on Frame 10 and use the Property inspector to select a different
fill color.

13. Create new keyframes on frame 20 of each of the three layers, and add a frame label of
_down in the Property inspector.

14. Modify the color of the rectangle in Frame 20 so each of the three button states have a
different color.

15. Return to the main timeline.

16. To make the movie clip respond to mouse events, do one of the following:

■ Attach an on() event handler to the movie clip instance, as discussed in “Using button
and movie clip event handlers” on page 300).

■ Assign a function to one of the movie clip object’s mouse event handlers (onPress,
onRelease, and so forth), as discussed in “About ActionScript and events”
on page 292.

17. Select Control > Test Movie to test the Flash document.

Move your mouse pointer over the movie clip instance on the Stage and the movie clip
automatically goes to the movie clip’s _over state. Click the movie clip instance and the
playhead automatically goes to the movie clip’s _down state.

Event handler scope
The scope, or context, of variables and commands that you declare and execute within an
event handler depends on the type of event handler you use: event handlers or event listeners,
or on() and onClipEvent() handlers. If you’re defining an event handler in a new
ActionScript class, the scope also depends on how you define the event handler. This section
contains both ActionScript 1.0 and ActionScript 2.0 examples.

ActionScript 1.0 examples Functions assigned to event handler methods and event
listeners (as with all ActionScript functions that you write) define a local variable scope, but
on() and onClipEvent() handlers do not.

Event handler scope 307

For example, consider the following two event handlers. The first is an onPress event handler
associated with a movie clip named clip_mc. The second is an on() handler attached to the
same movie clip instance.
// Attached to clip_mc's parent clip timeline:
clip_mc.onPress = function () {

var shoeColor; // local function variable
shoeColor = "blue";

}
// on() handler attached to clip_mc:
on (press) {

var shoeColor; // no local variable scope
shoeColor = "blue";

}

Although both event handlers contain the same code, they have different results. In the first
case, the color variable is local to the function defined for onPress. In the second case,
because the on() handler doesn’t define a local variable scope, the variable is defined in the
scope of the timeline of the clip_mc movie clip.

For on() event handlers attached to buttons, rather than to movie clips, variables (as well as
function and method calls) are invoked in the scope of the timeline that contains the
button instance.

For instance, the following on() event handler produces different results that depend on
whether it’s attached to a button or movie clip object. In the first case, the play() function
call starts the playhead of the timeline that contains the button; in the second case, the
play() function call starts the timeline of the movie clip to which the handler is attached.
// Attached to button.
on (press) {

play(); // Plays parent timeline.
}
// Attached to movie clip.
on (press) {

play(); // Plays movie clip's timeline.
}

When attached to a button object, the play() function applies to the timeline that contains
the button—that is, the button’s parent timeline. But when the on(press) handler is
attached to a movie clip object, the play() function call applies to the movie clip that bears
the handler. If you attach the following code to a movie clip, it plays the parent timeline:
// Attached to movie clip.
on (press) {

_parent.play(); // Plays parent timeline.
}

308 Handling Events

Within an event handler or event listener definition, the same play() function applies to the
timeline that contains the function definition. For example, suppose you declare the following
my_mc.onPress event handler method on the timeline that contains the my_mc movie
clip instance:
// Function defined on a timeline
my_mc.onPress = function () {

play(); // plays timeline that it is defined on.
};

To play the movie clip that defines the onPress event handler, refer explicitly to that clip
using the this keyword, as follows:
// Function defined on root timeline
my_mc.onPress = function () {

this.play(); // plays timeline of my_mc clip.
};

However, the same code placed on the root timeline for a button instance would instead play
the root timeline:
my_btn.onPress = function () {

this.play(); // plays root timeline
};

For more information about the scope of the this keyword in event handlers, see “Scope of
the this keyword” on page 310.

ActionScript 2.0 example The following TextLoader class is used to load a text file and
display some text after it successfully loads the file.
// TextLoader.as
class TextLoader {

private var params_lv:LoadVars;
public function TextLoader() {

params_lv = new LoadVars();
params_lv.onLoad = onLoadVarsDone;
params_lv.load("http://www.helpexamples.com/flash/params.txt");

}
private function onLoadVarsDone(success:Boolean):Void {

_level0.createTextField("my_txt", 999, 0, 0, 100, 20);
_level0.my_txt.autoSize = "left";
_level0.my_txt.text = params_lv.monthNames; // undefined

}
}

Event handler scope 309

This code cannot work correctly because there is a problem involving scope with the event
handlers, and what this refers to is confused between the onLoad event handler and the class.
The behavior that you might expect in this example is that the onLoadVarsDone() method
will be invoked in the scope of the TextLoader object; but it is invoked in the scope of the
LoadVars object because the method was extracted from the TextLoader object and grafted
onto the LoadVars object. The LoadVars object then invokes the this.onLoad event handler
when the text file is successfully loaded, and the onLoadVarsDone() function is invoked with
this set to LoadVars, not TextLoader. The params_lv object resides in the this scope when
it is invoked, even though the onLoadVarsDone() function relies on the params_lv object by
reference. Therefore, the onLoadVarsDone() function is expecting a params_lv.params_lv
instance that does not exist.

To correctly invoke the onLoadVarsDone() method in the scope of the TextLoader object,
you can use the following strategy: use a function literal to create an anonymous function that
calls the desired function. The owner object is still visible in the scope of the anonymous
function, so it can be used to find the calling TextLoader object.
// TextLoader.as
class TextLoader {

private var params_lv:LoadVars;
public function TextLoader() {

params_lv = new LoadVars();
var owner:TextLoader = this;
params_lv.onLoad = function (success:Boolean):Void {

owner.onLoadVarsDone(success);
}
params_lv.load("http://www.helpexamples.com/flash/params.txt");

}
private function onLoadVarsDone(success:Boolean):Void {

_level0.createTextField("my_txt", 999, 0, 0, 100, 20);
_level0.my_txt.autoSize = "left";
_level0.my_txt.text = params_lv.monthNames; //

January,February,March,...
}

}

310 Handling Events

Scope of the this keyword
The this keyword refers to the object in the currently executing scope. Depending on what
type of event handler technique you use, this can refer to different objects.

Within an event handler or event listener function, this refers to the object that defines the
event handler or event listener method. For example, in the following code, this refers to
my_mc:
// onPress() event handler attached to main timeline:
my_mc.onPress = function () {

trace(this); // _level0.my_mc
}

Within an on() handler attached to a movie clip, this refers to the movie clip to which the
on() handler is attached, as shown in the following code:
// Attached to movie clip named my_mc on main timeline
on (press) {

trace(this); // _level0.my_mc
}

Within an on() handler attached to a button, this refers to the timeline that contains the
button, as shown in the following code:
// Attached to button on main timeline
on (press) {

trace(this); // _level0
}

Using the Delegate class
The Delegate class lets you run a function in a specific scope. This class is provided so that
you can dispatch the same event to two different functions (see Using ActionScript 2.0
Components), and so that you can call functions within the scope of the containing class.

When you pass a function as a parameter to EventDispatcher.addEventListener(), the
function is invoked in the scope of the broadcaster component instance, not the object in
which it is declared (see Using ActionScript 2.0 Components). You can use
Delegate.create() to call the function within the scope of the declaring object.

The following example shows three methods of listening for events for a Button component
instance. Each way that you add event listeners to a Button component instance results in the
event being dispatched in a different scope.

To use the Delegate class to listen for events:

1. Create a new Flash document and save it as delegate.fla.

Using the Delegate class 311

2. Drag a Button component from the User Interface folder of the Components panel to
the library.

You add and position the button instance on the Stage using ActionScript in a later step.
3. Add the following ActionScript to Frame 1 of the main Timeline:

import mx.controls.Button;
import mx.utils.Delegate;

function clickHandler(eventObj:Object):Void {
trace("[" + eventObj.type + "] event on " + eventObj.target + "
instance.");
trace("\t this -> " + this);

}

var buttonListener:Object = new Object();
buttonListener.click = function(eventObj:Object):Void {

trace("[" + eventObj.type + "] event on " + eventObj.target + "
instance.");
trace("\t this -> " + this);

};

this.createClassObject(Button, "one_button", 10, {label:"One"});
one_button.move(10, 10);
one_button.addEventListener("click", clickHandler);

this.createClassObject(Button, "two_button", 20, {label:"Two"});
two_button.move(120, 10);
two_button.addEventListener("click", buttonListener);

this.createClassObject(Button, "three_button", 30, {label:"Three"});
three_button.move(230, 10);
three_button.addEventListener("click", Delegate.create(this,

clickHandler));

The preceding code is separated into six sections (each section is separated by a blank
line). The first section imports the Button class (for the Button component) as well as the
Delegate class. The second section of code defines a function that you call when the user
clicks some of the buttons. The third section of code creates an object that you use as an
event listener, and the object listens for a single event, click.

312 Handling Events

The remaining three sections of code each create a new Button component instance on
the Stage, reposition the instance, and add an event listener for the click event. The first
button adds an event listener for the click event and passes a reference to a click
handler function directly. The second button adds an event listener for the click event
and passes a reference to a listener object, which contains a handler for the click event.
Finally, the third function adds an event listener for the click event, uses the Delegate
class to dispatch the click event in the this scope (where this equals _level0) and passes
a reference to the click handler function.

4. Select Control > Test Movie to test the Flash document.

5. Click each button instance on the Stage to see which scope in which the event is handled.

a. Click the first button on the Stage to trace the following text in the Output panel:
[click] event on _level0.one_button instance.

 this -> _level0.one_button

When you click one_button instance, the this scope refers to the button instance
itself.

b. Click the second button on the Stage to trace the following text in the Output panel:
[click] event on _level0.two_button instance.

 this -> [object Object]

When you click the two_button instance, the this scope refers to the
buttonListener object.

c. Click the third button on the Stage to trace the following text in the Output panel:
[click] event on _level0.three_button instance.

 this -> _level0

When you click the three_button instance, the this scope refers to the scope that
you specify in the Delegate.create() method call, or in this case, _level0.

313

10
CHAPTER 10

Working with Movie Clips

Movie clips are like self-contained SWF files that run independently of each other and the
timeline that contains them. For example, if the main timeline has only one frame and a
movie clip in that frame has ten frames, each frame in the movie clip plays when you play the
main SWF file. A movie clip can, in turn, contain other movie clips, or nested clips. Movie
clips nested in this way have a hierarchical relationship, where the parent clip contains one or
more child clips.

You can name movie clip instances to uniquely identify them as objects that can be controlled
with ActionScript. When you give a movie clip instance an instance name, the instance name
identifies it as an object of the MovieClip class type. You use the properties and methods of
the MovieClip class to control the appearance and behavior of movie clips at runtime.

You can think of movie clips as autonomous objects that can respond to events, send messages
to other movie clip objects, maintain their state, and manage their child clips. In this way,
movie clips provide the foundation of component-based architecture in Flash CS3 Professional.
In fact, the components available in the Components panel (Window > Components) are
sophisticated movie clips that are designed and programmed to look and behave in certain
ways.

For information on using the Drawing API (drawing methods of the MovieClip class), filters,
blends, scripted animation and more, see Chapter 12, “Animation, Filters, and Drawings.”

314 Working with Movie Clips

For more information on movie clips, see the following topics:
About controlling movie clips with ActionScript . 314

Calling multiple methods on a single movie clip . 316

Loading and unloading SWF files . 316

Changing movie clip position and appearance . 319

Dragging movie clips . 320

Creating movie clips at runtime . 321

Adding parameters to dynamically created movie clips. .325

Managing movie clip depths .327

About caching and scrolling movie clips with ActionScript 330

Using movie clips as masks .337

Handling movie clip events. .339

Assigning a class to a movie clip symbol. .339

Initializing class properties . 340

About controlling movie clips with
ActionScript
You can use global ActionScript functions or the methods of the MovieClip class to perform
tasks on movie clips. Some methods of the MovieClip class perform the same tasks as
functions of the same name; other MovieClip methods, such as hitTest() and
swapDepths(), don’t have corresponding function names.

The following example shows the difference between using a method and using a function.
Each statement duplicates the instance my_mc, names the new clip new_mc, and places it at a
depth of 5.
my_mc.duplicateMovieClip("new_mc", 5);
duplicateMovieClip(my_mc, "new_mc", 5);

When a function and a method offer similar behaviors, you can select to control movie clips
by using either one. The choice depends on your preference and your familiarity with writing
scripts in ActionScript. Whether you use a function or a method, the target timeline must be
loaded in Flash Player when the function or method is called.

To use a method, activate it by using the target path of the instance name, a dot (.), and then
the method name and parameters, as shown in the following statements:
myMovieClip.play();
parentClip.childClip.gotoAndPlay(3);

About controlling movie clips with ActionScript 315

In the first statement, play() moves the playhead in the myMovieClip instance. In the
second statement, gotoAndPlay() sends the playhead in childClip (which is a child of the
instance parentClip) to Frame 3 and continues to move the playhead.

Global functions that control a timeline have a target parameter that let you specify the
target path to the instance that you want to control. For example, in the following script
startDrag() targets the instance the code is placed on and makes it draggable:
my_mc.onPress = function() {

startDrag(this);
};
my_mc.onRelease = function() {

stopDrag();
};

The following functions target movie clips: loadMovie(), unloadMovie(),
loadVariables(), setProperty(), startDrag(), duplicateMovieClip(), and
removeMovieClip(). To use these functions, you must enter a target path for the function’s
target parameter to indicate the target of the function.

The following MovieClip methods can control movie clips or loaded levels and do not have
equivalent functions: MovieClip.attachMovie(), MovieClip.createEmptyMovieClip(),
MovieClip.createTextField(), MovieClip.getBounds(),
MovieClip.getBytesLoaded(), MovieClip.getBytesTotal(), MovieClip.getDepth(),
MovieClip.getInstanceAtDepth(), MovieClip.getNextHighestDepth(),
MovieClip.globalToLocal(), MovieClip.localToGlobal(), MovieClip.hitTest(),
MovieClip.setMask(), MovieClip.swapDepths().

For more information about these functions and methods, see their entries in the ActionScript
2.0 Language Reference.

For a sample source file, animation.fla, that illustrates scripted animation in Flash, see the
Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/Animation folder to access the sample.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download and decompress the Samples zip file and navigate to the
ActionScript2.0/Galleries folder to access these samples:

■ gallery_tree.fla
■ gallery_tween.fla

These files provide examples of how to use ActionScript to control movie clips dynamically
while loading image files into a SWF file, which includes scripted animation.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

316 Working with Movie Clips

Calling multiple methods on a single
movie clip
You can use the with statement to address a movie clip once and then execute a series of
methods on that clip. The with statement works on all ActionScript objects (for example,
Array, Color, and Sound)—not only movie clips.

The with statement takes a movie clip as a parameter. The object you specify is added to the
end of the current target path. All actions nested inside a with statement are carried out inside
the new target path, or scope. For example, in the following script, the donut.hole object
passes to the with statement to change the properties of hole:
with (donut.hole) {

_alpha = 20;
_xscale = 150;
_yscale = 150;

}

The script behaves as if the statements inside the with statement were called from the timeline
of the hole instance. The preceding code is equivalent to the following example:
donut.hole._alpha = 20;
donut.hole._xscale = 150;
donut.hole._yscale = 150;

The preceding code is also equivalent to the following example:
with (donut) {

hole._alpha = 20;
hole._xscale = 150;
hole._yscale = 150;

}

Loading and unloading SWF files
To play additional SWF files without closing Flash Player, or to switch SWF files without
loading another HTML page, you can use one of the following options:

■ The global loadMovie() function or loadMovie() method of the MovieClip class.
■ The loadClip() method of the MovieClipLoader class. For more information on the

MovieClipLoader class, see MovieClipLoader in the ActionScript 2.0 Language Reference.

Loading and unloading SWF files 317

You can also use the loadMovie() method to send variables to a CGI script, which generates
a SWF file as its CGI output. For example, you might use this procedure to load dynamic
SWF or image files based on specified variables within a movie clip. When you load a SWF
file, you can specify a level or movie clip target into which the SWF file loads. If you load a
SWF file into a target, the loaded SWF file inherits the properties of the targeted movie clip.
After the Flash movie is loaded, you can change those properties.

The unloadMovie() method removes a SWF file previously loaded by the loadMovie()
method. Explicitly unloading SWF files with unloadMovie() ensures a smooth transition
between SWF files and can decrease the memory that Flash Player requires. It can be more
efficient in some situations to set the movie clip’s _visible property to false instead of
unloading the clip. If you might reuse the clip at a later time, set the _visible property to
false and then set to true when necessary.

Use loadMovie() to do any of the following:

■ Play a sequence of banner ads that are SWF files by placing a loadMovie() function in a
container SWF file that sequentially loads and unloads SWF banner files.

■ Develop a branching interface with links that lets the user select among several SWF files
that are used to display a site’s content.

■ Build a navigation interface with navigation controls in level 0 that loads content into
other levels. Loading content into levels helps produce smoother transitions between
pages of content than loading new HTML pages in a browser.

For more information on loading SWF files, see “Loading external SWF and image files”
on page 551.

For more information, see the following topics:

■ “Specifying a root timeline for loaded SWF files” on page 317
■ “Loading image files into movie clips” on page 319

Specifying a root timeline for loaded SWF files
The _root ActionScript property specifies or contains a reference to the root timeline of a
SWF file. If a SWF file has multiple levels, the root timeline is on the level that contains the
currently executing script. For example, if a script in level 1 evaluates _root, _level1 is
returned. However, the timeline that _root specifies can change, depending on whether a
SWF file is running independently (in its own level) or was loaded into a movie clip instance
by a loadMovie() call.

318 Working with Movie Clips

In the following example, consider a file named container.swf that has a movie clip instance
named target_mc on its main timeline. The container.swf file declares a variable named
userName on its main timeline; the same script then loads another file called contents.swf into
the target_mc movie clip:
// In container.swf:
_root.userName = "Tim";
target_mc.loadMovie("contents.swf");
my_btn.onRelease = function():Void {

trace(_root.userName);
};

In the following example, the loaded SWF file, contents.swf, also declares a variable named
userName on its root timeline:
// In contents.swf:
_root.userName = "Mary";

After contents.swf loads into the movie clip in container.swf, the value of userName that’s
attached to the root timeline of the hosting SWF file (container.swf) would be set to "Mary"
instead of "Tim". This could cause code in container.swf (as well as contents.swf) to
malfunction.

To force _root to always evaluate to the timeline of the loaded SWF file, rather than the
actual root timeline, use the _lockroot property. You can set this property from within the
SWF file being loaded or in the SWF file that is initiating the loading. When _lockroot is set
to true on a movie clip instance, that movie clip acts as _root for any SWF file loaded into it.
When _lockroot is set to true within a SWF file, that SWF file acts as its own root, no
matter what other SWF file loads it. Any movie clip, and any number of movie clips, can set
_lockroot to true. By default, this property is false.

For example, the author of container.swf could put the following code on Frame 1 of the
main Timeline:
// Added to Frame 1 in container.swf:
target_mc._lockroot = true;

This step ensures that any references to _root in contents.swf—or any SWF file loaded into
target_mc—refers to its own timeline, not to the actual root timeline of container.swf. Now
when you click the button, "Tim" appears.

Alternatively, the author of contents.swf could add the following code to its main timeline:
// Added to Frame 1 in contents.swf:
this._lockroot = true;

This would ensure that no matter where contents.swf is loaded, any reference it makes to
_root refers to its own main timeline, not to that of the hosting SWF file.

For more information, see _lockroot (MovieClip._lockroot property).

Changing movie clip position and appearance 319

Loading image files into movie clips
You can use the loadMovie() function, or the MovieClip method of the same name, to load
image files into a movie clip instance. You can also use the loadMovieNum() function to load
an image file into a level.

When you load an image into a movie clip, the upper-left corner of the image is placed at the
registration point of the movie clip. Because this registration point is often the center of the
movie clip, the loaded image might not appear centered. Also, when you load an image to a
root timeline, the upper-left corner of the image is placed on the upper-left corner of the
Stage. The loaded image inherits rotation and scaling from the movie clip, but the original
content of the movie clip is removed.

For more information, see loadMovie function, loadMovie (MovieClip.loadMovie
method), and loadMovieNum function in the ActionScript 2.0 Language Reference and
“Loading external SWF and image files” on page 551.

Changing movie clip position and
appearance
To change the properties of a movie clip as it plays, write a statement that assigns a value to a
property or use the setProperty() function. For example, the following code sets the
rotation of instance mc to 45:
my_mc._rotation = 45;

This is equivalent to the following code, which uses the setProperty() function:
setProperty("my_mc", _rotation, 45);

Some properties, called read-only properties, have values that you can read but cannot set.
(These properties are specified as read-only in their ActionScript 2.0 Language Reference
entries.) The following are read-only properties: _currentframe, _droptarget,
_framesloaded, _parent, _target, _totalframes, _url, _xmouse, and _ymouse.

You can write statements to set any property that is not read-only. The following statement
sets the _alpha property of the wheel_mc movie clip instance, which is a child of the
car_mc instance:
car_mc.wheel_mc._alpha = 50;

In addition, you can write statements that get the value of a movie clip property. For example,
the following statement gets the value of the _xmouse property on the current level’s timeline
and sets the _x property of the my_mc instance to that value:
this.onEnterFrame = function() {

320 Working with Movie Clips

my_mc._x = _root._xmouse;
};

This is equivalent to the following code, which uses the getProperty() function:
this.onEnterFrame = function() {

my_mc._x = getProperty(_root, _xmouse);
};

The _x, _y, _rotation, _xscale, _yscale, _height, _width, _alpha, and _visible
properties are affected by transformations on the movie clip’s parent, and transform the movie
clip and any of the clip’s children. The _focusrect, _highquality, _quality, and
_soundbuftime properties are global; they belong only to the level 0 main timeline. All other
properties belong to each movie clip or loaded level.

For a list of movie clip properties, see the property summary for the MovieClip class in the
ActionScript 2.0 Language Reference.

For a sample source file, animation.fla, that illustrates scripted animation in Flash, see the
Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress the
Samples zip file and navigate to the ActionScript2.0/Animation folder to access the sample.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download and decompress the Samples zip file and navigate to the
ActionScript2.0/Galleries folder to access these samples:

■ gallery_tree.fla
■ gallery_tween.fla

Dragging movie clips
You can use the global startDrag() function or the MovieClip.startDrag() method to
make a movie clip draggable. For example, you can make a draggable movie clip for games,
drag-and-drop functions, customizable interfaces, scroll bars, and sliders.

A movie clip remains draggable until explicitly stopped by stopDrag() or until another
movie clip is targeted with startDrag(). Only one movie clip at a time can be dragged in a
SWF file.

To create more complicated drag-and-drop behavior, you can evaluate the _droptarget
property of the movie clip being dragged. For example, you might examine the _droptarget
property to see if the movie clip was dragged onto a specific movie clip (such as a “trash can”
movie clip) and then trigger another action, as shown in the following example:
// Drag a piece of garbage.
garbage_mc.onPress = function() {

this.startDrag(false);

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Creating movie clips at runtime 321

};
// When the garbage is dragged over the trashcan, make it invisible.
garbage_mc.onRelease = function() {

this.stopDrag();
// Convert the slash notation to dot notation using eval.
if (eval(this._droptarget) == trashcan_mc) {

garbage_mc._visible = false;
}

};

For more information, see startDrag function or startDrag (MovieClip.startDrag
method) in the ActionScript 2.0 Language Reference.

For a sample source file, gallery_tween.fla, that provides an example of how to use
ActionScript to control movie clips dynamically while loading image files into a SWF file,
which includes making each movie clip draggable, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Galleries folder to access the sample.

Creating movie clips at runtime
In addition to creating movie clip instances in the Flash authoring environment, you can also
create movie clip instances at runtime in the following ways:

■ “Creating an empty movie clip” on page 322
■ “Duplicating or removing a movie clip” on page 323
■ “Attaching a movie clip symbol to the Stage” on page 323

Each movie clip instance you create at runtime must have an instance name and a depth
(stacking, or z-order) value. The depth you specify determines how the new clip overlaps with
other clips on the same timeline. It also lets you overwrite movie clips that reside at the same
depth. (See “Managing movie clip depths” on page 327.)

For a sample source file, gallery_tween.fla, that provides an example of how to use
ActionScript to control movie clips dynamically while loading image files into a SWF file, see
the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and decompress
the Samples zip file and navigate to the ActionScript2.0/Galleries folder to access the sample.

For a sample source file, animation.fla, that creates and removes numerous movie clips at
runtime, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to
access the sample.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

322 Working with Movie Clips

For more information, see the following topics:

■ “Creating an empty movie clip” on page 322
■ “Duplicating or removing a movie clip” on page 323
■ “Attaching a movie clip symbol to the Stage” on page 323

Creating an empty movie clip
To create a new, empty movie clip instance on the Stage, use the createEmptyMovieClip()
method of the MovieClip class. This method creates a movie clip as a child of the clip that
calls the method. The registration point for a newly created empty movie clip is the upper-left
corner.

For example, the following code creates a new child movie clip named new_mc at a depth of
10 in the movie clip named parent_mc:
parent_mc.createEmptyMovieClip("new_mc", 10);

The following code creates a new movie clip named canvas_mc on the root timeline of the
SWF file in which the script is run, and then activates loadMovie() to load an external JPEG
file into itself:
this.createEmptyMovieClip("canvas_mc", 10);
canvas_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");

As shown in the following example, you can load the image2.jpg image into a movie clip and
use the MovieClip.onPress() method to make the image act like a button. Loading an
image using loadMovie() replaces the movie clip with the image but doesn’t give you access
to movie clip methods. To get access to movie clip methods, you must create an empty parent
movie clip and a container child movie clip. Load the image into the container and place the
event handler on the parent movie clip.
// Creates a parent movie clip to hold the container.
this.createEmptyMovieClip("my_mc", 0);

// Creates a child movie clip inside of "my_mc".
// This is the movie clip the image will replace.
my_mc.createEmptyMovieClip("container_mc",99);

// Use MovieClipLoader to load the image.
var my_mcl:MovieClipLoader = new MovieClipLoader();
my_mcl.loadClip("http://www.helpexamples.com/flash/images/image2.jpg",

my_mc.container_mc);

// Put event handler on the my_mc parent movie clip.
my_mc.onPress = function():Void {

trace("It works");
};

Creating movie clips at runtime 323

For more information, see createEmptyMovieClip (MovieClip.createEmptyMovieClip
method) in the ActionScript 2.0 Language Reference.

For a sample source file, animation.fla, that creates and removes numerous movie clips at
runtime, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to
access the sample.

Duplicating or removing a movie clip
To duplicate or remove movie clip instances, use the duplicateMovieClip() or
removeMovieClip() global functions, or the MovieClip class methods of the same name.
The duplicateMovieClip() method creates a new instance of an existing movie clip
instance, assigns it a new instance name, and gives it a depth, or z-order. A duplicated movie
clip always starts at Frame 1, even if the original movie clip was on another frame when
duplicated and is always in front of all previously defined movie clips placed on the timeline.

To delete a movie clip you created with duplicateMovieClip(), use removeMovieClip().
Duplicated movie clips are also removed if the parent movie clip is deleted.

For more information, see duplicateMovieClip function and removeMovieClip
function in the ActionScript 2.0 Language Reference.

For a sample source file, animation.fla, that creates and removes numerous movie clips at
runtime, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to
access the sample.

Attaching a movie clip symbol to the Stage
The last way to create movie clip instances at runtime is to use the attachMovie() method.
The attachMovie() method attaches to the Stage an instance of a movie clip symbol in the
SWF file’s library. The new clip becomes a child clip of the clip that attached it.

To use ActionScript to attach a movie clip symbol from the library, you must export the
symbol for ActionScript and assign it a unique linkage identifier. To do this, you use the
Linkage Properties dialog box.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

324 Working with Movie Clips

By default, all movie clips that are exported for use with ActionScript load before the first
frame of the SWF file that contains them. This can create a delay before the first frame plays.
When you assign a linkage identifier to an element, you can also specify whether this content
should be added before the first frame. If it isn’t added in the first frame, you must include an
instance of it in some other frame of the SWF file; if you don’t, the element is not exported to
the SWF file.

To assign a linkage identifier to a movie clip:

1. Select Window > Library to open the Library panel.

2. Select a movie clip in the Library panel.

3. In the Library panel, select Linkage from the Library panel pop-up menu.

The Linkage Properties dialog box appears.
4. For Linkage, select Export for ActionScript.

5. For Identifier, enter an ID for the movie clip.

By default, the identifier is the same as the symbol name.
You can optionally assign an ActionScript class to the movie clip symbol. This lets the
movie clip inherit the methods and properties of a specified class. (See “Assigning a class to
a movie clip symbol” on page 339.)

6. If you don’t want the movie clip to load before the first frame, deselect the Export in First
Frame option.

If you deselect this option, place an instance of the movie clip on the frame of the timeline
where you want it to be available. For example, if the script you’re writing doesn’t reference
the movie clip until Frame 10, place an instance of the symbol at or before Frame 10 on
the Timeline.

7. Click OK.

After you’ve assigned a linkage identifier to a movie clip, you can attach an instance of the
symbol to the Stage at runtime by using attachMovie().

To attach a movie clip to another movie clip:

1. Assign a linkage identifier to a movie clip library symbol, as described in the
previous example.

2. With the Actions panel open (Window > Actions), select a frame in the Timeline.

3. In the Actions panel’s Script pane, type the name of the movie clip or level to which you
want to attach the new movie clip.

For example, to attach the movie clip to the root timeline, type this.

Adding parameters to dynamically created movie clips 325

4. In the Actions toolbox (at the left of the Actions panel), select ActionScript 2.0 Classes >
Movie > MovieClip > Methods, and select attachMovie().

5. Using the code hints that appear as a guide, enter values for the following parameters:

■ For idName, specify the identifier you entered in the Linkage Properties dialog box.
■ For newName, enter an instance name for the attached clip so that you can target it.
■ For depth, enter the level at which the duplicate movie clip will be attached to the

movie clip. Each attached movie clip has its own stacking order, with level 0 as the
level of the originating movie clip. Attached movie clips are always on top of the
original movie clip, as shown in the following example:
this.attachMovie("calif_id", "california_mc", 10);

For more information, see attachMovie (MovieClip.attachMovie method) in the
ActionScript 2.0 Language Reference.

Adding parameters to dynamically
created movie clips
When you use MovieClip.attachMovie() and MovieClip.duplicateMovie() to create or
duplicate a movie clip dynamically, you can populate the movie clip with parameters from
another object. The initObject parameter of attachMovie() and duplicateMovie()
allows dynamically created movie clips to receive clip parameters.

For more information, see attachMovie (MovieClip.attachMovie method) and
duplicateMovieClip (MovieClip.duplicateMovieClip method) in the ActionScript 2.0
Language Reference.

To populate a dynamically created movie clip with parameters from a specified
object:

Do one of the following:

■ Use the following syntax with attachMovie():
myMovieClip.attachMovie(idName, newName, depth [, initObject]);

■ Use the following syntax with duplicateMovie():
myMovieClip.duplicateMovie(idName, newName, depth [, initObject]);

The initObject parameter specifies the name of the object whose parameters you want to
use to populate the dynamically created movie clip.

To populate a movie clip with parameters by using attachMovie():

1. In a new Flash document, create a movie clip symbol by selecting Insert > New Symbol.

326 Working with Movie Clips

2. Type dynamic_mc in the Symbol Name text box, and select the Movie Clip behavior.

3. Inside the symbol, create a dynamic text field on the Stage with an instance name of
name_txt.

Make sure this text field is below and to the right of the registration point.
4. Select Frame 1 of the movie clip’s Timeline, and open the Actions panel (Window >

Actions).

5. Create a new variable called name_str, and assign its value to the text property of
name_txt, as shown in the following example:
var name_str:String;
name_txt.text = name_str;

6. Select Edit > Edit Document to return to the main Timeline.

7. Select the movie clip symbol in the library, and select Linkage from the Library pop-up
menu.

The Linkage Properties dialog box appears.
8. Select the Export for ActionScript option, and Export in first frame.

9. Type dynamic_id into the Indentifier text box, and click OK.

10. Select the first frame of the main Timeline, and add the following code to the Actions
panel’s Script pane:
/* Attaches a new movie clip and moves it to an x and y coordinate of 50

*/

this.attachMovie("dynamic_id", "newClip_mc", 99, {name_str:"Erick",
_x:50, _y:50});

11. Test the Flash document (Control > Test Movie).

The name you specified in the attachMovie() call appears inside the new movie clip’s
text field.

For a sample source file, gallery_tween.fla, that provides an example of how to use
ActionScript to control movie clips dynamically while loading image files into a SWF file,
which includes making each movie clip draggable, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Galleries folder to access the sample.

For a sample source file, animation.fla, that creates and removes numerous movie clips at
runtime, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Animation folder to
access the sample.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Managing movie clip depths 327

Managing movie clip depths
Every movie clip has its own z-order space that determines how objects overlap within its
parent SWF file or movie clip. Every movie clip has an associated depth value, which
determines if it renders in front of or behind other movie clips in the same movie clip
timeline. When you create a movie clip at runtime by using attachMovie
(MovieClip.attachMovie method), duplicateMovieClip
(MovieClip.duplicateMovieClip method), or createEmptyMovieClip
(MovieClip.createEmptyMovieClip method), you always specify a depth for the new clip
as a method parameter. For example, the following code attaches a new movie clip to the
timeline of a movie clip named container_mc with a depth value of 10.
container_mc.attachMovie("symbolID", "clip1_mc", 10);

This example creates a new movie clip with a depth of 10 within the z-order space of
container_mc.

The following code attaches two new movie clips to container_mc. The first clip, named
clip1_mc, is rendered behind clip2_mc because it was assigned a lower depth value.
container_mc.attachMovie("symbolID", "clip1_mc", 10);
container_mc.attachMovie("symbolID", "clip2_mc", 15);

Depth values for movie clips can range from -16384 to 1048575. If you create or attach a new
movie clip on a depth that already has a movie clip, the new or attached clip overwrites the
existing content. To avoid this problem, use the MovieClip.getNextHighestDepth()
method; however, do not use this method with components that use a different depth-
management system. Instead, use DepthManager class with component instances. For more
information, see ActionScript 2.0 Components Language Reference.

The MovieClip class provides several methods for managing movie clip depths; for more
information, see getNextHighestDepth (MovieClip.getNextHighestDepth method),
getInstanceAtDepth (MovieClip.getInstanceAtDepth method), getDepth
(MovieClip.getDepth method), and swapDepths (MovieClip.swapDepths method) in
the ActionScript 2.0 Language Reference.

For more information on movie clip depths, see the following topics:

■ “Determining the next highest available depth” on page 328
■ “Determining the instance at a particular depth” on page 328
■ “Determining the depth of an instance” on page 329
■ “Swapping movie clip depths” on page 329

328 Working with Movie Clips

Determining the next highest available depth
To determine the next highest available depth within a movie clip, use
MovieClip.getNextHighestDepth(). The integer value returned by this method indicates
the next available depth that will render in front of all other objects in the movie clip.

The following code attaches a new movie clip, with a depth value of 10, on the root timeline
named file_mc. It then determines the next highest available depth in that same movie clip
and creates a new movie clip called edit_mc at that depth.
this.attachMovie("menuClip","file_mc", 10, {_x:0, _y:0});
trace(file_mc.getDepth()); // 10
var nextDepth:Number = this.getNextHighestDepth();
this.attachMovie("menuClip", "edit_mc", nextDepth, {_x:200, _y:0});
trace(edit_mc.getDepth()); // 11

In this case, the variable named nextDepth contains the value 11 because that’s the next
highest available depth for the edit_mc movie clip.

Do not use MovieClip.getNextHighestDepth() with components; instead, use the depth
manager. For more information, see “DepthManager class” in Action Script 2.0 Components
Language Reference. For more information on MovieClip.getNextHighestDepth(), see
getNextHighestDepth (MovieClip.getNextHighestDepth method).

To obtain the current highest occupied depth, subtract 1 from the value that
getNextHighestDepth() returns, as shown in the next section.

Determining the instance at a particular depth
To determine the instance at a particular depth, use MovieClip.getInstanceAtDepth().
This method returns a reference to the MovieClip instance at the specified depth.

The following code combines getNextHighestDepth() and getInstanceAtDepth() to
determine the movie clip at the (current) highest occupied depth on the root timeline.
var highestOccupiedDepth:Number = this.getNextHighestDepth() - 1;
var instanceAtHighestDepth:MovieClip =

this.getInstanceAtDepth(highestOccupiedDepth);

For more information, see getInstanceAtDepth (MovieClip.getInstanceAtDepth
method) in the ActionScript 2.0 Language Reference.

Managing movie clip depths 329

Determining the depth of an instance
To determine the depth of a movie clip instance, use MovieClip.getDepth().

The following code iterates over all the movie clips on a SWF file’s main timeline and shows
each clip’s instance name and depth value in the Output panel:
for (var item:String in _root) {

var obj:Object = _root[item];
if (obj instanceof MovieClip) {

var objDepth:Number = obj.getDepth();
trace(obj._name + ":" + objDepth)

}
}

For more information, see getDepth (MovieClip.getDepth method) in the ActionScript
2.0 Language Reference.

Swapping movie clip depths
To swap the depths of two movie clips on the same timeline, use MovieClip.swapDepths().
The following examples show how two movie clip instances can swap depths at runtime.

To swap movie clip depths:

1. Create a new Flash document called swap.fla.

2. Draw a blue circle on the Stage.

3. Select the blue circle, and then select Modify > Convert to Symbol.

4. Select the Movie clip option, and then click OK.

5. Select the instance on the Stage, and then type first_mc into the Instance Name text box
in the Property inspector.

6. Draw a red circle on the Stage, and then select Modify > Convert to Symbol.

7. Select the Movie clip option, and then click OK.

8. Select the instance on the Stage, and then type second_mc into the Instance Name text box
in the Property inspector.

9. Drag the two instances so that they overlap slightly on the Stage.

10. Select Frame 1 of the Timeline, and then type the following code into the Actions panel:
first_mc.onRelease = function() {

this.swapDepths(second_mc);
};
second_mc.onRelease = function() {

this.swapDepths(first_mc);
};

330 Working with Movie Clips

11. Select Control > Test Movie to test the document.

When you click the instances on the Stage, they swap depths. You’ll see the two instances
change which clip is on top of the other clip.

For more information, see swapDepths (MovieClip.swapDepths method) in the
ActionScript 2.0 Language Reference.

About caching and scrolling movie clips
with ActionScript
As your designs in Flash grow in size, whether you are creating an application or complex
scripted animations, you need to consider performance and optimization. When you have
content that remains static (such as a rectangle movie clip), Flash does not optimize the
content. Therefore, when you change the position of the rectangle movie clip, Flash redraws
the entire rectangle in Flash Player 7 and earlier.

In Flash 8 and later, you can cache specified movie clips and buttons to improve the
performance of your SWF file. The movie clip or button is a surface, essentially a bitmap
version of the instance’s vector data, which is data that you do not intend to change much
over the course of your SWF file. Therefore, instances with caching turned on are not
continually redrawn as the SWF file plays, which lets the SWF file render quickly.

You can use ActionScript to enable caching or scrolling and to control backgrounds. You can
use the Property inspector to enable caching for a movie clip instance. To cache movie clips or
buttons without using ActionScript, you can select the Use runtime bitmap caching option in
the Property inspector instead.

N
O

T
E

You can update the vector data, at which time the surface is recreated. Therefore, the
vector data cached in the surface does not need to remain the same for the entire SWF
file.

About caching and scrolling movie clips with ActionScript 331

The following table contains brief descriptions of the new properties for movie clip instances:

These three properties are independent of each other, however, the opaqueBackground and
scrollRect properties work best when an object is cached as a bitmap. You only see
performance benefits for the opaqueBackground and scrollRect properties when you set
cacheAsBitmap to true.

 To create a surface that’s also scrollable, you must set the cacheAsBitmap and scrollRect
properties for the movie clip instance. Surfaces can nest within other surfaces. The surface
copies the bitmap onto its parent surface.

For information on alpha channel masking, which requires you to set the cacheAsBitmap
property to true, see “About alpha channel masking” on page 338.

Property Description

cacheAsBitmap Makes the movie clip instance cache a bitmap representation of itself.
Flash creates a surface object for the instance, which is a cached
bitmap instead of vector data. If you change the bounds of the movie
clip, the surface is recreated instead of resized. For more information
and an example, see “Caching a movie clip” on page 334.

opaqueBackground Lets you specify a background color for the opaque movie clip
instance. If you set this property to a numeric value, the movie clip
instance has an opaque (nontransparent) surface. An opaque bitmap
does not have an alpha channel (transparency), and renders faster. For
more information and an example, see “Setting the background of a
movie clip” on page 336.

scrollRect Lets you quickly scroll movie clip content and have a window for
viewing larger content. The movie clip’s contents are cropped, and the
instance scrolls with a specified width, height, and scroll offsets. This
lets the user quickly scroll movie clip content and have a window that
displays larger content than the Stage area. Text fields and complex
content that you display in the instance can scroll faster because Flash
does not regenerate the entire movie clip vector data. For more
information and an example, see scrollRect (MovieClip.scrollRect
property).

N
O

T
E

You cannot apply caching directly to text fields. You need to place text within a movie
clip to take advantage of this feature. For a sample file, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file
and navigate to the ActionScript2.0/CacheBitmap folder to access the sample.

http://www.adobe.com/go/learn_fl_samples

332 Working with Movie Clips

For samples about applying bitmap caching to an instance and to scrolling text, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. The following samples are available:

■ cacheBitmap.fla; Download and decompress the Samples zip file and navigate to the
ActionScript2.0/CacheBitmap folder.

■ aliasing.fla; Download and decompress the Samples zip file and navigate to the
ActionScript2.0/Advanced Anti-Aliasing folder.

When to enable caching
Enabling caching for a movie clip creates a surface, which has several advantages, such as
helping complex vector animations to render fast. There are several scenarios in which you
will want to enable caching. It might seem as though you will always want to enable caching
to improve the performance of your SWF files; however, there are situations in which
enabling caching does not improve performance, or even decrease it. This section describes
scenarios in which caching should be used, and when to use regular movie clips.

Overall performance of cached data depends on how complex the vector data of your
instances are, how much of the data you change, and whether or not you set the
opaqueBackground property. If you are changing small regions, the difference between using
a surface and using vector data could be negligible. You might want to test both scenarios with
your work before you deploy the application.

For information on alpha channel masking, which requires you to set the cacheAsBitmap
property to true, see “About alpha channel masking” on page 338.

When to use bitmap caching
The following are typical scenarios in which you might see significant benefits when you
enable bitmap caching.

Complex background image An application that contains a detailed and complex
background image of vector data (perhaps an image where you applied the trace bitmap
command, or artwork that you created in Adobe Illustrator). You might animate characters
over the background, which slows the animation because the background needs to
continuously regenerate the vector data. To improve performance, you can select the content,
store it in a movie clip, and set the opaqueBackground property to true. The background is
rendered as a bitmap and can be redrawn quickly, so that your animation plays much faster.

http://www.adobe.com/go/learn_fl_samples

About caching and scrolling movie clips with ActionScript 333

Scrolling text field An application that displays a large amount of text in a scrolling text
field. You can place the text field in a movie clip that you set as scrollable with scrolling
bounds (the scrollRect property). This enables fast pixel scrolling for the specified instance.
When a user scrolls the movie clip instance, Flash shifts the scrolled pixels up and generates
the newly exposed region instead of regenerating the entire text field.

Windowing system An application with a complex system of overlapping windows. Each
window can be open or closed (for example, web browser windows). If you mark each window
as a surface (set the cacheAsBitmap property to true), each window is isolated and cached.
Users can drag the windows so that they overlap each other, and each window doesn’t need to
regenerate the vector content.

All of these scenarios improve the responsiveness and interactivity of the application by
optimizing the vector graphics.

For samples about applying bitmap caching to an instance and to scrolling text, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. The following samples are available:

■ cacheBitmap.fla; Download the Samples zip file and navigate to the ActionScript2.0/
Cachebitmap folder.

■ aliasing.fla; Download the Samples zip file and navigate to the ActionScript2.0/Advanced
Anti-Aliasing folder.

When to avoid using bitmap caching
Misusing this feature could negatively affect your SWF file. When you develop a FLA file that
uses surfaces, remember the following guidelines:

■ Do not overuse surfaces (movie clips with caching enabled). Each surface uses more
memory than a regular movie clip, which means that you should only enable surfaces
when you need to improve rendering performance.
A cached bitmap can use significantly more memory than a regular movie clip instance.
For example, if the movie clip on Stage is 250 pixels by 250 pixels in size, when cached it
might use 250 KB instead of 1 KB when it’s a regular (uncached) movie clip instance.

■ Avoid zooming into cached surfaces. If you overuse bitmap caching, a large amount of
memory is consumed (see previous bullet), especially if you zoom in on the content.

http://www.adobe.com/go/learn_fl_samples

334 Working with Movie Clips

■ Use surfaces for movie clip instances that are largely static (nonanimating). You can drag
or move the instance, but the contents of the instance should not animate or change a lot.
For example, if you rotate or transform an instance, the instance changes between the
surface and vector data, which is difficult to process and negatively affects your SWF file.

■ If you mix surfaces with vector data, it increases the amount of processing that Flash
Player (and sometimes the computer) needs to do. Group surfaces together as much as
possible; for example, when you create windowing applications.

Caching a movie clip
To cache a movie clip instance, you need to set the cacheAsBitmap property to true. After
you set the cacheAsBitmap property to true, you might notice that the movie clip instance
automatically pixel-snaps to whole coordinates. When you test the SWF file, you should
notice that any complex vector animation renders much faster.

A surface (cached bitmap) is not created, even if cacheAsBitmap is set to true, if one or more
of the following occurs:

■ The bitmap is greater than 2880 pixels in height or width.
■ The bitmap fails to allocate (out of memory error).

To cache a movie clip:

1. Create a new Flash document, and name the file cachebitmap.fla.

2. Type 24 into the fps text box in the Property inspector (Window > Properties > Properties).

3. Create or import a complex vector graphic into the FLA file.

For a sample source of a complex vector graphic, CacheBitmap, see the Flash Samples
page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate
to the ActionScript2.0/CacheBitmap folder to access the sample.

4. Select the vector graphic, and select Modify > Convert to Symbol.

5. Type star into the Name text box, and then click Advanced (if the dialog box is not already
expanded).

6. Select Export for ActionScript (which also selects Export in first frame).

7. Type star_id into the Identifier text box.

8. Click OK to create the movie clip symbol, with the linkage identifier of Star.

http://www.adobe.com/go/learn_fl_samples

About caching and scrolling movie clips with ActionScript 335

9. Select Frame 1 of the Timeline, and then add the following ActionScript to the
Actions panel:
import mx.transitions.Tween;

var star_array:Array = new Array();
for (var i:Number = 0; i < 20; i++) {

makeStar();
}
function makeStar():Void {

var depth:Number = this.getNextHighestDepth();
var star_mc:MovieClip = this.attachMovie("star_id", "star" + depth,
depth);
star_mc.onEnterFrame = function() {

star_mc._rotation += 5;
}
star_mc._y = Math.round(Math.random() * Stage.height - star_mc._height
/ 2);
var star_tween:Tween = new Tween(star_mc, "_x", null, 0, Stage.width,
(Math.random() * 5) + 5, true);
star_tween.onMotionFinished = function():Void {

star_tween.yoyo();
};
star_array.push(star_mc);

}
var mouseListener:Object = new Object();
mouseListener.onMouseDown = function():Void {

var star_mc:MovieClip;
for (var i:Number = 0; i < star_array.length; i++) {

star_mc = star_array[i];
star_mc.cacheAsBitmap = !star_mc.cacheAsBitmap;

}
}
Mouse.addListener(mouseListener);

10. Select Control > Test Movie to test the document.

11. Click anywhere on the Stage to enable bitmap caching.

You’ll notice that the animation changes from appearing to animate at 1 frame per second,
to a smooth animation where the instances animate back and forth across the Stage. When
you click the Stage, it toggles the cacheAsBitmap setting between true and false.

If you toggle caching on and off, as demonstrated in the previous example, it frees the data
that is cached. You can also apply this code for a Button instance. See cacheAsBitmap
(Button.cacheAsBitmap property) in the ActionScript 2.0 Language Reference.

336 Working with Movie Clips

For examples of scrolling movie clips, see scrollRect (MovieClip.scrollRect property)
in the ActionScript 2.0 Language Reference. For information on alpha channel masking, which
requires you to set the cacheAsBitmap property to true, see “About alpha channel masking”
on page 338.

For samples about applying bitmap caching to an instance and to scrolling text, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. The following samples are available:

■ cacheBitmap.fla; Download the Samples zip file and navigate to the ActionScript2.0/
CacheBitmap folder.

■ aliasing.fla; Download the Samples zip file and navigate to the ActionScript2.0/Advanced
Anti-Aliasing folder.

Setting the background of a movie clip
You can set an opaque background for a movie clip. For example, when you have a
background that contains complex vector art, you can set the opaqueBackground property to
a specified color (typically the same color as the Stage). The background is then treated as a
bitmap, which helps optimize performance.

When you set cacheAsBitmap to true, and also set the opaqueBackground property to a
specified color, the opaqueBackground property allows the internal bitmap to be opaque and
rendered faster. If you do not set cacheAsBitmap to true, the opaqueBackground property
adds an opaque vector-square shape to the background of the movie clip instance. It does not
create a bitmap automatically.

The following example shows how to set the background of a movie clip to optimize
performance.

To set the background of a movie clip:

1. Create a new Flash document called background.fla.

2. Draw a blue circle on the Stage.

3. Select the blue circle, and then select Modify > Convert to Symbol.

4. Select the Movie clip option, and then click OK.

5. Select the instance on the Stage, and then type my_mc into the Instance Name text box in
the Property inspector.

6. Select Frame 1 of the Timeline, and then type the following code into the Actions panel:
/* When you set cacheAsBitmap, the internal bitmap is opaque and renders

faster. */
my_mc.cacheAsBitmap = true;
my_mc.opaqueBackground = 0xFF0000;

http://www.adobe.com/go/learn_fl_samples

Using movie clips as masks 337

7. Select Control > Test Movie to test the document.

The movie clip appears on the Stage with the background color that you specified.

For more information on this property, see opaqueBackground
(MovieClip.opaqueBackground property) in the ActionScript 2.0 Language Reference.

Using movie clips as masks
You can use a movie clip as a mask to create a hole through which the contents of another
movie clip are visible. The mask movie clip plays all the frames in its timeline, the same as a
regular movie clip. You can make the mask movie clip draggable, animate it along a motion
guide, use separate shapes within a single mask, or resize a mask dynamically. You can also use
ActionScript to turn a mask on and off.

You cannot use a mask to mask another mask. You cannot set the _alpha property of a mask
movie clip. Only fills are used in a movie clip that is used as a mask; strokes are ignored.

To create a mask:

1. Create a square on the Stage with the Rectangle tool.

2. Select the square and press F8 to convert it into a movie clip.

This instance is your mask.
3. In the Property inspector, type mask_mc in the Instance Name text box.

The masked movie clip is revealed under all opaque (nontransparent) areas of the movie
clip acting as the mask.

4. Select Frame 1 in the Timeline.

5. Open the Actions panel (Window > Actions) if it isn’t already open.

6. In the Actions panel, enter the following code:
System.security.allowDomain("http://www.helpexamples.com");

this.createEmptyMovieClip("img_mc", 10);
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip):Void {

target_mc.setMask(mask_mc);
}
var my_mcl:MovieClipLoader = new MovieClipLoader();
my_mcl.addListener(mclListener);
my_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

338 Working with Movie Clips

7. Select Control > Test Movie to test the document.

An external JPEG image loads into the SWF file at runtime, and is masked by the shape
you drew previously on the Stage.

For detailed information, see setMask (MovieClip.setMask method) in the ActionScript 2.0
Language Reference.

About masking device fonts
You can use a movie clip to mask text that is set in a device font. In order for a movie clip
mask on a device font to work properly, the user must have Flash Player 6 (6.0.40.0) or later.

When you use a movie clip to mask text set in a device font, the rectangular bounding box of
the mask is used as the masking shape. That is, if you create a nonrectangular movie clip mask
for device font text in the Flash authoring environment, the mask that appears in the SWF file
is the shape of the rectangular bounding box of the mask, not the shape of the mask itself.

You can mask device fonts only by using a movie clip as a mask. You cannot mask device fonts
by using a mask layer on the Stage.

About alpha channel masking
Alpha channel masking is supported if both the mask and the maskee movie clips use bitmap
caching. This support also lets you use a filter on the mask independently of the filter that is
applied to the maskee itself.

To see an example of alpha masking, download the alpha masking sample file from
www.adobe.com/go/learn_fl_samples.

In this sample file, the mask is an oval (oval_mask) that has alpha of 50% and a blur filter
applied to it. The maskee (flower_maskee) has alpha of 100% and no filter applied on it.
Both movie clips have runtime bitmap caching applied in the Property inspector.

In the Actions panel, the following code is placed on Frame 1 of the Timeline:
flower_maskee.setMask(oval_mask);

When you test the document (Control > Test Movie), the maskee is alpha blended by using
the mask.

N
O

T
E

Mask layers do not support alpha channel masking. You must use ActionScript code to
apply a mask, and use runtime bitmap caching.

http://www.adobe.com/go/learn_fl_samples

Assigning a class to a movie clip symbol 339

Handling movie clip events
Movie clips can respond to user events, such as mouse clicks and keypresses, as well as system-
level events, such as the initial loading of a movie clip on the Stage. ActionScript provides two
ways to handle movie clip events: through event handler methods and onClipEvent() and
on() event handlers. For more information on handling movie clip events, see Chapter 9,
“Handling Events.”

Assigning a class to a movie clip symbol
Using ActionScript 2.0, you can create a class that extends the behavior of the built-in
MovieClip class and then use the Linkage Properties dialog box to assign that class to a movie
clip library symbol. Whenever you create an instance of the movie clip to which the class is
assigned, it assumes the properties and behaviors defined by the class assigned to it. (For more
information about ActionScript 2.0, see “Example: Writing custom classes” on page 223.)

In a subclass of the MovieClip class, you can provide method definitions for the built-in
MovieClip methods and event handlers, such as onEnterFrame and onRelease. In the
following procedure, you’ll create a class called MoveRight that extends the MovieClip class;
MoveRight defines an onPress handler that moves the clip 20 pixels to the right whenever
the user clicks the movie clip. In the second procedure, you’ll create a movie clip symbol in a
new Flash (FLA) document and assign the MoveRight class to that symbol.

To create a movie clip subclass:

1. Create a new directory called BallTest.

2. Select File > New, and select ActionScript file from the list of document types to create a
new ActionScript file.

3. Enter the following code in your script file:
// MoveRight class -- moves clip to the right when clicked
class MoveRight extends MovieClip {

public function onPress() {
this._x += 20;

}
}

4. Save the document as MoveRight.as in the BallTest directory.

To assign the class to a movie clip symbol:

1. In Flash, select File > New, select Flash Document from the list of file types, and click OK.

2. Using the Oval tool, draw a circle on the Stage.

3. Select the circle, and select Modify > Convert to Symbol.

340 Working with Movie Clips

4. In the Convert to Symbol dialog box, select Movie Clip as the symbol’s behavior, and enter
ball_mc in the Name text box.

5. Select Advanced to show the options for Linkage, if they aren’t already showing.

6. Select the Export for ActionScript option, and type MoveRight in the Class text box. Click
OK.

7. Save the file as ball.fla in the BallTest directory (the same directory that contains the
MoveRight.as file).

8. Test the Flash document (Control > Test Movie).

Each time you click the ball movie clip, it moves 20 pixels to the right.

If you create component properties for a class and want a movie clip to inherit those
component properties, you need to take an additional step: with the movie clip symbol
selected in the Library panel, select Component Definition from the Library pop-up menu
and enter the new class name in the Class box.

Initializing class properties
In the example presented in the second procedure under “Assigning a class to a movie clip
symbol”, you added the instance of the Ball symbol to the Stage while authoring. As discussed
in “Adding parameters to dynamically created movie clips” on page 325, you can assign
parameters to clips you create at runtime by using the initObject parameter of
attachMovie() and duplicateMovie(). You can use this feature to initialize properties of
the class you’re assigning to a movie clip.

For example, the following class named MoveRightDistance is a variation of the MoveRight
class (see “Assigning a class to a movie clip symbol” on page 339). The difference is a new
property named distance, whose value determines how many pixels a movie clip moves each
time it is clicked.

To pass arguments to a custom class:

1. Create a new ActionScript document and save it as MoveRightDistance.as.

2. Type the following ActionScript into the Script window:
// MoveRightDistance class -- moves clip to the right every frame.
class MoveRightDistance extends MovieClip {

// Distance property determines how many
// pixels to move clip for each mouse press.
var distance:Number;

Initializing class properties 341

function onPress() {
this._x += this.distance;

}
}

3. Save your progress.

4. Create a new Flash document, and save it as MoveRightDistance.fla in the same directory
as the class file.

5. Create a movie clip symbol that contains a vector shape, such as an oval, and then delete
any content from the Stage.

You only need a movie clip symbol in the library for this example.
6. In the Library panel, right-click (Windows) or Control-click (Macintosh) the symbol and

select Linkage from the context menu.

7. Assign the linkage identifier Ball to the symbol.

8. Type MoveRightDistance into the AS 2.0 Class text box.

9. Add the following code to Frame 1 of the Timeline:
this.attachMovie("Ball", "ball50_mc", 10, {distance:50});
this.attachMovie("Ball", "ball125_mc", 20, {distance:125});

This code creates two new instances of the symbol on the root timeline of the SWF file.
The first instance, named ball50_mc, moves 50 pixels each time it is clicked; the second,
named ball125_mc, moves 125 pixels each time it is clicked.

10. Select Control > Test Movie to test the SWF file.

342 Working with Movie Clips

343

11
CHAPTER 11

Working with Text
and Strings

Many of the applications, presentations, and graphics that you create with Flash include some
kind of text. You can use many different kinds of text. You might use static text in your
layouts, but dynamic text for longer passages of text. Or you might use input text to capture
user input, and text in an image for your background design. You can create text fields with
the Flash authoring tool, or use ActionScript.

One way to display text is to use code to manipulate how strings appear before they are loaded
and displayed on the Stage at runtime. You can work with strings in an application in several
ways, such as sending them to a server and retrieving a response, parsing strings in an array, or
validating strings that the user types into a text field.

This chapter describes several ways to use text and strings in your applications, focusing on
using code to manipulate text.

The following list describes terminology used in this chapter.

Alias Aliased text does not use color variations to make its jagged edges appear smoother,
unlike anti-aliased text (see following definition).

Anti-alias You use advanced anti-aliasing to smooth text so the edges of characters that
appear onscreen look less jagged. The Anti-Alias option in Flash makes text more legible by
aligning text outlines along pixel boundaries, and is particularly effective for clearly rendering
smaller font sizes.

Characters Characters are letters, numerals, and punctuation that you combine to make
up strings.

Device fonts Device fonts are special fonts in Flash that are not embedded in a SWF file.
Instead, Flash Player uses whatever font on the local computer that most closely resembles the
device font. Because font outlines are not embedded, a SWF file size is smaller than using
embedded font outlines. However, because device fonts are not embedded, the text that you
create with these fonts looks different than expected on computer systems that do not have a
font installed that corresponds to the device font. Flash includes three device fonts: _sans
(similar to Helvetica and Arial), _serif (similar to Times Roman), and _typewriter (similar
to Courier).

344 Working with Text and Strings

Fonts Sets of characters with a similar font face, style, and size.

String A sequence of characters.

Text A series of one or more strings that can be displayed in a text field, or within a user
interface component.

Text fields A visual element on the Stage that lets you display text to a user. Similar to an
input text field or text area form control in HTML, Flash lets you set text fields as editable
(read-only), allow HTML formatting, enable multiline support, password masking, or apply a
CSS stylesheet to your HTML formatted text.

Text formatting You can apply formatting to a text field, or certain characters within a text
field. Some examples of text formatting options that can be applied to text are: alignment,
indenting, bold, color, font size, margin widths, italics, and letter spacing.

For more information on text, see the following topics:
About text fields . 344

Using the TextField class .346

About loading text and variables into text fields .353

Using fonts . 359

About font rendering and anti-alias text .367

About text layout and formatting. .375

Formatting text with Cascading Style Sheet styles .382

Creating a style sheet object .385

Using HTML-formatted text .397

Example: Creating scrolling text . 410

About text fields
A dynamic or input text field is a TextField object (an instance of the TextField class). When
you create a text field in the authoring environment, you can assign it an instance name in the
Property inspector. You can use the instance name in ActionScript statements to set, change,
and format the text field and its content by using the TextField and TextFormat classes.

You can use the user interface to create several kinds of text fields, or you can use ActionScript
to create text fields. You can create the following kinds of text fields in Flash:

Static text Use static text to display characters that do not need to change, to display small
amounts of text, or to display special fonts that are not available on most computers. You can
also display uncommon fonts by embedding characters for dynamic text fields.

Dynamic text Use dynamic text fields when you need to display characters that are updated
or that change at runtime. Also, you can load text into dynamic text fields.

About text fields 345

Input text Use input text fields when you need to capture user input. Users can type in
these text fields.

Text components You can use TextArea or TextInput components to display or capture
text in your applications. The TextArea component is similar to a dynamic text field with
built-in scroll bars. The TextInput component is similar to an input text field. Both
components have additional functionality over their text field equivalents; however, they add
more file size to your application.

The methods of the TextField class let you set, select, and manipulate text in a dynamic or
input text field that you create during authoring or at runtime. For more information, see
“Using the TextField class” on page 346. For information on debugging text fields at runtime,
see Using Flash.

ActionScript also provides several ways to format your text at runtime. The TextFormat class
lets you set character and paragraph formatting for TextField objects (see “Using the
TextFormat class” on page 380). Flash Player also supports a subset of HTML tags that you
can use to format text (see “Using HTML-formatted text” on page 397). Flash Player 7 and
later supports the img HTML tag, which lets you embed not just external images but also
external SWF files as well as movie clips that reside in the library (see “Image tag”
on page 400).

In Flash Player 7 and later, you can apply Cascading Style Sheet (CSS) styles to text fields
using the TextField.StyleSheet class. You can use CSS styles to style built-in HTML tags,
define new formatting tags, or apply styles. For more information on using CSS, see
“Formatting text with Cascading Style Sheet styles” on page 382.

You can also assign HTML formatted text, which might optionally use CSS styles, directly to
a text field. In Flash Player 7 and later, HTML text that you assign to a text field can contain
embedded media (movie clips, SWF files, and JPEG files). In Flash Player 8 and later, you can
also dynamically load PNG, GIF, and progressive JPEG images (Flash Player 7 does not
support progressive JPEG images). The text wraps around the embedded media similar to
how a web browser wraps text around media embedded in an HTML document. For more
information, see “Image tag” on page 400.

For information on the terminology that compares text, strings, and more, see the
introduction for this chapter, “Working with Text and Strings” on page 343.

N
O

T
E

All text fields support Unicode. For information on Unicode, see “About strings and the
String class” on page 411

346 Working with Text and Strings

Using the TextField class
The TextField class represents any dynamic or input (editable) text field you create using the
Text tool in Flash. You use the methods and properties of this class to control text fields at
runtime. TextField objects support the same properties as MovieClip objects, with the
exception of the _currentframe, _droptarget, _framesloaded, and _totalframes
properties. You can get and set properties and invoke methods for text fields dynamically.

To use ActionScript to control a dynamic or input text field, you must assign the text field an
instance name in the Property inspector. You can then reference the text field with the
instance name, and use the methods and properties of the TextField class to control the
contents or basic appearance of the text field.

You can also create TextField objects at runtime, and assign them instance names, using the
MovieClip.createTextField() method. For more information, see “Creating text fields at
runtime” on page 349.

For more information on using the TextField class, see the following topics:

■ “Assigning text to a text field at runtime” on page 346
■ “About text field instance and variable names” on page 348

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

■ textfieldsA.fla
■ textfieldsB.fla

Assigning text to a text field at runtime
When you build applications with Flash, you may want to load text from an external source,
such as a text file, an XML file, or even a remote web service. Flash provides a great deal of
control over how you create and display text on the Stage, such as supporting text that is
HTML formatted, plain text, XML formatted text, and external style sheets. Or you can use
ActionScript to define a stylesheet.

To assign text to a text field, you can do one of the following: use the text or htmlTEXT
properties; create a variable name for the text field in the Var: field in the Properties inspector
and assign text to that; assign a value by binding the text field to a text field in another
component.

http://www.adobe.com/go/learn_fl_samples

About text fields 347

The following exercise assigns text to a text field at runtime.

To assign text to a text field at runtime:

1. Using the Text tool, create a text field on the Stage.

2. With the text field selected, in the Property inspector (Window > Properties > Properties),
select Input Text from the Text Type pop-up menu, and enter headline_txt in the Instance
Name text box.

Instance names must consist only of letters, numbers, underscores (_), and dollar
signs ($).

3. Select Frame 1 of the Timeline, and open the Actions panel (Window > Actions).

4. Type the following code in the Actions panel:
headline_txt.text = "New articles available on Developer Center";

5. Select Control > Test Movie to test the Flash document.

You can also create a text field with ActionScript, and then assign text to it. Type the following
ActionScript on Frame 1 of the Timeline:
this.createTextField("headline_txt", this.getNextHighestDepth(), 100, 100,

300, 20);
headline_txt.text = "New articles available on Developer Center";

This code creates a new text field with the instance name headline_txt. The text field is
created at the next highest depth, at the x and y coordinates of 100, 100, with a text field
width of 200 pixels and a height of 20 pixels. When you test the SWF file (Control > Test
Movie), the text “New articles available on Developer Center” appears on the Stage.

To create an HTML-formatted text field:

Use one of the following two steps to enable HTML formatting for the text field:

■ Select a text field and click the Render Text as HTML button in the Property inspector.
■ Set the text field’s html property to true by using ActionScript (see the following

code sample).

To apply HTML formatting to a text field by using ActionScript, type the following
ActionScript on Frame 1 of the Timeline:
this.createTextField("headline_txt", this.getNextHighestDepth(), 100, 100,

300, 20);
headline_txt.html = true;
headline_txt.htmlText = "New articles available on <i>Developer Center</

i>.";

348 Working with Text and Strings

The preceding code dynamically creates a new text field, enables HTML formatting, and
displays the text “New articles available on Developer Center” on the Stage, with the word
“Developer Center” appearing in italics.

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

■ textfieldsA.fla
■ textfieldsB.fla

About text field instance and variable names
In the Instance Name text box in the Property inspector, you must assign an instance name to
a text field to invoke methods and get and set properties on that text field.

In the Var text box in the Property inspector, you can assign a variable name to a dynamic or
input text field. You can then assign values to the variable. This is a deprecated functionality
that you might use when you create applications for older versions of Flash Player (such as
Flash Player 4). When you target newer players, target the text of a text field by using its
instance name and ActionScript.

Do not confuse a text field’s instance name with its variable name, however. A text field’s
variable name is a variable reference to the text contained by that text field; it is not a reference
to an object.

For example, if you assigned a text field the variable name myTextVar, you can use the
following code to set the contents of the text field:
var myTextVar:String = "This is what will appear in the text field";

However, you can’t use the variable name myTextVar to set the text field’s text property. You
have to use the instance name, as shown in the following code:
// This won't work.
myTextVar.text = "A text field variable is not an object reference";

// For input text field with instance name "myField", this will work.
myField.text = "This sets the text property of the myField object";

C
A

U
T

IO
N

When you use HTML formatted text with a text field (not components) on the Stage, you
must assign the text to the text field’s htmlText property instead of the text property.

http://www.adobe.com/go/learn_fl_samples

About text fields 349

Use the TextField.text property to control the contents of a text field, unless you’re
targeting a version of Flash Player that doesn’t support the TextField class. This reduces the
chances of a variable name conflict, which could result in unexpected behavior at runtime.

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

■ textfieldsA.fla
■ textfieldsB.fla

Creating text fields at runtime
You can use the createTextField() method of the MovieClip class to create an empty text
field on the Stage at runtime. The new text field is attached to the timeline of the movie clip
that calls the method.

To dynamically create a text field using ActionScript:

1. Select File > New and then select Flash Document to create a new FLA file.

2. Type the following ActionScript on Frame 1 of the Timeline:
this.createTextField("test_txt", 10, 0, 0, 300, 100);

This code creates a 300 x 100-pixel text field named test_txt with a location of (0, 0)
and a depth (z-order) of 10.

3. To access the methods and properties of the newly created text field, use the instance name
specified in the first parameter of the createTextField() method.

For example, the following code creates a new text field named test_txt, and modifies its
properties to make it a multiline, word-wrapping text field that expands to fit inserted
text. Then it assigns some text using the text field’s text property:
test_txt.multiline = true;
test_txt.wordWrap = true;
test_txt.autoSize = "left";
test_txt.text = "Create new text fields with the

MovieClip.createTextField() method.";

4. Select Control > Test Movie to see the text field.

The text is created at runtime and appears on the Stage.

You can use the TextField.removeTextField() method to remove a text field created with
createTextField(). The removeTextField() method does not work on a text field placed
by the timeline during authoring.

http://www.adobe.com/go/learn_fl_samples

350 Working with Text and Strings

For more information, see createTextField (MovieClip.createTextField method) and
removeTextField (TextField.removeTextField method) in the ActionScript 2.0 Language
Reference.

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

■ textfieldsA.fla
■ textfieldsB.fla

About manipulating text fields
You can manipulate text fields that you create in a FLA file in several ways. You can
manipulate a text field as long as you assign an instance name in the Property inspector, or
you can assign one with code if you use code to create the field. The following simple example
creates a text field, assigns text to it, and changes the border property of the field:
this.createTextField("pigeon_txt", this.getNextHighestDepth(), 100, 100,

200, 20);
pigeon_txt.text = "I like seeds";
pigeon_txt.border = true;

For a complete list of properties in the TextField class, see the ActionScript 2.0 Language
Reference.

For examples of how to manipulate text fields, see the following sections:

■ “Changing a text field’s position” on page 351
■ “Changing a text field’s dimensions at runtime” on page 351

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

■ textfieldsA.fla
■ textfieldsB.fla

N
O

T
E

Some TextField properties, such as _rotation, are not available when you create text
fields at runtime. You can rotate a text field only if it uses embedded fonts. See “To
embed a font symbol:” on page 361.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

About text fields 351

Changing a text field’s position
You can change a text field’s position on the Stage at runtime. You need to set new values for
the text field’s _x and _y properties, as shown in the following example.

To reposition a text field by using ActionScript:

1. Create a new FLA file and save it as positionText.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createTextField("my_txt", 10, 0, 0, 300, 200);
my_txt.border = true;
my_txt.text = "Hello world";
my_txt._x = (Stage.width - my_txt._width) / 2;
my_txt._y = (Stage.height - my_txt._height) / 2;

3. Save the Flash document and select Control > Test Movie to see the text field centered on
the Stage.

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

■ textfieldsA.fla
■ textfieldsB.fla

Changing a text field’s dimensions at runtime
You may need to get or set a text field’s dimensions dynamically at runtime, rather than in the
authoring environment. The next example creates a text field on a timeline and sets its initial
dimensions to 100 pixels wide by 21 pixels high. Later, the text field is resized to 300 pixels
wide by 200 pixels high, and it is repositioned to the center of the Stage.

To resize a text field using ActionScript:

1. Create a new Flash document and save it as resizeText.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createTextField("my_txt", 10, 0, 0, 100, 21);
my_txt.border = true;
my_txt.multiline = true;
my_txt.text = "Hello world";
my_txt.wordWrap = true;
my_txt._width = 300;
my_txt._height = 200;
my_txt._x = (Stage.width - my_txt._width) / 2;
my_txt._y = (Stage.height - my_txt._height) / 2;

http://www.adobe.com/go/learn_fl_samples

352 Working with Text and Strings

3. Save the Flash document and select Control > Test Movie to see the results in the authoring
environment.

The previous example resized a dynamically created text field to 300 pixels by 200 pixels at
runtime, but when you load content from an external website and are not sure how much
content will be returned, this technique may not be suitable for your needs. Fortunately, Flash
includes a TextField.autoSize property, which you can use to automatically resize a text
field to fit its contents. The following example demonstrates how you can use the
TextField.autoSize property to resize the text field after text is added to the text field.

To automatically resize text fields based on content:

1. Create a new Flash document and save it as resizeTextAuto.fla.

2. Add the following code to Frame 1 of the main Timeline:
this.createTextField("my_txt", 10, 10, 10, 160, 120);
my_txt.autoSize = "left";
my_txt.border = true;
my_txt.multiline = true;
my_txt.text = "Lorem ipsum dolor sit amet, consectetur adipisicing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.";

my_txt.wordWrap = true;

3. Save the Flash document and select Control > Test Movie to view the Flash document in
the authoring environment.

Flash resizes the text field vertically so that all the content can be displayed without being
cropped by the text field boundaries. If you set the my_txt.wordWrap property to false,
the text field resizes horizontally to accommodate the text.
To enforce a maximum height on the auto-sized text field (so that the text field height
doesn’t exceed the boundaries of the Stage), use the following code.
if (my_txt._height > 160) {

my_txt.autoSize = "none";
my_txt._height = 160;

}

N
O

T
E

If you paste this code directly into the Actions panel from some versions of Flash
Help, you may encounter line breaks in the long text string. In this case, the code
won’t compile. If you encounter this situation, enable Hidden Characters on the pop-
up menu of the Actions panel, and then remove the line break characters in the long
text string.

About loading text and variables into text fields 353

You must add some scrolling functionality, such as a scroll bar, to allow users to view the
remainder of the text. Alternatively, you can roll the mouse pointer over the text; this method
is often adequate while testing this code.

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/TextFields folder to access these samples:

■ textfieldsA.fla
■ textfieldsB.fla

About loading text and variables into
text fields
You can load text into a Flash document several ways, including (but certainly not limited to)
using FlashVars, LoadVars, XML, or web services. Perhaps the simplest method of passing text
into a Flash document is to use the FlashVars property, which passes short strings of text into
a Flash document through the object and embed tags in the HTML code that you use to
embed the SWF file in an HTML page. Another easy way to load text or variables into a Flash
document is to use the LoadVars class, which can load large blocks of text or load a series of
URL encoded variables from a text file.

As you can see from the previous examples in this section, some ways of loading text into a
SWF file are easier than others. However, if you syndicate data from external sites, you might
not have a choice for the format of the data that you need to load.

Each way of loading and/or sending data to and from a SWF file has its pros and cons. XML,
web services, and Flash Remoting are the most versatile for loading external data, but they are
also the most difficult to learn. For information on Flash Remoting, see www.adobe.com/
support/flashremoting.

FlashVars and LoadVars are much simpler, as demonstrated in “Using FlashVars to load and
display text” on page 354 and “Using LoadVars to load and display text” on page 355, but
they can be much more limited in the types and formats of data that you can load. Also, you
must follow security restrictions when you send and load data. For information on security,
see Chapter 16, “Understanding Security.” For more information on loading external data, see
Chapter 15, “Working with External Data.”

http://www.adobe.com/support/flashremoting/
http://www.adobe.com/support/flashremoting/
http://www.adobe.com/go/learn_fl_samples

354 Working with Text and Strings

The following sections show you different ways to load text and variables into your
documents:

■ “Using FlashVars to load and display text” on page 354
■ “Using LoadVars to load and display text” on page 355
■ “Loading variables by using LoadVars” on page 357
■ “Loading and displaying text from an XML document” on page 358

For samples that demonstrate how to work with text fields using ActionScript, see the Flash
Samples page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and
navigate to the ActionScript 2.0/LoadText folder to access these samples:

■ loadText.fla
■ formattedText.fla

For a sample source file, aliasing.fla, that loads text and applies anti-alias formatting in
addition to bitmap caching, see the Flash Sample page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript 2.0/
Advanced Anti-Aliasing folder to access the sample.

Using FlashVars to load and display text
Using FlashVars is simple, but requires you to publish your SWF files along with HTML
documents. You modify the generated HTML code and include the FlashVars properties in
both the object and embed tags. You can then test the Flash document by viewing the
modified HTML document in your web browser.

To use FlashVars to pass variables from HTML to your Flash document:

1. Create a new Flash document and save it as flashvars.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createTextField("my_txt", 10, 10, 10, 100, 21);
my_txt.text = _level0.username;

3. Save the Flash document and select File > Publish to generate the HTML and SWF files.

4. Open up the flashvars.html document in a text or HTML editor.

N
O

T
E

An HTML document publishes, by default, to the same directory as your FLA file. If
an HTML document does not publish, select File > Publish Settings and then select
the Formats tab. Make sure that you select HTML.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

About loading text and variables into text fields 355

5. In the HTML document, modify the code inside the object tag to match the following.

The code you need to add is in boldface.
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0" width="550" height="400" id="flashvars"
align="middle">

<param name="allowScriptAccess" value="sameDomain" />
<param name="movie" value="flashvars.swf" />
<param name="FlashVars" value="username=Thomas" />
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<embed src="flashvars.swf" FlashVars="username=Thomas" quality="high"

bgcolor="#ffffff" width="550" height="400" name="flashvars"
align="middle" allowScriptAccess="sameDomain" type="application/x-
shockwave-flash" pluginspage="http://www.adobe.com/go/getflashplayer"
/>

</object>

6. Save your changes to the HTML document.

7. Open the modified HTML in a web browser.

The SWF file displays the name “Thomas” in the dynamically created text field on
the Stage.

For information on security, see Chapter 16, “Understanding Security.”

Using LoadVars to load and display text
You can also use the LoadVars class to load content into a SWF file, which loads text or
variables from an external file on the same server, or even content from a different server. The
next example demonstrates how to dynamically create a text field and populate it with the
contents of a remote text file.

356 Working with Text and Strings

To use LoadVars to populate a text field with external text:

1. Create a new Flash document and save it as loadvarsText.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createTextField("my_txt", 10, 10, 10, 320, 100);
my_txt.autoSize = "left";
my_txt.border = true;
my_txt.multiline = true;
my_txt.wordWrap = true;

var lorem_lv:LoadVars = new LoadVars();
lorem_lv.onData = function (src:String):Void {

if (src != undefined) {
my_txt.text = src;

} else {
my_txt.text = "Unable to load external file.";

}
}
lorem_lv.load("http://www.helpexamples.com/flash/lorem.txt");

The first block of code in the previous snippet creates a new text field on the Stage and
enables multiline and word wrapping. The second block of code defines a new LoadVars
object that is used to load a text file (lorem.txt) from a remote web server and display its
contents into the my_txt text field created earlier.

3. Save the Flash document and select Control > Test Movie to test the SWF file.

After a slight delay, Flash displays the contents of the remote file in the text field on
the Stage.

For information on security, see Chapter 16, “Understanding Security.”

About loading text and variables into text fields 357

Loading variables by using LoadVars
The LoadVars class also lets you load variables in a URL-encoded format, similar to passing
variables in the query string in a web browser. The following example demonstrates how to
load a remote text file into a SWF file and display its variables, monthNames and dayNames.

To load variables from a text file by using LoadVars:

1. Create a new Flash document and save it as loadvarsVariables.fla.

2. Add the following code to Frame 1 of the Timeline:
this.createTextField("my_txt", 10, 10, 10, 320, 100);
my_txt.autoSize = "left";
my_txt.border = true;
my_txt.multiline = true;
my_txt.wordWrap = true;

var lorem_lv:LoadVars = new LoadVars();
lorem_lv.onLoad = function (success:Boolean):Void {

if (success) {
my_txt.text = "dayNames: " + lorem_lv.dayNames + "\n\n";
my_txt.text += "monthNames: " + lorem_lv.monthNames;

} else {
my_txt.text = "Unable to load external file.";

}
}
/* contents of params.txt:

&monthNames=January,February,...&dayNames=Sunday,Monday,...
*/
lorem_lv.load("http://www.helpexamples.com/flash/params.txt");

3. Save the Flash document and select Control > Test Movie from the main menu.

Because you are using the LoadVars.onLoad() method instead of LoadVars.onData(),
Flash parses out the variables and creates variables within the LoadVars object instance.
The external text file contains two variables, monthNames and dayNames, which both
contain strings.

For information on security, see Chapter 16, “Understanding Security.”

358 Working with Text and Strings

Loading and displaying text from an XML document
XML data is a popular way to distribute content on the Internet, in part because it is a widely
accepted standard for organizing and parsing data. As such, XML is an excellent choice for
sending and receiving data from Flash; however, XML is slightly more difficult to learn than
using LoadVars and FlashVars to load data and display text.

To load text into Flash from an external XML document:

1. Create a new Flash document and save it as xmlReviews.fla.

2. Add the following code to Frame 1 of the Timeline:
this.createTextField("my_txt", 10, 10, 10, 320, 100);
my_txt.autoSize = "left";
my_txt.border = true;
my_txt.multiline = true;
my_txt.wordWrap = true;

var reviews_xml:XML = new XML();
reviews_xml.ignoreWhite = true;
reviews_xml.onLoad = function (success:Boolean):Void {

if (success) {
var childItems:Array = reviews_xml.firstChild.childNodes;
for (var i:Number = 0; i < childItems.length; i++) {

my_txt.text += childItems[i].firstChild.firstChild.nodeValue +
"\n";

}
} else {

my_txt.text = "Unable to load external file.";
}

}
reviews_xml.load("http://www.helpexamples.com/flash/xml/reviews.xml");

The first block of code in the preceding snippet creates a new text field on the Stage. This
text field is used to display various parts of the XML document that is loaded later. The
second block of code handles creating an XML object that will be used to load the XML
content. Once the date is completely loaded and parsed by Flash, the XML.onLoad() event
handler is invoked and displays the contents of the XML packet in the text field.

3. Save the Flash document and select Control > Test Movie to test the SWF file.

Flash displays the following output in the text field on the Stage:
Item 1
Item 2
...
Item 8

For information on security, see Chapter 16, “Understanding Security.”

Using fonts 359

Using fonts
Fonts are sets of characters with a similar font face, style, and size. No matter what you create
using Flash, you will probably use text with at least one or two fonts in your Flash
applications. If you build animations, and you are not sure if your end users will have a
specific font installed on their systems, you need to understand the basics about embedding
fonts.

The following sections show you how to embed characters, entire fonts, shared fonts, and
other techniques for working with fonts in Flash.

For more information on fonts, see the following sections:

■ “Embedding characters” on page 360
■ “Embedding fonts” on page 361
■ “Creating custom character sets” on page 363
■ “Using TextField methods with embedded fonts” on page 365
■ “About sharing fonts” on page 367

The following example shows you how to add and remove embedded characters and character
sets in a Flash document.

To add and remove embedded characters and character sets:

1. Create a new Flash document and save it as embedding.fla.

2. Create a dynamic text field on the Stage by using the Text tool.

3. Click Embed to launch the Character Embedding dialog box.

4. Select a specific character set to embed by clicking it with your mouse pointer.

To select multiple character sets, you can use the Shift or Control key while selecting items
with your mouse pointer. To select a block of character sets, select a character set with your
mouse pointer, press and hold Shift, and click a new character set. Using Shift selects every
character set between the two selected character sets. To select multiple non-sequential
character sets, press and hold the Control key while you select character sets. You can also
quickly select multiple character sets by selecting a character set with your mouse, and
with the mouse button still held down, drag your mouse over multiple character sets.

5. To remove a specific character set that you added earlier, press and hold the Control key
and deselect the character set by clicking it with your mouse pointer.

6. To remove every selected character set and any specified characters in the Include these
characters text input field, click Don’t Embed.

360 Working with Text and Strings

Don’t Embed clears any previously specified individual characters or character sets.

Embedding characters
If you’re working with embedded fonts and know exactly what characters you need, you can
reduce file size by embedding only the characters that you need instead of including
additional, unused font outlines. To embed certain characters within a text field and not
embed a whole character set, use the Character Embedding dialog box to specify which
specific characters you want to embed.

To embed specific characters for use in a text field:

1. Create a new Flash document and save it as charembed.fla.

2. Using the Text tool, create a text field on the Stage and set the text field’s text type to either
dynamic or input.

3. With the text field still selected on the Stage, click Embed in the Property inspector to open
the Character Embedding dialog box.

The Character Embedding dialog box lets you set which character sets will embed in the
Flash document (as well as how many glyphs per character set), specify specific characters
to embed, and tells you the total number of glyphs being embedded for this text field.

4. Type the string hello world into the Include these characters text box.

The dialog box tells you that a total of 8 glyphs will be embedded for this text field. Even
though the string “hello world” contains 11 characters, Flash only embeds unique glyphs,
so the letters l and o are embedded once instead of multiple times.

5. Click OK to apply the changes and return to your document.

6. Using the Text tool, create a new text field on the Stage.

7. Set the text field’s text type to dynamic in the Property inspector.

8. Type the string hello world into the text field on the Stage.

9. Click Embed in the Property inspector to open the Character Embedding dialog box again.

10. Click Auto Fill to automatically populate the Include These Characters text box.

C
A

U
T

IO
N

Clicking Don’t Embed in the Character Embedding dialog box removes any specified
embedded characters and character sets that were previously chosen without asking
you to confirm.

Using fonts 361

You will see the string “helo wrd”. Instead of having to tell Flash which characters you
want to include, Flash can determine all unique characters in the specified text field
for you.

11. Click OK.

Embedding fonts
When you embed fonts, Flash stores all of the font information in the SWF file so the font is
displayed properly even if it’s not installed on the user’s computer. If you use a font in your
FLA file that isn’t installed on a user’s system, and you don’t embed the font in the SWF file,
Flash Player automatically selects a substitute font to use instead.

To embed a font symbol:

1. Select Window > Library to open the current FLA file’s library.

Open the library that you want to add the font symbol to.
2. Select New Font from the library’s pop-up menu (upper-right corner of the Library panel).

3. Type a name for the font symbol in the Name text box of the Font Symbol Properties
dialog box.

4. Select a font from the Font menu or type the name of a font in the Font text box.

5. Select Bold, Italic, or Alias text if you want to apply a style to the font.

6. Enter the font size to embed, and then click OK to apply the changes and return to
your document.

Your font now appears in the current document’s library.

After you’ve embedded a font in your library, you can use it with a text field on the Stage.

To use an embedded font symbol in your Flash document:

1. Follow the steps in the procedure under “Embedding fonts” on page 361 to embed a font
in your library.

2. Use the Text tool to create a text field on the Stage.

3. Type some text in the text field.

T
IP Flash can determine characters to embed automatically only if the text field contains

text on the Stage. If the text field is populated by using ActionScript, you must
specify which characters you want to embed for the text field.

N
O

T
E

You need to embed a font only if you’re using dynamic or input text fields. If you use a
static text field, you don’t need to embed the font.

362 Working with Text and Strings

4. Select the text field, and open the Property inspector.

a. Set the text field to single-line.
b. Select the name of the embedded font by using the Font drop-down menu.
Embedded fonts have an asterisk (*) after the font name.

5. Click Embed in the Property inspector to launch the Character Embedding dialog box.

The Character Embedding dialog box lets you select the individual characters or character
sets that you want to embed for the selected text field. To specify what characters to
embed, either type the characters into the text box in the dialog box, or click Auto Fill to
automatically populate the text field with the unique characters currently in the text field.
If you aren’t sure which characters you will need (for example, because your text loads
from an external file or a web service), you can select entire sets of characters to embed,
such as Uppercase [A..Z], Lowercase [a..z], Numerals [0..9], Punctuation [!@#%...], and
character sets for several different languages.

6. Select the individual characters or character sets you want to embed, and then click OK to
apply the changes and return to your document.

7. Select Control > Test Movie to test the Flash document in the authoring environment.

The embedded font is displayed in the text field on the Stage. To properly test that the
font is embedded, you might need to test on a separate computer without the embedded
font installed.
Or you can set the TextField._alpha or TextField._rotation properties for the text
field with embedded fonts, because these properties work only on embedded fonts (see the
following steps).

8. Close the SWF file and return to the authoring tool.

9. Select the text field on the Stage, and open the Property inspector.

a. Set the text field’s Text type to Dynamic Text.
b. Type font_txt into the Instance Name text box.

10. Add the following code to Frame 1 of the Timeline:
font_txt._rotation = 45;

11. Select Control > Test Movie again to view the changes in the authoring environment.

N
O

T
E

Each character set you select increases the final size of the SWF file because Flash
has to store all of the font information for each character set that you use.

Using fonts 363

The embedded font rotates 45º clockwise, and you can still see the text because it’s
embedded in the SWF file.

Creating custom character sets
In addition to using the Flash default character sets, you can also create your own character
sets and add them to the Character Embedding dialog box. For example, you might need to
allow some fields to include Extended Latin, to support various accented characters. However,
perhaps you don’t need the numerals and punctuation, or perhaps you only need uppercase
characters. Rather than embedding entire character sets, you can create a custom character set
that contains only the characters that you need. This way you can keep the size of your SWF
file as small as possible, because you don’t store any extra font information for the characters
that you don’t need.

To create a custom character set, you must edit the UnicodeTable.xml file, located in the
C:\Program Files\Adobe\Adobe Flash CS3\<language>\First Run\FontEmbedding\ directory.
This file defines the default character sets and the character ranges and characters that
they contain.

Before you create a custom character set, you should understand the necessary XML structure.
The following XML nodes define the Uppercase [A..Z] character set:
<glyphRange name="Uppercase [A..Z] " id="1" >

<range min="0x0020" max ="0x0020" />
<range min="0x0041" max ="0x005A" />

</glyphRange>

Notice that the glyphRange node includes name, Uppercase [A..Z], and id. A glyphRange
node can have as many range child nodes as you need. A range can be a single character, such
as 0x0020 (the space character), seen in the previous snippet, or a range of characters, such as
the second range child node. To embed only a single character, set the min value and the max
value to the same unicode character value.

C
A

U
T

IO
N

If you don’t embed a font within your Flash document and Flash Player automatically
chooses a font substitute on the user’s computer, the TextField.font property returns
the original font used within the FLA, not the name of the substituted font.

N
O

T
E

If you use embedded fonts with a variety of styles in your text fields, you must embed
the style that you want to use. For example, if you’re using an embedded font called
Times, and then want a word to be italic, you must make sure to embed both the
normal and italic character outlines. Otherwise, the text won’t appear in the text field.

364 Working with Text and Strings

Another example of an XML glyphRange node is the Numerals [0..9] node:
<glyphRange name="Numerals [0..9] " id="3" >

<range min="0x0030" max ="0x0039" />
<range min="0x002E" max ="0x002E" />

</glyphRange>

This range of characters includes the Unicode values 0x0030 (zero) through 0x0039 (9), as
well as 0x002E (.).

Before you create a custom character set, you need to know the characters and their
corresponding Unicode values. The best place to find Unicode values is the Unicode
Standards web site, www.unicode.org, which contains the Unicode Character Code chart for
dozens of languages.

To create and use a custom character set:

1. Open the UnicodeTable.xml document, located in the <Flash install
directory>\<language>\First Run\FontEmbedding\ directory, using an XML or text editor
such as Notepad or TextEdit.

2. Scroll to the bottom of the XML document and add the following XML code directly
before the closing </fontEmbeddingTable> node:
<glyphRange name="Uppercase and Numerals [A..Z,0..9] " id="100" >

<range min="0x0020" max ="0x0020" />
<range min="0x002E" max ="0x002E" />
<range min="0x0030" max ="0x0039" />
<range min="0x0041" max ="0x005A" />

</glyphRange>

3. Save your changes to UnicodeTable.xml.

If you have Flash open, you must restart the application before you can use the new
character set.

4. Open or restart Flash and then create a new Flash document.

C
A

U
T

IO
N

To add custom character sets, you need to edit an XML file in the Flash installation
folder. Before you edit this file, you should make a backup copy in case you want to
revert to the original Unicode table.

C
A

U
T

IO
N

Adobe recommends that you do not modify the existing character sets that are installed
with Flash, and that you instead make your own custom character sets that include the
characters and punctuation that you require.

N
O

T
E

Remember to save a backup of this document, in case you want to revert to the
original file that is installed with Flash.

http://www.unicode.org

Using fonts 365

5. Add a new TextField instance on the Stage by using the Text tool.

6. Set the Text type of the TextField to Dynamic in the Property inspector, and then click
Embed Character Options to open the Character Embedding dialog box.

7. Scroll to the bottom of the Character Embedding dialog box and select your new custom
character set, Uppercase and Numerals [A..Z,0..9] (38 glyphs).

8. Select any other character sets and click OK.

If you select your custom character set, Uppercase and Numerals [A..Z,0..9], as well as the
default Uppercase [A..Z] or Numerals [0..9] character set, notice that the number of
glyphs that are embedded doesn’t change. This is because all of the uppercase characters
are included in your custom character set, and Flash doesn’t include duplicate characters,
which keeps the file size as small as possible. If you select the Punctuation character set,
which includes 52 glyphs, as well as your custom character set, which includes 38 glyphs,
Flash stores information for only 88 glyphs instead of 90. This happens because two
overlapping characters, the space and the period, are already included in your custom
character set.

Using TextField methods with embedded fonts
Methods of the TextField class provide useful functionality for your applications. For example,
you can control the thickness of a text field by using ActionScript as demonstrated in the
following example.

To set a text field’s thickness using ActionScript:

1. Create a new Flash document and save it as textfieldThickness.fla.

2. Open the Library panel, and select New Font from the pop-up menu (in the upper-right
corner of the Library panel).

The Font Symbol Properties dialog box opens. This dialog box lets you select a font to
embed in the SWF file (including a font style and font size). You can also assign a font
name that appears in the document’s library and the font drop-down menu in the
Property inspector (if you have a text field selected on the Stage).
a. Select the Times New Roman font from the Font drop-down menu.
b. Make sure that you deselect the Bold and Italic options.
c. Set the size to 30 pixels.

T
IP The position of a character set in the Character Embedding dialog box is determined

by its location in the XML document. You can reorder the character sets, including
your custom character sets, by moving <glyphRange> packets in the XML file.

366 Working with Text and Strings

d. Enter a font name of Times (embedded)

e. Click OK.
3. In the library, right-click the font symbol, and then select Linkage from the context menu.

Flash opens the Linkage Properties dialog box.
4. Select the Export for ActionScript and Export in first frame options and click OK.

5. Add the following ActionScript to Frame 1 of the Timeline:
// 1
this.createTextField("thickness_txt", 10, 0, 0, Stage.width, 22);
this.createTextField("lorem_txt", 20, 0, 20, Stage.width, 0);
lorem_txt.autoSize = "left";
lorem_txt.embedFonts = true;
lorem_txt.antiAliasType = "advanced";
lorem_txt.text = "Lorem ipsum dolor sit amet, consectetur adipisicing

elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.";

lorem_txt.wordWrap = true;

// 2
var style_fmt:TextFormat = new TextFormat();
style_fmt.font = "Times (embedded)";
style_fmt.size = 30;
lorem_txt.setTextFormat(style_fmt);

// 3
var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

// Values for TextField.thickness can range from -200 to +200.
lorem_txt.thickness = Math.round(_xmouse * (400 / Stage.width) - 200);
thickness_txt.text = "TextField.thickness = " + lorem_txt.thickness;

};
Mouse.addListener(mouseListener);

The first block of code creates two text fields, thickness_txt and lorem_txt, and
positions them on the Stage. The lorem_txt text field sets its embedFonts property to
true and populates the text field with a block of text.
The second block of code defines a text format with the font face Times New Roman, sets
the font size to 30 pixels, and applies the text format to the lorem_txt text field.

About font rendering and anti-alias text 367

The third, and final, block of code defines and assigns a mouse listener for the
onMouseMove event. When the mouse pointer moves horizontally across the Stage, the
TextField.thickness property changes between -200 and +200, depending on the
current value of _xmouse.

6. Save your changes to the FLA file.

7. Select Control > Test Movie to test your Flash document.

When you move the mouse pointer to the left half of the Stage, the font thickness
decreases. When you move the mouse pointer to the right half of the Stage, the font
thickness increases.

About sharing fonts
To use a font as a shared library item, you can create a font symbol in the Library panel, and
then assign the following attributes to the font symbol:

■ An identifier string
■ A URL where the document containing the font symbol will be posted

In this way, you can link to the font and use it in a Flash application without the font being
stored in the FLA file.

About font rendering and anti-alias text
Font rendering in Flash controls the way that your text appears in a SWF file; that is, how it is
rendered (or drawn) at runtime. The advanced font rendering technology used in Flash Player
8 and later is called advanced anti-aliasing. Advanced anti-aliasing uses advanced rendering
technology to help make text appear legible and clear at small to regular font sizes, such as
when you apply advanced anti-aliasing to your text fields. This technology is discussed in
more detail later in this section.

Advanced anti-aliasing lets you smooth text so that the edges of characters displayed onscreen
look less jagged, which can be particularly helpful when you want to display text using small
text sizes. The Anti-Alias option for text makes characters more legible by aligning text
outlines along pixel boundaries, and is particularly effective for more clearly rendering small
font sizes.You can apply advanced anti-aliasing for each text field in your application, rather
than for individual characters.

Advanced anti-aliasing is supported for static, dynamic, and input text if the user has Flash
Player 7 or later. It is supported only for static text if the user has an earlier version of Flash
Player. Advanced anti-aliasing options are available for Flash Player 8 and later.

368 Working with Text and Strings

Flash includes a significantly improved font rasterization and rendering technology, called
advanced anti-aliasing, for working with anti-aliased fonts. Flash includes five font rendering
methods, which are available only when you publish SWF files for Flash Player 8 and later. If
you are publishing files for use with Flash Player 7 or earlier versions, only the Anti-Alias for
Animation option is available for use with your text fields.

Advanced anti-aliasing is a high-quality font rendering technology that you can enable by
using either the Flash authoring tool or ActionScript. The advanced anti-aliasing technology
lets you render font faces with high-quality output at small sizes, with more control. You can
apply advanced anti-aliasing to embedded font rendering for static, dynamic, and input text
fields. The improved capabilities mean that embedded text appears at the same level of quality
as device text, and fonts appear the same on different platforms.

The font rendering methods available for Flash Player 8 and later are Device Fonts, Bitmap
Text (no anti-alias), Anti-Alias for Animation, Anti-Alias for Readability, and Custom Anti-
Alias, which lets you define a custom value for thickness and sharpness. For more information
on these options, see “Font rendering options in Flash” on page 369.

Advanced and custom anti-alias features support the following:

■ Scaled and rotated text
■ All fonts (plain, bold, or italic) up to 255 pt size
■ File exporting to most formats (such as JPEG or GIF files)

Advanced and custom anti-alias features do not support the following:

■ Flash Player 7 or earlier
■ Skewed or flipped text
■ Printing
■ File exporting to the PNG file format

N
O

T
E

When you open existing FLA files in Flash 8 and later, your text is not automatically
updated to the Anti-Alias for Readability option; you must select individual text fields and
manually change the anti-aliasing settings to take advantage of the advanced anti-
aliasing technology.

N
O

T
E

When text is animated, the player turns off advanced anti-alias to improve the
appearance of your text while it’s moving. After the animation is complete, anti-alias
is turned back on.

About font rendering and anti-alias text 369

For a sample source file, aliasing.fla, that shows how to apply and manipulate anti-aliased text
in an application, see the Flash Sample page at www.adobe.com/go/learn_fl_samples.
Download and decompress the Samples zip file and navigate to the ActionScript 2.0/
Advanced Anti-Aliasing folder to access this sample. You use the advanced anti-aliasing
technology to create small text that’s highly legible. This sample also demonstrates how text
fields can scroll quickly and smoothly when you use the cacheAsBitmap property.

Font rendering options in Flash
Five different font rendering options are available in Flash. To select an option, select the text
field and open the Property inspector. Select an option from the Font rendering method pop-
up menu.

Device Fonts Produces a smaller SWF file size. The option renders using fonts that are
currently installed on the end user’s computer.

Bitmap Text (no anti-alias) Produces sharp text edges, without advanced anti-aliasing.
This option produces a larger SWF file size, because font outlines are included in the SWF
file.

Anti-Alias for Animation Produces anti-alias text that animates smoothly. The text also
animates faster in some situations, because alignment and anti-alias are not applied while the
text animates. You do not see a performance improvement when you use big fonts with lots of
letters, or scaled fonts. This option produces a larger SWF file size, because font outlines are
included in the SWF file.

Anti-Alias for Readability The advanced anti-aliasing engine is used for this option. This
option offers the highest-quality text, with the most legible text. This option produces the
largest SWF file size, because it includes font outlines, and also special advanced anti-aliasing
information.

Custom Anti-Alias The same as Anti-Alias for Readability, but you can visually manipulate
the advanced anti-aliasing parameters to produce a specific appearance. This option is useful
to produce the best possible appearance for new or uncommon fonts.

For an example of how to use anti-alias with ActionScript, see “Setting anti-alias with
ActionScript” on page 370.

http://www.adobe.com/go/learn_fl_samples

370 Working with Text and Strings

About continuous stroke modulation
The advanced anti-aliasing font rendering technology exploits the inherent properties of
distance fields to provide continuous stroke modulation (CSM); for example, continuous
modulation of both the stroke weight and the edge sharpness of the text. CSM uses two
rendering parameters to control the mapping of adaptively sampled distance field (ADF)
distances to glyph density values. Optimal values for these parameters are highly subjective;
they can depend on user preferences, lighting conditions, display properties, typeface,
foreground and background colors, and point size. The function that maps ADF distances to
density values has an outside cutoff, below which values are set to 0, and an inside cutoff,
above which values are set to a maximum density value, such as 255.

Setting anti-alias with ActionScript
Flash offers two types of anti-aliasing: normal and advanced. Advanced anti-aliasing is
available only in Flash Player 8 and later, and can be used only if you embed the font in the
library and have the text field’s embedFonts property set to true. For Flash Player 8 and later,
the default setting for text fields created using ActionScript is normal.

To set values for the TextField.antiAliasType property, use the following string values:

normal Applies the regular text anti-aliasing. This matches the type of anti-aliasing that
Flash Player used in version 7 and earlier.

advanced Applies advanced anti-aliasing for improved text readability, which is available in
Flash Player 8 and later. Advanced anti-aliasing allows font faces to be rendered at very high
quality at small sizes. It is best used with applications that have a lot of small text.

To use ActionScript to set anti-alias text, see the following example.

To use advanced anti-aliasing:

1. Create a new Flash document and save it as antialiastype.fla.

2. Create two movie clips on the Stage and give them instances names of normal_mc
and advanced_mc.

You will use these movie clips to toggle between the two types of anti-aliasing: normal
and advanced.

3. Open the Library panel and select New Font from the pop-up menu in the upper-right
corner of the Library panel.

T
IP Adobe does not recommend advanced anti-aliasing for fonts larger than 48 points.

About font rendering and anti-alias text 371

The Font Symbol Properties dialog box opens, in which you can select a font to embed in
the SWF file (including a font style and font size). You can also assign a font name that
appears in the document’s library and in the Font drop-down menu in the Property
inspector (if you have a text field selected on the Stage).
a. Select the Arial font from the Font drop-down menu.
b. Make sure that the Bold and Italic options are not selected.
c. Set the size to 10 pixels.
d. Enter the font name of Arial-10 (embedded).

e. Click OK.
4. In the library, right-click the font symbol and select Linkage from the context menu.

The Linkage Properties dialog box appears.
5. Select the Export for ActionScript and Export in First Frame options, enter the linkage

identifier Arial-10, and click OK.

6. Add the following ActionScript to Frame 1 of the main Timeline:
var text_fmt:TextFormat = new TextFormat();
text_fmt.font = "Arial-10";
text_fmt.size = 10;

this.createTextField("my_txt", 10, 20, 20, 320, 240);
my_txt.autoSize = "left";
my_txt.embedFonts = true;
my_txt.selectable = false;
my_txt.setNewTextFormat(text_fmt);
my_txt.multiline = true;
my_txt.wordWrap = true;

var lorem_lv:LoadVars = new LoadVars();
lorem_lv.onData = function(src:String) {

if (src != undefined) {
my_txt.text = src;

} else {
my_txt.text = "unable to load text file.";

}
};
lorem_lv.load("http://www.helpexamples.com/flash/lorem.txt");

normal_mc.onRelease = function() {
my_txt.antiAliasType = "normal";

};
advanced_mc.onRelease = function() {

my_txt.antiAliasType = "advanced";
};

372 Working with Text and Strings

The preceding code is separated into four key areas. The first block of code creates a new
TextFormat object, which specifies a font and font size to be used for a text field that will
be created shortly. The specified font, Arial-10, is the linkage identifier for the font
symbol that you embedded in a previous step.
The second block of code creates a new text field with the instance name my_txt. In order
for the font to be properly embedded, you must set embedFonts to true for the text field
instance. The code also sets the text formatting for the new text field to the TextFormat
object that you created earlier.
The third block of code defines a LoadVars instance that populates the text field on the
Stage with the contents of an external text file. After the document is fully loaded (but not
parsed), the entire contents of the file are copied into the my_txt.text property, so that
they are displayed on the Stage.
The fourth, and final, block of code defines onRelease event handlers for both the
normal_mc movie clip and the advanced_mc movie clip. When the user clicks and releases
either one of these options, the anti-alias type for the text field on the Stage changes.

7. Save your changes to the FLA file.

8. Select Control > Test Movie to test your Flash document.

9. Click the advanced_mc movie clip on the Stage.

Clicking the movie clip switches the anti-alias type from normal (the default) to advanced.
When you are dealing with text fields with a smaller font size, setting the anti-aliasing to
advanced can dramatically improve the readability of the text.

For information on formatting anti-alias text, see “Using a grid fit type” on page 378 and
“About formatting anti-alias text” on page 376.

For a sample source file, aliasing.fla, that shows how to apply and manipulate anti-aliasing text
in an application, see the Flash Sample page at www.adobe.com/go/learn_fl_samples.
Download and decompress the Samples zip file and navigate to the ActionScript2.0/Advanced
Anti-Aliasing folder to access this sample. You use the advanced anti-aliasing technology to
create small text that’s highly legible. This sample also demonstrates how text fields can scroll
quickly and smoothly when you use the cacheAsBitmap property.

T
IP Advanced anti-aliasing allows font faces to be rendered at high quality at small sizes.

It is best used with applications that have a lot of small text. Adobe does not
recommend advanced anti-aliasing for fonts larger than 48 points.

http://www.adobe.com/go/learn_fl_samples

About font rendering and anti-alias text 373

Setting tables for fonts
If you create fonts for use in SWF files or for distribution to Flash developers, you may need
to set tables for fonts to control how they render on the Stage.

Advanced anti-aliasing uses adaptively sampled distance fields (ADFs) to represent the
outlines that determine a glyph (a character). Flash uses two values:

■ An outside cutoff value, below which densities are set to 0.
■ An inside cutoff value, above which densities are set to a maximum density value, such

as 255.

Between these two cutoff values, the mapping function is a linear curve ranging from 0 at the
outside cutoff to the maximum density at the inside cutoff.

Adjusting the outside and inside cutoff values affects stroke weight and edge sharpness. The
spacing between these two parameters is comparable to twice the filter radius of classic anti-
aliasing methods; a narrow spacing provides a sharper edge, while a wider spacing provides a
softer, more filtered edge. When the spacing is 0, the resulting density image is a bilevel
bitmap. When the spacing is very wide, the resulting density image has a watercolor-like edge.

Typically, users prefer sharp, high contrast edges at small point sizes and softer edges for
animated text and larger point sizes.

The outside cutoff typically has a negative value, the inside cutoff has a positive value, and
their midpoint lies near 0. Adjusting these parameters to shift the midpoint toward negative
infinity increases the stroke weight; shifting the midpoint toward positive infinity decreases
the stroke weight.

Flash Player includes advanced anti-aliasing settings for ten basic fonts; and for these fonts,
advanced anti-aliasing settings are provided only for the font sizes from 6 to 20. For these
fonts, all sizes below 6 use the settings for 6, and all sizes above 20 use the settings for 20.
Other fonts map to the supplied font data. The setAdvancedAntialiasingTable() method
lets you set custom anti-aliasing data for other fonts and font sizes, or to override the default
settings for the provided fonts. For more information on creating an anti-aliasing table, see
the following example:

To create an advanced anti-aliasing table for an embedded font:

1. Create a new Flash document and save it as advancedaatable.fla.

2. Select New Font from the Library panel pop-up menu.

3. Select Arial from the Font pop-up menu, and then set the font size to 32 points.

N
O

T
E

The outside cutoff should always be less than or equal to the inside cutoff.

374 Working with Text and Strings

4. Select both the Bold and Italics options.

5. Enter the font name Arial (embedded) in the Name text box and click OK.

6. Right-click (Windows) or Control-click (Macintosh) the font symbol in the library, and
select Linkage.

7. In the Linkage Properties dialog box:

a. Type Arial-embedded in the Identifier text box.
b. Select Export for ActionScript and Export in First Frame.
c. Click OK.

8. Select Frame 1 of the main Timeline, and add the following ActionScript in the
Actions panel:
import flash.text.TextRenderer;
var arialTable:Array = new Array();
arialTable.push({fontSize:16.0, insideCutoff:0.516,

outsideCutoff:0.416});
arialTable.push({fontSize:32.0, insideCutoff:2.8, outsideCutoff:-2.8});
TextRenderer.setAdvancedAntialiasingTable("Arial", "bolditalic", "dark",

arialTable);

var my_fmt:TextFormat = new TextFormat();
my_fmt.align = "justify";
my_fmt.font = "Arial-embedded";
my_fmt.size = 32;

this.createTextField("my_txt", 999, 10, 10, Stage.width-20,
Stage.height-20);

my_txt.antiAliasType = "advanced";
my_txt.embedFonts = true;
my_txt.multiline = true;
my_txt.setNewTextFormat(my_fmt);
my_txt.sharpness = 0;
my_txt.thickness = 0;
my_txt.wordWrap = true;

var lorem_lv:LoadVars = new LoadVars();
lorem_lv.onData = function(src:String):Void {

if (src != undefined) {
my_txt.text = src + "\n\n" + src;

} else {
trace("error downloading text file");

}
};
lorem_lv.load("http://www.helpexamples.com/flash/lorem.txt");

About text layout and formatting 375

The preceding code is separated into four sections. The first section of code imports the
TextRenderer class and defines a new anti-aliasing table for two different sizes of the Arial
font. The second section of code defines a new TextFormat object, which you use to apply
text formatting to the text field (that you create in the next section of code). The next
section of code creates a new text field with a my_txt instance name, enables advanced
anti-aliasing, applies the text format object (created earlier), and enables multiline text and
word wrapping. The final block of code defines a LoadVars object that you use to load text
from an external text file, and populate the text field on the Stage.

9. Select Control > Test movie to test the Flash document.

After the text loads from the remote server, Flash displays some text in the text field, and
you can see the advanced anti-aliasing table properties applied to your text field. The
embedded font on the Stage should appear like it has a slight blur effect because of the
current insideCutoff and outsideCutoff values.

About text layout and formatting
You can control text layout and formatting by using ActionScript. The TextFormat class
provides a great deal of control over how the text appears at runtime, in addition to other
forms of formatting such as style sheets (see “Formatting text with Cascading Style Sheet
styles” on page 382) and HTML text (see “Using HTML-formatted text” on page 397).

You can also control how characters fit on the grid by using ActionScript when you use anti-
alias text in a SWF file. This helps you to control the appearance of the characters at runtime.
For an example of how to use a grid fit type in your applications, see “Using a grid fit type”
on page 378.

For general information on text fields, see “About text fields” on page 344. For information
on formatting text, see “About formatting anti-alias text” on page 376. For more information
on the TextFormat class, see “Using the TextFormat class” on page 380 and TextFormat in
the ActionScript 2.0 Language Reference.

For more information on text layout and text formatting using the TextFormat class, see the
following sections:

■ “About formatting anti-alias text” on page 376
■ “Using a grid fit type” on page 378
■ “Using the TextFormat class” on page 380
■ “Default properties of new text fields” on page 382

376 Working with Text and Strings

About formatting anti-alias text
Flash introduces two properties that you can use when you format text fields with advanced
anti-aliasing enabled: sharpness and thickness. Sharpness refers to the amount of aliasing
that is applied to the text field instance. A high value for sharpness makes the embedded font
edge appear jagged and sharp. Setting sharpness to a lower value makes the font appear softer,
with more blurring. Setting a font’s thickness is similar to enabling bold formatting for a text
field. The higher the thickness, the bolder the font appears.

The following example dynamically loads a text file and displays text on the Stage. Moving
the mouse pointer along the x axis sets the sharpness between -400 and 400. Moving the
mouse pointer along the y axis sets the thickness between -200 and 200.

To modify a text field’s sharpness and thickness:

1. Create a new Flash document and save it as sharpness.fla.

2. Select New Font from the pop-up menu in the upper-right corner of the Library panel.

3. Select Arial from the Font drop-down menu and set the font size to 24 points.

4. Enter the font name of Arial-24 (embedded) in the Name text box and click OK.

5. Right-click the font symbol in the library and select Linkage to open the Linkage Properties
dialog box.

6. Set the linkage identifier to Arial-24, select the Export for ActionScript and Export in First
Frame check boxes, and click OK.

7. Add the following code to Frame 1 of the main Timeline:
var my_fmt:TextFormat = new TextFormat();
my_fmt.size = 24;
my_fmt.font = "Arial-24";

this.createTextField("lorem_txt", 10, 0, 20, Stage.width, (Stage.height
- 20));

lorem_txt.setNewTextFormat(my_fmt);
lorem_txt.text = "loading...";
lorem_txt.wordWrap = true;
lorem_txt.autoSize = "left";
lorem_txt.embedFonts = true;
lorem_txt.antiAliasType = "advanced";

this.createTextField("debug_txt", 100, 0, 0, Stage.width, 20);
debug_txt.autoSize = "left";
debug_txt.background = 0xFFFFFF;

var lorem_lv:LoadVars = new LoadVars();
lorem_lv.onData = function(src:String) {

lorem_txt.text = src;

About text layout and formatting 377

}
lorem_lv.load("http://www.helpexamples.com/flash/lorem.txt");

var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

lorem_txt.sharpness = (_xmouse * (800 / Stage.width)) - 400;
lorem_txt.thickness = (_ymouse * (400 / Stage.height)) - 200;
debug_txt.text = "sharpness=" + Math.round(lorem_txt.sharpness) +

", thickness=" + Math.round(lorem_txt.thickness);
};
Mouse.addListener(mouseListener);

This ActionScript code can be separated into five key sections. The first section of code
defines a new TextFormat instance that will be applied to a dynamically created text field.
The next two sections create two new text fields on the Stage. The first text field,
lorem_txt, applies the custom text formatting object created earlier, enables embedded
fonts, and sets the antiAliasType property to true. The second text field,
debug_txt,displays the current sharpness and thickness values for the lorem_txt text
field. The fourth section of code creates a LoadVars object, which is responsible for
loading the external text file and populating the lorem_txt text field. The fifth, and final,
section of code defines a mouse listener that is called whenever the mouse pointer moves
on the Stage. The current values for sharpness and thickness are calculated based on
the current position of the mouse pointer on the Stage. The sharpness and thickness
properties are set for the lorem_txt text field, and the current values are displayed in the
debug_txt text field.

8. Select Control > Test Movie to test the document.

Move the mouse pointer along the x axis to change the text field’s sharpness. Move the
mouse pointer from left to right to cause the sharpness to increase and appear more
jagged. Move the mouse pointer along the y axis to cause the text field’s thickness to
change.

For more information on using anti-alias text in a SWF file, see “Setting anti-alias with
ActionScript” on page 370, “Font rendering options in Flash” on page 369, and “Using a grid
fit type” on page 378.

For a sample source file, aliasing.fla, that shows how to apply and manipulate anti-aliasing text
in an application, see the Flash Sample page at www.adobe.com/go/learn_fl_samples.
Download and decompress the Samples zip file and navigate to the ActionScript 2.0/
Advanced Anti-Aliasing folder to access the sample. You use the advanced anti-aliasing
technology to create small text that’s highly legible. This sample also demonstrates how text
fields can scroll quickly and smoothly when you use the cacheAsBitmap property.

http://www.adobe.com/go/learn_fl_samples

378 Working with Text and Strings

Using a grid fit type
When you use advanced anti-aliasing on a text field, three types of grid fitting are available:

none Specifies no grid fitting. Horizontal and vertical lines in the glyphs are not forced to
the pixel grid. This setting is usually good for animation and for large font sizes.

pixel Specifies that strong horizontal and vertical lines are fit to the pixel grid. This setting
works only for left-aligned text fields. This setting generally provides the best legibility for
left-aligned text.

subpixel Specifies that strong horizontal and vertical lines are fit to the subpixel grid on an
LCD monitor. The subpixel setting is generally good for right-aligned and center-aligned
dynamic text, and it is sometimes a useful trade-off for animation versus text quality.

The following example shows how to set a grid fit type on a text field by using ActionScript.

To set a grid fit type on a text field:

1. Create a new Flash document and save it as gridfittype.fla.

2. Select New Font from the pop-up menu in the upper-right corner of the Library panel.

3. Select Arial font from the Font drop-down menu and set the font size to 10 points.

4. Type the font name Arial-10 (embedded) in the Name text box and click OK.

5. Right-click the font symbol in the library and select Linkage to open the Linkage Properties
dialog box.

6. Set the linkage identifier to Arial-10, and then select the Export for ActionScript and
Export in First Frame check boxes.

7. Click OK.

About text layout and formatting 379

8. Add the following code to Frame 1 of the main Timeline:
var my_fmt:TextFormat = new TextFormat();
my_fmt.size = 10;
my_fmt.font = "Arial-10";
var h:Number = Math.floor(Stage.height / 3);

this.createTextField("none_txt", 10, 0, 0, Stage.width, h);
none_txt.antiAliasType = "advanced";
none_txt.embedFonts = true;
none_txt.gridFitType = "none";
none_txt.multiline = true;
none_txt.setNewTextFormat(my_fmt);
none_txt.text = "loading...";
none_txt.wordWrap = true;

this.createTextField("pixel_txt", 20, 0, h, Stage.width, h);
pixel_txt.antiAliasType = "advanced";
pixel_txt.embedFonts = true;
pixel_txt.gridFitType = "pixel";
pixel_txt.multiline = true;
pixel_txt.selectable = false;
pixel_txt.setNewTextFormat(my_fmt);
pixel_txt.text = "loading...";
pixel_txt.wordWrap = true;

this.createTextField("subpixel_txt", 30, 0, h*2, Stage.width, h);
subpixel_txt.antiAliasType = "advanced";
subpixel_txt.embedFonts = true;
subpixel_txt.gridFitType = "subpixel";
subpixel_txt.multiline = true;
subpixel_txt.setNewTextFormat(my_fmt);
subpixel_txt.text = "loading...";
subpixel_txt.wordWrap = true;

var lorem_lv:LoadVars = new LoadVars();
lorem_lv.onData = function(src:String):Void {

if (src != undefined) {
none_txt.text = "[antiAliasType=none]\n" + src;
pixel_txt.text = "[antiAliasType=pixel]\n" + src;
subpixel_txt.text = "[antiAliasType=subpixel]\n" + src;

} else {
trace("unable to load text file");

}
};
lorem_lv.load("http://www.helpexamples.com/flash/lorem.txt");

380 Working with Text and Strings

The preceding ActionScript code can be separated into five sections. The first section
defines a new text format object that specifies two properties, size and font. The font
property refers to the linkage identifier of the font symbol currently in the document
library. The second, third, and fourth sections of code each create a new dynamic text field
on the Stage and set some common properties: antiAliasType (which must be set to
advanced), embedFonts (set to true), multiline, and wordWrap. Each section also
applies the text format object created in an earlier section, and sets the grid fit type to
normal, pixel, or subpixel. The fifth, and final, section creates a LoadVars instance,
which loads the contents of an external text file into each of the text fields that you created
with code.

9. Save the document and select Control > Test movie to test the SWF file.

Each text field should be initialized with the value “loading...”. After the external text file
is successfully loaded, each text field displays some formatted sample text using a different
grid-fit type.

Using the TextFormat class
You can use the TextFormat class to set the formatting properties of a text field. The
TextFormat class incorporates character and paragraph formatting information. Character
formatting information describes the appearance of individual characters: font name, point
size, color, and an associated URL. Paragraph formatting information describes the
appearance of a paragraph: left margin, right margin, indentation of the first line, and left,
right, or center alignment.

To use the TextFormat class, you first create a TextFormat object and set its character and
paragraph formatting styles. You then apply the TextFormat object to a text field using the
TextField.setTextFormat() or TextField.setNewTextFormat() method.

The setTextFormat() method changes the text format that is applied to individual
characters, to groups of characters, or to the entire body of text in a text field. Newly inserted
text, however—such as text entered by a user or inserted with ActionScript—does not assume
the formatting specified by a setTextFormat() call. To specify the default formatting for
newly inserted text, use TextField.setNewTextFormat(). For more information, see
setTextFormat (TextField.setTextFormat method) and setNewTextFormat
(TextField.setNewTextFormat method) in the ActionScript 2.0 Language Reference.

T
IP The advanced anti-aliasing technology uses grid fitting only at 0º rotation.

About text layout and formatting 381

To format a text field with the TextFormat class:

1. In a new Flash document, create a text field on the Stage using the Text tool.

Type some text in the text field on the Stage, such as Bold, italic, 24 point text.
2. In the Property inspector, type myText_txt in the Instance Name text box, select Dynamic

from the Text Type pop-up menu, and select Multiline from the Line Type pop-up menu.

3. Select Frame 1 on the Timeline and open the Actions panel (Window > Actions).

4. Enter the following code in the Actions panel to create a TextFormat object, set the bold
and italic properties to true, and set the size property to 24:
// Create a TextFormat object.
var txt_fmt:TextFormat = new TextFormat();
// Specify paragraph and character formatting.
txt_fmt.bold = true;
txt_fmt.italic = true;
txt_fmt.size = 24;

5. Apply the TextFormat object to the text field you created in step 1 by using
TextField.setTextFormat():
myText_txt.setTextFormat(txt_fmt);

This version of setTextFormat() applies the specified formatting to the entire text field.
Two other versions of this method let you apply formatting to individual characters or
groups of characters. For example, the following code applies bold, italic, 24-point
formatting to the first three characters you entered in the text field:
myText_txt.setTextFormat(0, 3, txt_fmt);

For more information, see setTextFormat (TextField.setTextFormat method) in the
ActionScript 2.0 Language Reference.

6. Select Control > Test Movie to test the application.

For more information on using the TextFormat class, see the following topics:

■ “Default properties of new text fields” on page 382
■ “Formatting text with Cascading Style Sheet styles” on page 382

382 Working with Text and Strings

Default properties of new text fields
Text fields created at runtime with createTextField() receive a default TextFormat object
with the following properties:
align = "left"
blockIndent = 0
bold = false
bullet = false
color = 0x000000
font = "Times New Roman" (default font is Times on Mac OS X)
indent = 0
italic = false
kerning = false
leading = 0
leftMargin = 0
letterSpacing = 0
rightMargin = 0
size = 12
tabStops = [] (empty array)
target = ""
underline = false
url = ""

For a complete list of TextFormat methods and their descriptions, see TextFormat in the
ActionScript 2.0 Language Reference.

Formatting text with Cascading Style
Sheet styles
Cascading Style Sheet (CSS) styles are a way to work with text styles that can be applied to
HTML or XML documents. A style sheet is a collection of formatting rules that specify how
to format HTML or XML elements. Each rule associates a style name, or selector, with one or
more style properties and their values. For example, the following style defines a selector
named bodyText:
.bodyText {

text-align: left
}

N
O

T
E

The default font property on the Mac OS X is Times.

Formatting text with Cascading Style Sheet styles 383

You can create styles that redefine built-in HTML formatting tags that Flash Player uses (such
as <p> and). You can also create style classes that can be applied to specific HTML
elements using the <p> or tag’s class attribute, or define new tags.

You use the TextField.StyleSheet class to work with text style sheets. Although the TextField
class can be used with Flash Player 6, the TextField.StyleSheet class requires that SWF files
target Flash Player 7 or later. You can load styles from an external CSS file or create them
natively using ActionScript. To apply a style sheet to a text field that contains HTML- or
XML-formatted text, you use the TextField.styleSheet property. The styles defined in the
style sheet are mapped automatically to the tags defined in the HTML or XML document.

Using styles sheets involves the following three basic steps:

■ Create a style sheet object from the TextField.StyleSheet class (for more information see
StyleSheet (TextField.StyleSheet) in the ActionScript 2.0 Language Reference).

■ Add styles to the style sheet object, either by loading them from an external CSS file or by
creating new styles with ActionScript.

■ Assign the style sheet to a TextField object that contains HTML- or XML-formatted text.

For more information, see the following topics:

■ “Supported CSS properties” on page 384
■ “Creating a style sheet object” on page 385
■ “Loading external CSS files” on page 385
■ “Creating new styles with ActionScript” on page 387
■ “Applying styles to a TextField object” on page 387
■ “Applying a style sheet to a TextArea component” on page 388
■ “Combining styles” on page 389
■ “Using style classes” on page 389
■ “Styling built-in HTML tags” on page 390
■ “An example of using styles with HTML” on page 391
■ “Using styles to define new tags” on page 393
■ “An example of using styles with XML” on page 394

For a sample source file, formattedText.fla, which shows you how to apply CSS formatting to
text that you load into a SWF file at runtime, see the Flash Sample page at www.adobe.com/
go/learn_fl_samples. Download and decompress the Samples file and navigate to the
ActionScript2.0/LoadText folder to access the sample.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

384 Working with Text and Strings

Supported CSS properties
Flash Player supports a subset of properties in the original CSS1 specification (www.w3.org/
TR/REC-CSS1). The following table shows the supported CSS properties and values as well
as their corresponding ActionScript property names. (Each ActionScript property name is
derived from the corresponding CSS property name; the hyphen is omitted and the
subsequent character is capitalized.)

CSS property ActionScript
property

Usage and supported values

text-align textAlign Recognized values are left, center, right, and
justify.

font-size fontSize Only the numeric part of the value is used. Units
(px, pt) are not parsed; pixels and points are
equivalent.

text-decoration textDecoration Recognized values are none and underline.

margin-left marginLeft Only the numeric part of the value is used. Units
(px, pt) are not parsed; pixels and points are
equivalent.

margin-right marginRight Only the numeric part of the value is used. Units
(px, pt) are not parsed; pixels and points are
equivalent.

font-weight fontWeight Recognized values are normal and bold.

kerning kerning Recognized values are true and false.

font-style fontStyle Recognized values are normal and italic.

letter-spacing letterSpacing Only the numeric part of the value is used. Units
(px, pt) are not parsed; pixels and points are
equivalent.

text-indent textIndent Only the numeric part of the value is used. Units
(px, pt) are not parsed; pixels and points are
equivalent.

font-family fontFamily A comma-separated list of fonts to use, in
descending order of desirability. Any font family
name can be used. If you specify a generic font
name, it is converted to an appropriate device
font. The following font conversions are available:
mono is converted to _typewriter, sans-serif is
converted to _sans, and serif is converted to
_serif.

http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/REC-CSS1

Formatting text with Cascading Style Sheet styles 385

For an example of using styles on XML elements, see “An example of using styles with XML”
on page 394.

Creating a style sheet object
CSSs are represented in ActionScript by the TextField.StyleSheet class. This class is available
only for SWF files that target Flash Player 7 or later. To create a style sheet object, call the
constructor function of the TextField.StyleSheet class:
var newStyle:TextField.StyleSheet = new TextField.StyleSheet();

To add styles to a style sheet object, you can either load an external CSS file into the object or
define the styles in ActionScript. See “Loading external CSS files” on page 385 and “Creating
new styles with ActionScript” on page 387.

For a sample source file, formattedText.fla, which shows you how to apply CSS formatting to
text that you load into a SWF file at runtime, see the Flash Sample page at www.adobe.com/
go/learn_fl_samples. Download and decompress the Samples zip file and navigate to the
ActionScript2.0/LoadText folder to access the sample.

Loading external CSS files
You can define styles in an external CSS file and then load that file into a style sheet object.
The styles defined in the CSS file are added to the style sheet object. To load an external CSS
file, you use the load() method of the TextField.StyleSheet class. To determine when the CSS
file has finished loading, use the style sheet object’s onLoad event handler.

In the following example, you create and load an external CSS file and use the
TextField.StyleSheet.getStyleNames() method to retrieve the names of the
loaded styles.

To load an external style sheet:

1. In your preferred text or CSS editor, create a new file.

color color Only hexadecimal color values are supported.
Named colors (such as blue) are not supported.
Colors are written in the following format:
#FF0000.

display display Supported values are inline, block, and none.

CSS property ActionScript
property

Usage and supported values

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

386 Working with Text and Strings

2. Add the following style definitions to the file:
.bodyText {

font-family: Arial,Helvetica,sans-serif;
font-size: 12px;

}

.headline {
font-family: Arial,Helvetica,sans-serif;
font-size: 24px;

}

3. Save the CSS file as styles.css.

4. In Flash, create a new FLA file.

5. In the Timeline (Window > Timeline), select Layer 1.

6. Open the Actions panel (Window > Actions).

7. Add the following code to the Actions panel:
var styles:TextField.StyleSheet = new TextField.StyleSheet();
styles.onLoad = function(success:Boolean):Void {

if (success) {
// display style names.
trace(this.getStyleNames());

} else {
trace("Error loading CSS file.");

}
};
styles.load("styles.css");

8. Save the FLA file to the same directory that contains styles.css.

9. Test the Flash document (Control > Test Movie).

You should see the names of the two styles in the Output panel:
.bodyText,.headline

If you see “Error loading CSS file.” in the Output panel, make sure the FLA file and the
CSS file are in the same directory and that you typed the name of the CSS file correctly.

As with all other ActionScript methods that load data over the network, the CSS file must
reside in the same domain as the SWF file that is loading the file. (See “Restricting
networking APIs” on page 648.) For more information on using CSS with Flash, see
StyleSheet (TextField.StyleSheet) in the ActionScript 2.0 Language Reference.

N
O

T
E

In the previous code snippet, this.getStyleNames() refers to the styles object you
constructed in the first line of ActionScript.

Formatting text with Cascading Style Sheet styles 387

For a sample source file, formattedText.fla, which shows you how to apply CSS formatting to
text that you load into a SWF file at runtime, see the Flash Sample page at www.adobe.com/
go/learn_fl_samples. Download and decompress the Samples zip file and navigate to the
ActionScript2.0/LoadText folder to access the sample.

Creating new styles with ActionScript
You can create new text styles with ActionScript by using the setStyle() method of the
TextField.StyleSheet class. This method takes two parameters: the name of the style and an
object that defines that style’s properties.

For example, the following code creates a style sheet object named styles that defines two
styles that are identical to the ones you already imported (see “Loading external CSS files”
on page 385):
var styles:TextField.StyleSheet = new TextField.StyleSheet();
styles.setStyle("bodyText",

{fontFamily: 'Arial,Helvetica,sans-serif',
fontSize: '12px'}

);
styles.setStyle("headline",

{fontFamily: 'Arial,Helvetica,sans-serif',
fontSize: '24px'}

);

Applying styles to a TextField object
To apply a style sheet object to a TextField object, you assign the style sheet object to the text
field’s styleSheet property.
textObj_txt.styleSheet = styles;

When you assign a style sheet object to a TextField object, the following changes occur to the
text field’s normal behavior:

■ The text field’s text and htmlText properties, and any variable associated with the text
field, always contain the same value and behave identically.

■ The text field becomes read-only and cannot be edited by the user.

N
O

T
E

Do not confuse the TextField.styleSheet property with the TextField.StyleSheet class.
The capitalization indicates the difference.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

388 Working with Text and Strings

■ The setTextFormat() and replaceSel() methods of the TextField class no longer
function with the text field. The only way to change the field is by altering the text field’s
text or htmlText property or by changing the text field’s associated variable.

■ Any text assigned to the text field’s text property, htmlText property, or associated
variable is stored verbatim; anything written to one of these properties can be retrieved in
the text’s original form.

Applying a style sheet to a TextArea component
To apply a style sheet to a TextArea component, you create a style sheet object and assign it
HTML styles using the TextField.StyleSheet class. You then assign the style sheet to the
TextArea component’s styleSheet property.

The following examples create a style sheet object, styles, and assign it to the myTextArea
component instance.

Using a style sheet with a TextArea component:

1. Create a new Flash document and save it as textareastyle.fla.

2. Drag a TextArea component from the User Interface folder of the Components panel to
the Stage and give it an instance name of myTextArea.

3. Add the following ActionScript to Frame 1 of the main Timeline:
// Create a new style sheet object and set styles for it.
var styles:TextField.StyleSheet = new TextField.StyleSheet();
styles.setStyle("html", {fontFamily:'Arial,Helvetica,sans-serif',

fontSize:'12px',
color:'#0000FF'});

styles.setStyle("body", {color:'#00CCFF',
textDecoration:'underline'});

styles.setStyle("h1",{fontFamily:'Arial,Helvetica,sans-serif',
fontSize:'24px',
color:'#006600'});

/* Assign the style sheet object to myTextArea component. Set html
property to true, set styleSheet property to the style sheet object.
*/

myTextArea.styleSheet = styles;
myTextArea.html = true;

var myVars:LoadVars = new LoadVars();
// Define onData handler and load text to be displayed.
myVars.onData = function(myStr:String):Void {

if (myStr != undefined) {
myTextArea.text = myStr;

} else {

Formatting text with Cascading Style Sheet styles 389

trace("Unable to load text file.");
}

};
myVars.load("http://www.helpexamples.com/flash/myText.htm");

The preceding block of code creates a new TextField.StyleSheet instance that defines three
styles: for the html, body, and h1 HTML tags. Next, the style sheet object is applied to
the TextArea component and HTML formatting is enabled. The remaining ActionScript
defines a LoadVars object that loads an external HTML file and populates the text area
with the loaded text.

4. Select Control > Test Movie to test the Flash document.

Combining styles
CSS styles in Flash Player are additive; that is, when styles are nested, each level of nesting can
contribute style information, which is added together to result in the final formatting.

The following example shows some XML data assigned to a text field:
<sectionHeading>This is a section</sectionHeading>
<mainBody>This is some main body text, with one
<emphasized>emphatic</emphasized> word.</mainBody>

For the word emphatic in the above text, the emphasized style is nested within the mainBody
style. The mainBody style contributes color, font-size, and decoration rules. The emphasized
style adds a font-weight rule to these rules. The word emphatic will be formatted using a
combination of the rules specified by mainBody and emphasized.

Using style classes
You can create style “classes” (not true ActionScript 2.0 classes) that you can apply to a <p> or
 tag using either tag’s class attribute. When applied to a <p> tag, the style affects the
entire paragraph. You can also style a span of text that uses a style class using the tag.

For example, the following style sheet defines two style classes: mainBody and emphasis:
.mainBody {

font-family: Arial,Helvetica,sans-serif;
font-size: 24px;

}
.emphasis {

color: #666666;
font-style: italic;

}

390 Working with Text and Strings

Within HTML text you assign to a text field, you can apply these styles to <p> and
tags, as shown in the following snippet:
<p class='mainBody'>This is really exciting!</

span></p>

Styling built-in HTML tags
Flash Player supports a subset of HTML tags. (For more information, see “Using HTML-
formatted text” on page 397.) You can assign a CSS style to every instance of a built-in
HTML tag that appears in a text field. For example, the following code defines a style for the
built-in <p> HTML tag. All instances of that tag are styled in the manner specified by the
style rule.
p {

font-family: Arial,Helvetica,sans-serif;
font-size: 12px;
display: inline;

}

The following table shows which built-in HTML tags can be styled and how each style
is applied:

Style name How the style is applied

p Affects all <p> tags.

body Affects all <body> tags. The p style, if specified, takes precedence over the
body style.

li Affects all bullet tags.

a Affects all <a> anchor tags.

a:link Affects all <a> anchor tags. This style is applied after any a style.

a:hover Applied to an <a> anchor tag when the mouse pointer is over the link. This
style is applied after any a and a:link style.
After the mouse pointer moves off the link, the a:hover style is removed from
the link.

a:active Applied to an <a> anchor tag when the user clicks the link. This style is applied
after any a and a:link style.
After the mouse button is released, the a:active style is removed from the
link.

Formatting text with Cascading Style Sheet styles 391

An example of using styles with HTML
This section presents an example of using styles with HTML tags. You can create a style sheet
that styles some built-in tags and defines some style classes. Then, you can apply that style
sheet to a TextField object that contains HTML-formatted text.

To format HTML with a style sheet:

1. Create a new file in your preferred text or CSS editor.

2. Add the following style sheet definition to the file:
p {

color: #000000;
font-family: Arial,Helvetica,sans-serif;
font-size: 12px;
display: inline;

}

a:link {
color: #FF0000;

}

a:hover{
text-decoration: underline;

}

.headline {
color: #000000;
font-family: Arial,Helvetica,sans-serif;
font-size: 18px;
font-weight: bold;
display: block;

}

.byline {
color: #666600;
font-style: italic;
font-weight: bold;
display: inline;

}

This style sheet defines styles for two built-in HTML tags (<p> and <a>) that will be
applied to all instances of those tags. It also defines two style classes (.headline and
.byline) that will be applied to specific paragraphs and text spans.

3. Save the file as html_styles.css.

392 Working with Text and Strings

4. Create a new text file in a text or HTML editor, and save the document as myText.htm.

Add the following text to the file:
<p class='headline'>Flash adds advanced anti-aliasing rendering

technology!</p><p>San Francisco, CA--Adobe
Inc. announced today a new version of Flash that features a brand new
font rendering technology called Advanced Anti-Aliasing, most
excellent at rendering small text with incredible clarity and
consistency across platforms. For more information, visit the Adobe Flash web site.</p>

5. Create a new Flash document in the Flash authoring tool.

6. Select the first frame in Layer 1 in the Timeline (Window > Timeline).

7. Open the Actions panel (Window > Actions), and add the following code to the
Actions panel:
this.createTextField("news_txt", 99, 50, 50, 450, 300);
news_txt.border = true;
news_txt.html = true;
news_txt.multiline = true;
news_txt.wordWrap = true;

// Create a new style sheet and LoadVars object.
var myVars_lv:LoadVars = new LoadVars();
var styles:TextField.StyleSheet = new TextField.StyleSheet();

// Location of CSS and text files to load.
var txt_url:String = "myText.htm";
var css_url:String = "html_styles.css";

// Define onLoad handler and Load CSS file.
styles.onLoad = function(success:Boolean):Void {
 if (success) {
 /* If the style sheet loaded without error,
 then assign it to the text object,
 and assign the HTML text to the text field. */
 news_txt.styleSheet = styles;
} else {
 trace("Unable to load CSS file.");
 }
};
styles.load(css_url);

// Define onData handler and load text to display.
myVars_lv.onData = function(src:String):Void {

N
O

T
E

If you copy and paste this text string, make sure that you remove any line breaks that
might have been added to the text string.

Formatting text with Cascading Style Sheet styles 393

 if (src != undefined) {
 news_txt.htmlText = src;
 } else {
 trace("Unable to load HTML file");
 }
};
myVars_lv.load(txt_url);

8. Save the file as news_html.fla in the same directory that contains the CSS file you
created in step 3.

9. Select Control > Test Movie to see the styles applied to the HTML text automatically.

Using styles to define new tags
If you define a new style in a style sheet, that style can be used as a tag, in the same way as you
would use a built-in HTML tag. You can use either HTML or XML formatted tags. The
HTML-formatted style uses dot syntax and the XML-formatted style does not. For example,
if an XML-formatted style sheet defines a CSS style named sectionHeading, use
<sectionHeading> as an element in your text field. If a HTML-formatted style sheet defines
a CSS style named .sectionHeading, use the <p class=“sectionHeading”> format in
your text field. This feature lets you assign arbitrary XML or HTML formatted text directly to
a text field, so that the text is automatically formatted using the rules in the style sheet.

For example, the following HTML style sheet creates the new styles sectionHeading,
mainBody, and emphasized:
.sectionHeading {

font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 18px;
display: block

}
.mainBody {

color: #000099;
text-decoration: underline;
font-size: 12px;
display: block

}
.emphasized {

font-weight: bold;
display: inline

}

N
O

T
E

In this ActionScript, you are loading the text from an external file. For information on
loading external data, see Chapter 14, “Working with Images, Sound, and Video.”

394 Working with Text and Strings

You could then populate a text field associated with that HTML style sheet with the following
formatted text:

<p class=“sectionHeading”>This is a section</p>
<p class=“mainBody”>This is some main body text,
with one emphatic word.
</p>

The following XML style sheet also creates the new styles sectionHeading, mainBody,
and emphasized:
sectionHeading {

font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 18px;
display: block

}
mainBody {

color: #000099;
text-decoration: underline;
font-size: 12px;
display: block

}
emphasized {

font-weight: bold;
display: inline

}

You could then populate a text field associated with that XML style sheet with the following
formatted text:

<sectionHeading>This is a section</sectionHeading>
<mainBody>This is some main body text,
with one <emphasized>emphatic</emphasized> word.
</mainBody>

An example of using styles with XML
In this section, you create a FLA file that has XML-formatted text. You’ll create a style sheet
using ActionScript, rather than importing styles from a CSS file as shown in “An example of
using styles with HTML” on page 391

To format XML with a style sheet:

1. In Flash, create a FLA file.

2. Using the Text tool, create a text field approximately 400 pixels wide and 300 pixels high.

Formatting text with Cascading Style Sheet styles 395

3. Open the Property inspector (Window > Properties > Properties), and select the text field.

4. In the Property inspector, select Dynamic Text from the Text Type menu, select Multiline
from the Line Type menu, select the Render Text as HTML option, and type news_txt in
the Instance Name text box.

5. On Layer 1 in the Timeline (Window > Timeline), select the first frame.

6. To create the style sheet object, open the Actions panel (Window > Actions), and add the
following code to the Actions panel:
var styles:TextField.StyleSheet = new TextField.StyleSheet();
styles.setStyle("mainBody", {

color:'#000000',
fontFamily:'Arial,Helvetica,sans-serif',
fontSize:'12',
display:'block'

});
styles.setStyle("title", {

color:'#000000',
fontFamily:'Arial,Helvetica,sans-serif',
fontSize:'18',
display:'block',
fontWeight:'bold'

});
styles.setStyle("byline", {

color:'#666600',
fontWeight:'bold',
fontStyle:'italic',
display:'inline'

});
styles.setStyle("a:link", {

color:'#FF0000'
});
styles.setStyle("a:hover", {

textDecoration:'underline'
});

This code creates a new style sheet object named styles that defines styles by using the
setStyle() method. The styles exactly match the ones you created in an external CSS file
earlier in this chapter.

396 Working with Text and Strings

7. To create the XML text to assign to the text field, open a text editor and enter the following
text into a new document:
<story><title>Flash now has advanced anti-aliasing</

title><mainBody><byline>San Francisco, CA</byline>--Adobe Inc.
announced today a new version of Flash that features the new advanced
anti-aliasing rendering technology. For more information, visit the Adobe Flash website</mainBody></
story>

8. Save the text file as story.xml.

9. In Flash, add the following code in the Actions panel, following the code in step 6.

This code loads the story.xml document, assigns the style sheet object to the text field’s
styleSheet property, and assigns the XML text to the text field:

var my_xml:XML = new XML();
my_xml.ignoreWhite = true;
my_xml.onLoad = function(success:Boolean):Void {

if (success) {
news_txt.styleSheet = styles;
news_txt.text = my_xml;

} else {
trace("Error loading XML.");

}
};
my_xml.load("story.xml");

10. Save the file as news_xml.fla in the same folder as story.xml.

11. Run the SWF file (Control > Test Movie) to see the styles automatically applied to the text
in the text field.

N
O

T
E

If you copy and paste this text string, make sure that you remove any line breaks that
might have been added to the text string. Select Hidden Characters from the pop-up
menu in the Actions panel to see and remove any extra line breaks.

N
O

T
E

You are loading XML data from an external file in this ActionScript. For
information on loading external data, see Chapter 14, “Working with Images,
Sound, and Video.”

Using HTML-formatted text 397

Using HTML-formatted text
Flash Player supports a subset of standard HTML tags such as <p> and that you can use
to style text in any dynamic or input text field. Text fields in Flash Player 7 and later also
support the tag, which lets you embed image files (JPEG, GIF, PNG), SWF files, and
movie clips in a text field. Flash Player automatically wraps text around images embedded in
text fields in much the same way that a web browser wraps text around embedded images in
an HTML page. For more information, see “About embedding images, SWF files, and movie
clips in text fields” on page 406.

Flash Player also supports the <textformat> tag, which lets you apply paragraph formatting
styles of the TextFormat class to HTML-enabled text fields. For more information, see “Using
the TextFormat class” on page 380.

For more information on HTML-formatted text, see the following topics:

■ “Required properties and syntax for using HTML-formatted text” on page 397
■ “About supported HTML tags” on page 398
■ “About supported HTML entities” on page 405
■ “About embedding images, SWF files, and movie clips in text fields” on page 406

Required properties and syntax for using HTML-
formatted text
To use HTML in a text field, you must set several properties of the text field, either in the
Property inspector or by using ActionScript:

■ Enable the text field’s HTML formatting by selecting the Render Text as HTML option
in the Property inspector or by setting the text field’s html property to true.

■ To use HTML tags such as <p>,
, and , you must make the text field a
multiline text field by selecting the Multiline option in the Property inspector or by
setting the text field’s multiline property to true.

■ In ActionScript, set the value of TextField.htmlText to the HTML-formatted text
string you want to display.

For example, the following code enables HTML formatting for a text field named
headline_txt and then assigns some HTML to the text field:
this.createTextField("headline_txt", 1, 10, 10, 500, 300);
headline_txt.html = true;
headline_txt.wordWrap = true;
headline_txt.multiline = true;
headline_txt.htmlText = "This is how

you assign HTML text to a text field.
It's very useful.</br>";

398 Working with Text and Strings

To render HTML correctly, you must use the correct syntax. Attributes of HTML tags must
be enclosed in double (") or single (') quotation marks. Attribute values without quotation
marks can produce unexpected results, such as improper rendering of text. For example, the
following HTML snippet cannot be rendered properly by Flash Player because the value
assigned to the align attribute (left) is not enclosed in quotation marks:
this.createTextField("myField_txt", 10, 10, 10, 400, 200);
myField_txt.html = true;
myField_txt.htmlText = "<p align=left>This is left-aligned text</p>";

If you enclose attribute values in double quotation marks, you must escape the quotation
marks (\"). Either of the following ways of doing this is acceptable:
myField_txt.htmlText = "<p align='left'>This uses single quotes</p>";
myField_txt.htmlText = "<p align=\"left\">This uses escaped double quotes</

p>";
myField_txt.htmlText = '<p align="left">This uses outer single quotes</p>';
myField_txt.htmlText = '<p align=\'left\'>This uses escaped single quotes</

p>';

It’s not necessary to escape double quotation marks if you’re loading text from an external file;
it’s necessary only if you’re assigning a string of text in ActionScript.

About supported HTML tags
This section lists the built-in HTML tags that Flash Player supports. You can also create new
styles and tags by using CSS; see “Formatting text with Cascading Style Sheet styles”
on page 382.

For more information on supported HTML tags, see the following topics:

■ “Anchor tag” on page 399
■ “Bold tag” on page 399
■ “Break tag” on page 399
■ “Font tag” on page 400
■ “Image tag” on page 400
■ “Italic tag” on page 401
■ “List item tag” on page 401
■ “Paragraph tag” on page 402
■ “Span tag” on page 403
■ “Text format tag” on page 403
■ “Underline tag” on page 404

Using HTML-formatted text 399

Anchor tag
The <a> tag creates a hypertext link and supports the following attributes:

■ href A string of up to 128 characters that specifies the URL of the page to load in the
browser. The URL can be either absolute or relative to the location of the SWF file that is
loading the page. An example of an absolute reference to a URL is http://
www.adobe.com; an example of a relative reference is /index.html.

■ target Specifies the name of the target window where you load the page. Options
include _self, _blank, _parent, and _top. The _self option specifies the current frame
in the current window, _blank specifies a new window, _parent specifies the parent of
the current frame, and _top specifies the top-level frame in the current window.

For example, the following HTML code creates the link “Go home,” which opens
www.adobe.com in a new browser window:
urlText_txt.htmlText = "Go

home";

You can use the special asfunction protocol to cause the link to execute an ActionScript
function in a SWF file instead of opening a URL. For more information on the asfunction
protocol, see asfunction protocol in the ActionScript 2.0 Language Reference.

You can also define a:link, a:hover, and a:active styles for anchor tags by using style
sheets. See “Styling built-in HTML tags” on page 390.

Bold tag
The tag renders text as bold, as shown in the following example:
text3_txt.htmlText = "He was ready to leave!";

A bold typeface must be available for the font used to display the text.

Break tag
The
 tag creates a line break in the text field. You must set the text field to be a multiline
text field to use this tag.

In the following example, the line breaks between sentences:
this.createTextField("text1_txt", 1, 10, 10, 200, 100);
text1_txt.html = true;
text1_txt.multiline = true;
text1_txt.htmlText = "The boy put on his coat.
His coat was <font

color='#FF0033'>red plaid.";

N
O

T
E

Absolute URLs must be prefixed with http://; otherwise, Flash treats them as relative
URLs.

400 Working with Text and Strings

Font tag
The tag specifies a font or list of fonts to display the text.

The font tag supports the following attributes:

■ color Only hexadecimal color (#FFFFFF) values are supported. For example, the
following HTML code creates red text:
myText_txt.htmlText = "This is red text";

■ face Specifies the name of the font to use. As shown in the following example, you can
specify a list of comma-delimited font names, in which case Flash Player selects the first
available font:
myText_txt.htmlText = "Displays as

either Times or Times New Roman...";

If the specified font is not installed on the user’s computer system or isn’t embedded in the
SWF file, Flash Player selects a substitute font.
For more information on embedding fonts in Flash applications, see embedFonts
(TextField.embedFonts property) in the ActionScript 2.0 Language Reference and “Setting
dynamic and input text options” in Using Flash.

■ size Specifies the size of the font, in pixels, as shown in the following example:
myText_txt.htmlText = "This is blue, 24-

point text";

You can also use relative point sizes instead of a pixel size, such as +2 or -4.

Image tag
The tag lets you embed external image files (JPEG, GIF, PNG), SWF files, and movie
clips inside text fields and TextArea component instances. Text automatically flows around
images you embed in text fields or components. To use this tag, you must set your dynamic or
input text field to be multiline and to wrap text.

To create a multiline text field with word wrapping, do one of the following:

■ In the Flash authoring environment, select a text field on the Stage and then, in the
Property inspector, select Multiline from the Text Type menu.

■ For a text field created at runtime with createTextField (MovieClip.createTextField
method), set the new text field instance’s multiline (TextField.multiline property) and
multiline (TextField.multiline property) properties to true.

The tag has one required attribute, src, which specifies the path to an image file, a
SWF file, or the linkage identifier of a movie clip symbol in the library. All other attributes
are optional.

Using HTML-formatted text 401

The tag supports the following attributes:

■ src Specifies the URL to an image or SWF file, or the linkage identifier for a movie
clip symbol in the library. This attribute is required; all other attributes are optional.
External files (JPEG, GIF, PNG, and SWF files) do not show until they are downloaded
completely.

■ id Specifies the name for the movie clip instance (created by Flash Player) that contains
the embedded image file, SWF file, or movie clip. This is useful if you want to control the
embedded content with ActionScript.

■ width The width of the image, SWF file, or movie clip being inserted, in pixels.
■ height The height of the image, SWF file, or movie clip being inserted, in pixels.
■ align Specifies the horizontal alignment of the embedded image within the text field.

Valid values are left and right. The default value is left.
■ hspace Specifies the amount of horizontal space that surrounds the image where no text

appears. The default value is 8.
■ vspace Specifies the amount of vertical space that surrounds the image where no text

appears. The default value is 8.

For more information and examples of using the tag, see “About embedding images,
SWF files, and movie clips in text fields” on page 406.

Italic tag
The <i> tag displays the tagged text in italics, as shown in the following code:
That is very <i>interesting</i>.

This code example would render as follows:

That is very interesting.

An italic typeface must be available for the font used.

List item tag
The tag places a bullet in front of the text that it encloses, as shown in the
following code:
Grocery list:
Apples
Oranges
Lemons

402 Working with Text and Strings

This code example would render as follows:

Grocery list:

■ Apples
■ Oranges
■ Lemons

Paragraph tag
The <p> tag creates a new paragraph. You must set the text field to be a multiline text field to
use this tag.

The <p> tag supports the following attributes:

■ align Specifies alignment of text within the paragraph; valid values are left, right,
justify, and center.

■ class Specifies a CSS style class defined by a TextField.StyleSheet object. (For more
information, see “Using style classes” on page 389.)
The following example uses the align attribute to align text on the right side of a
text field.
this.createTextField("myText_txt", 1, 10, 10, 400, 100);
myText_txt.html = true;
myText_txt.multiline = true;
myText_txt.htmlText = "<p align='right'>This text is aligned on the

right side of the text field</p>";

The following example uses the class attribute to assign a text style class to a <p> tag:
var myStyleSheet:TextField.StyleSheet = new TextField.StyleSheet();
myStyleSheet.setStyle(".blue", {color:'#99CCFF', fontSize:18});
this.createTextField("test_txt", 10, 0, 0, 300, 100);
test_txt.html = true;
test_txt.styleSheet = myStyleSheet;
test_txt.htmlText = "<p class='blue'>This is some body-styled text.</

p>.";

N
O

T
E

Ordered and unordered lists (and tags) are not recognized by Flash Player,
so they do not modify how your list is rendered. All list items use bullets.

Using HTML-formatted text 403

Span tag
The tag is available only for use with CSS text styles. (For more information, see
“Formatting text with Cascading Style Sheet styles” on page 382.) It supports the following
attribute:

■ class Specifies a CSS style class defined by a TextField.StyleSheet object. For more
information on creating text style classes, see “Using style classes” on page 389.

Text format tag
The <textformat> tag lets you use a subset of paragraph formatting properties of the
TextFormat class within HTML text fields, including line leading, indentation, margins, and
tab stops. You can combine <textformat> tags with the built-in HTML tags.

The <textformat> tag has the following attributes:

■ blockindent Specifies the block indentation in points; corresponds to
TextFormat.blockIndent. (See blockIndent (TextFormat.blockIndent property) in the
ActionScript 2.0 Language Reference.)

■ indent Specifies the indentation from the left margin to the first character in the
paragraph; corresponds to TextFormat.indent. Lets you use negative integers. (See
indent (TextFormat.indent property) in the ActionScript 2.0 Language Reference.)

■ leading Specifies the amount of leading (vertical space) between lines; corresponds to
TextFormat.leading. Lets you use negative integers. (See leading (TextFormat.leading
property) in the ActionScript 2.0 Language Reference.)

■ leftmargin Specifies the left margin of the paragraph, in points; corresponds to
TextFormat.leftMargin. (See leftMargin (TextFormat.leftMargin property) in the
ActionScript 2.0 Language Reference.)

■ rightmargin Specifies the right margin of the paragraph, in points; corresponds to
TextFormat.rightMargin. (See rightMargin (TextFormat.rightMargin property) in the
ActionScript 2.0 Language Reference.)

■ tabstops Specifies custom tab stops as an array of non-negative integers; corresponds to
TextFormat.tabStops. (See tabStops (TextFormat.tabStops property) in the ActionScript
2.0 Language Reference.)

The following table of data with boldfaced row headers is the result of the code example in the
procedure that follows:

Name Age Occupation

Rick 33 Detective

AJ 34 Detective

404 Working with Text and Strings

To create a formatted table of data using tab stops:

1. Create a new Flash document, and save it as tabstops.fla.

2. In the Timeline, select the first frame on Layer 1.

3. Open the Actions panel (Window > Actions), and enter the following code in the
Actions panel:
// Create a new text field.
this.createTextField("table_txt", 99, 50, 50, 450, 100);
table_txt.multiline = true;
table_txt.html = true;
// Creates column headers, formatted in bold, separated by tabs.
var rowHeaders:String = "Name\tAge\tOccupation";

// Creates rows with data.
var row_1:String = "Rick\t33\tDetective";
var row_2:String = "AJ\t34\tDetective";

// Sets two tabstops, at 50 and 100 points.
table_txt.htmlText = "<textformat tabstops='[50,100]'>";
table_txt.htmlText += rowHeaders;
table_txt.htmlText += row_1;
table_txt.htmlText += row_2 ;
table_txt.htmlText += "</textformat>";

The use of the tab character escape sequence (\t) adds tabs between each column in the
table. You append text using the += operator.

4. Select Control > Test Movie to view the formatted table.

Underline tag
The <u> tag underlines the tagged text, as shown in the following code:
This is <u>underlined</u> text.

This code would render as follows:

Using HTML-formatted text 405

About supported HTML entities
HTML entities help you display certain characters in HTML formatted text fields, so that
they are not interpreted as HTML. For example, you use less-than (<) and greater-than (>)
characters to enclose HTML tags, such as and . To display less-than or greater-
than characters in HTML-formatted text fields in Flash, you need to substitute HTML
entities for those characters. The following ActionScript creates an HTML formatted text
field on the Stage and uses HTML entities to display the string “” without having the text
appear in bold:
this.createTextField("my_txt", 10, 100, 100, 100, 19);
my_txt.autoSize = "left";
my_txt.html = true;
my_txt.htmlText = "The tag makes text appear bold.";

At runtime, the previous code example in Flash displays the following text on the Stage:

The tag makes text appear bold.

In addition to the greater-than and less-than symbols, Flash also recognizes other HTML
entities that are listed in the following table.

Flash also supports explicit character codes, such as ' (ampersand - ASCII) and
& (ampersand - Unicode).

The following ActionScript demonstrates how you can use ASCII or Unicode character codes
to embed a tilde (~) character:
this.createTextField("my_txt", 10, 100, 100, 100, 19);
my_txt.autoSize = "left";
my_txt.html = true;
my_txt.htmlText = "~"; // tilde (ASCII)
my_txt.htmlText += "\t"
my_txt.htmlText += "~"; // tilde (Unicode)

Entity Description

< < (less than)

> > (greater than)

& & (ampersand)

" " (double quotes)

' ' (apostrophe, single quote)

406 Working with Text and Strings

About embedding images, SWF files, and movie clips
in text fields
In Flash Player 7 and later, you can use the tag to embed image files (JPEG, GIF,
PNG), SWF files, and movie clips inside dynamic and input text fields, and TextArea
component instances. (For a full list of attributes for the tag, see “Image tag”
on page 400.)

Flash displays media embedded in a text field at full size. To specify the dimensions of the
media you are embedding, use the tag’s height and width attributes. (See “About
specifying height and width values” on page 408.)

In general, an image embedded in a text field appears on the line following the tag.
However, when the tag is the first character in the text field, the image appears on the
first line of the text field.

Embedding SWF and image files
To embed an image or SWF file in a text field, specify the absolute or relative path to the
image (GIF, JPEG, or PNG) or SWF file in the tag’s src attribute. For example, the
following example inserts a GIF file that’s located in the same directory as the SWF file (a
relative address, on or offline).

Embedding an image in a text field:

1. Create a new Flash document, and save it as embedding.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
this.createTextField("image1_txt", 10, 50, 50, 450, 150);
image1_txt.html = true;
image1_txt.htmlText = "<p>Here's a picture from my vacation:<img

src='beach.gif'>";

The preceding code creates a new dynamic text field on the Stage, enables HTML
formatting, and adds some text and a local image to the text field.

3. Add the following ActionScript below the code added in the previous step:
this.createTextField("image2_txt", 20, 50, 200, 400, 150);
image2_txt.html = true;
image2_txt.htmlText = "<p>Here's a picture from my garden:<img

src='http://www.helpexamples.com/flash/images/image2.jpg'>";

You can also insert an image by using an absolute address. The preceding code inserts a
JPEG file that’s located in a directory that’s on a server. The SWF file that contains this
code might be on your hard disk or on a server.

Using HTML-formatted text 407

4. Save the document and select Control > Test Movie to test the document.

The upper text field should have a sentence of text and most likely an error message in the
Output panel saying that Flash was unable to locate a file named beach.gif in the current
directory. The lower text field should have a sentence of text and an image of a flower that
was loaded from the remote server.
Copy a GIF image to the same directory as the FLA and rename the image to beach.gif
and select Control > Test Movie to retest the Flash document.

Embedding movie clip symbols
To embed a movie clip symbol in a text field, you specify the symbol’s linkage identifier for
the tag’s src attribute. (For information on defining a linkage identifier, see “Attaching
a movie clip symbol to the Stage” on page 323.)

For example, the following code inserts a movie clip symbol with the linkage identifier
symbol_ID into a dynamic text field with the instance name textField_txt.

To embed a movie clip into a text field:

1. Create a new Flash document and save it as embeddedmc.fla.

2. Draw a new shape on the Stage, or select File > Import > Import to Stage and select an
image that is roughly 100 pixels wide by 100 pixels high.

3. Convert the shape or image imported in the previous step by selecting it on the Stage and
pressing F8 to open the Convert to Symbol dialog box.

4. Set the behavior to Movie Clip and enter a descriptive symbol name. Select the upper-left
square of the registration point grid, and click Advanced to switch to advanced mode if you
haven’t already done so.

5. Select the Export of ActionScript and Export in First Frame check boxes.

6. Enter the linkage identifier img_id in the Identifier text box and then click OK.

7. Add the following ActionScript to Frame 1 of the main Timeline:
this.createTextField("textField_txt", 10, 0, 0, 300, 200);
textField_txt.html = true;
textField_txt.htmlText = "<p>Here's a movie clip symbol:<img

src='img_id'>";

For an embedded movie clip to be displayed properly and completely, the registration
point for its symbol should be at point (0,0).

8. Save your changes to the Flash document.

N
O

T
E

When using absolute URLs, you must make sure that your URL is prefixed with
http://.

408 Working with Text and Strings

9. Select Control > Test Movie to test the Flash document.

About specifying height and width values
If you specify width and height attributes for an tag, space is reserved in the text field
for the image file, SWF file, or movie clip. After an image or SWF file is downloaded
completely, it appears in the reserved space. Flash scales the media up or down, according to
the values you specify for height and width. You must enter values for both the height and
width attributes to scale the image.

If you don’t specify values for height and width, no space is reserved for the embedded
media. After an image or SWF file has downloaded completely, Flash inserts it into the text
field at full size and rebreaks text around it.

Controlling embedded media with ActionScript
Flash creates a new movie clip for each tag and embeds that movie clip within the
TextField object. The tag’s id attribute lets you assign an instance name to the movie
clip that is created. This lets you control that movie clip with ActionScript.

The movie clip that Flash creates is added as a child movie clip to the text field that contains
the image.

For example, the following example embeds a SWF file in a text field.

To embed a SWF file in a text field:

1. Create a new Flash document.

2. Resize the document’s Stage size to 100 pixels by 100 pixels.

3. Use the Rectangle tool to draw a red square on the Stage.

4. Resize the square to 80 pixels by 80 pixels by using the Property inspector, and then move
the shape to the center of the Stage.

5. Select Frame 20 on the Timeline and then press F7 (Windows or Macintosh) to insert a
new blank keyframe.

6. Use the Oval tool to draw a blue circle on the Stage on Frame 20.

7. Resize the circle to 80 pixels by 80 pixels by using the Property inspector, and then move
it to the center of the Stage.

N
O

T
E

If you are dynamically loading your images into a text field containing text, it is good
practice to specify the width and height of the original image so the text properly wraps
around the space you reserve for your image.

Using HTML-formatted text 409

8. Click a blank frame between Frame 1 and 20, and set the tween type to Shape in the
Property inspector.

9. Save the current document as animation.fla.

10. Select Control > Test Movie to preview the animation.

The SWF file is created in the same directory as the FLA. For this exercise to work
correctly, you need the SWF file to generate so that you can load it into a separate
FLA file.

11. Create a new FLA file and save it as animationholder.fla.

Save the file in the same folder as the animation.fla file you created previously.
12. Add the following ActionScript code to Frame 1 of the main Timeline:

this.createTextField("textField_txt", 10, 0, 0, 300, 200);
textField_txt.html = true;
textField_txt.htmlText = "Here's an interesting animation: <img

src='animation.swf' id='animation_mc'>";

In this case, the fully qualified path to the newly created movie clip is
textField_txt.animation_mc.

13. Save your changes to the Flash document and then select Control > Test Movie to preview
the animation within the text field.

To control the SWF file as it plays in a text field, complete the next exercise.

To control a SWF file that plays in a text field:

1. Follow the steps in the first procedure under “Controlling embedded media with
ActionScript” on page 408.

2. Create a button instance on the Stage and give it the instance name stop_btn in the
Property inspector.

3. Add the following ActionScript code beneath the existing code in Frame 1 of the
main Timeline:
stop_btn.onRelease = function() {

textField_txt.animation_mc.stop();
};

4. Select Control > Test Movie to test the application.

Now, whenever you click the stop_btn button instance, the timeline of the animation
nested within the text field stops.

For information on making your embedded media into a hyperlink, see “About making
hypertext links out of embedded media” on page 410.

410 Working with Text and Strings

About making hypertext links out of embedded media
To make a hypertext link out of an embedded image file, SWF file, or movie clip, enclose the
 tag in an <a> tag:
textField_txt.htmlText = "Click the image to return home";

When the mouse pointer is over an image, SWF file, or movie clip that is enclosed by <a>
tags, the mouse pointer turns into a “pointing hand” icon, the same as it does with standard
hypertext links. Interactivity, such as mouse clicks and keypresses, does not register in SWF
files and movie clips that are enclosed by <a> tags.

For information on embedding media, see “About making hypertext links out of embedded
media” on page 410.

Example: Creating scrolling text
You can use several methods to create scrolling text in Flash. You can make dynamic and input
text fields scrollable by selecting the Scrollable option from the Text menu or the context
menu, or by pressing Shift and double-clicking the text field handle.

You can use the scroll and maxscroll properties of the TextField object to control vertical
scrolling and the hscroll and maxhscroll properties to control horizontal scrolling in a text
field. The scroll and hscroll properties specify the current vertical and horizontal scrolling
positions, respectively; you can read and write these properties. The maxscroll and
maxhscroll properties specify the maximum vertical and horizontal scrolling positions,
respectively; you can only read these properties.

The TextArea component provides an easy way to create scrolling text fields with a minimum
amount of scripting. For more information, see “TextArea component” in the ActionScript 2.0
Components Language Reference.

To create a scrollable dynamic text field:

Do one of the following:

■ Shift-double-click the handle on the dynamic text field.
■ Select the dynamic text field with the Selection tool, and select Text > Scrollable.
■ Select the dynamic text field with the Selection tool. Right-click (Windows) or Control-

click (Macintosh) the dynamic text field, and select Text > Scrollable.

About strings and the String class 411

To use the scroll property to create scrolling text:

1. Do one of the following:

■ Use the Text tool to drag a text field on the Stage. Assign the text field the instance
name textField_txt in the Property inspector.

■ Use ActionScript to create a text field dynamically with the
MovieClip.createTextField() method. Assign the text field the instance name
textField_txt as a parameter of the method.

2. Create an Up button and a Down button, or select Window > Common Libraries >
Buttons, and drag buttons to the Stage.

You will use these buttons to scroll the text up and down.
3. Select the Down button on the Stage and type down_btn into the Instance Name text box.

4. Select the Up button on the Stage and type up_btn into the Instance Name text box.

5. Select Frame 1 on the Timeline, and, in the Actions panel (Window > Actions), enter the
following code to scroll the text down in the text field:
down_btn.onPress = function() {

textField_txt.scroll += 1;
};

6. Following the ActionScript in step 5, enter the following code to scroll the text up:
up_btn.onPress = function() {

textField_txt.scroll -= 1;
};

Any text that loads into the textField_txt text field can be scrolled using the up and
down buttons.

About strings and the String class
In programming, a string is an ordered series of characters. You use strings often in your Flash
documents and class files to display text in applications, such as within text fields. Also, you
can store values as strings that you can use in an application for a variety of purposes. You can
put strings directly in your ActionScript code by placing quotation marks around the
characters of data. For more information on creating strings, see “Creating strings”
on page 419. For information on using text fields, see “Using the TextField class”
on page 346.

N
O

T
E

If you are not dynamically loading text into the SWF file, select Text > Scrollable
from the main menu.

412 Working with Text and Strings

You can associate each character with a specified character code, which you can also optionally
use to display text. For example, the character “A” is represented by the Unicode character
code 0041, or 65 in ASCII (American Standard Code for Information Interchange). For more
information on character codes and code charts, see www.unicode.org/charts. As you can see,
the way you represent strings in a Flash document depends a lot on the character set you
choose, and the way you encode characters.

Character encoding refers to the code, or method, for representing a set of characters in a
language to representative codes, such as numeric values. The character code (as mentioned in
the previous paragraph) is the table of mapped values (such as the ASCII table, where A equals
65). The encoding method deciphers it in a computer program.

For example, each letter in the English language would have a representative numerical code
in a character encoding. ASCII encodes each letter, number, and some symbols to 7-bit binary
versions of each integer. ASCII is a character set consisting of 95 printable characters and
numerous control characters; ASCII is used by computers to represent text.

Like ASCII, Unicode is another way to associate a code with each letter of the alphabet.
Because ASCII cannot support large character sets, such as Chinese, the Unicode Standard is a
valuable standard to encode languages. Unicode is the standard for character sets that can
represent any language set. It is a standard that exists to help development in multiple
languages. The character code designates what character it represents, and the standard
attempts to provide a universal way to encode characters that are part of any language. Strings
could be displayed on any computer system, or platform, or software used. Then, it is up to
the program involved (such as Flash or a web browser) to display the character glyph (its visual
appearance).

Over the years, the number of characters that Unicode supports has expanded to add support
for more (and larger) languages. The character encodings are called Unicode Transformation
Format (UTF) and Universal Character Set (UCS), which include UTF-8, UTF-16, and
UTF-32. The numbers in UTF encoding represent the number of bits in a unit, and the
numbers in a UCS encoding represent bytes.

■ UTF-8 is the standard encoding for exchanging text, such as online mail systems. UTF is
an 8-bit system.

■ UTF-16 is commonly used for internal processing.

Strings can be of various lengths in your applications. You can determine the length of your
string, although this might vary, depending on what language you’re using. Also, you might
encounter a terminating character at the end of a string, and this null character doesn’t have a
value. This terminating character is not an actual character, but you can use it to determine
when a string ends. For example, if you’re working with socket connections, you might watch
for the terminating character to know the end of a string (such as in a chat program).

http://www.unicode.org/charts/

About strings and the String class 413

For a sample source file, strings.fla, that shows you how to build a simple word processor that
compares and retrieves string and substring selections, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Strings folder to access the sample.

For more information on Strings and the String Class, see the following topics:

■ “panel” on page 413
■ “Using the Locale class” on page 414
■ “Using an input method editor” on page 416
■ “About the String class” on page 418
■ “Creating strings” on page 419
■ “About the escape character” on page 420
■ “Analyzing and comparing characters in strings” on page 421
■ “Converting and concatenating strings” on page 424
■ “Returning substrings” on page 427

 panel
The Strings panel lets you create and update multilingual content. You can specify content for
text fields that span multiple languages, and have Flash automatically determine the content
that should appear in a certain language based on the language of the computer that is
running Flash Player.

For general information on the Strings panel, and how to use it in your applications, see the
following topics in Using Flash:

■ “Authoring multilanguage text”
■ “About the Strings panel”
■ “Translating text in the Strings panel or an XML file”
■ “Importing an XML file into the Strings panel”

You can use the Locale class to control how multilanguage text is displayed. For more
information, see “Using the Locale class” on page 414 and Locale (mx.lang.Locale) in
the ActionScript 2.0 Language Reference.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

414 Working with Text and Strings

Using the Locale class
The Locale class (mx.lang.Locale) allows you to control how multilanguage text is displayed
in a Flash application at runtime. With the Strings panel, you can use string IDs instead of
string literals in dynamic text fields, which allows you to create a SWF file that displays text
loaded from a language-specific XML file. You can use the following methods to display the
language-specific strings contained in the XML Localization Interchange File Format
(XLIFF) files.

Automatically at runtime Flash Player replaces string IDs with strings from the XML file,
which matches the default system language code that is returned by language
(capabilities.language property).

Manually using stage language String IDs are replaced by strings when the SWF file
compiles, and cannot be changed by Flash Player.

Using ActionScript at runtime You can control string ID replacement by using
ActionScript, which is controlled at runtime. This option gives you control over both the
timing and the language of string ID replacement.

You can use the properties and methods of the Locale class when you want to replace the
string IDs by using ActionScript to control the application when it plays in Flash Player. For a
demonstration of how to use the Locale class, see the following procedure.

To use the Locale class to create multilanguage sites:

1. Create a new Flash document and save it as locale.fla.

2. Open the Strings panel (Window > Other Panels > Strings) and click Settings.

3. Select two languages, en (English) and fr (French), and click Add to add the languages to
the Active languages pane.

4. Select the Via ActionScript at Runtime option, set the default runtime language to French,
and click OK.

5. Drag a ComboBox component from the User Interface folder of the Components panel
(Window > Components) onto the Stage and give it the instance name lang_cb.

6. Create a dynamic text field on the Stage using the Text tool and give the text field the
instance name greeting_txt.

7. With the text field selected on the Stage, type a string identifier of greeting in the ID text
box of the Strings panel and click Apply.

You’ll notice that Flash converts the greeting string into IDS_GREETING.
8. In the String panel’s grid, type the string hello in the en column.

About strings and the String class 415

9. Type the string bonjour in the fr column.

You use these strings when you use the lang_cb combo box to change the language on
the Stage.

10. Add the following ActionScript to Frame 1 of the main Timeline:
import mx.lang.Locale;
Locale.setLoadCallback(localeListener);
lang_cb.dataProvider = Locale.languageCodeArray.sort();
lang_cb.addEventListener("change", langListener);
greeting_txt.autoSize = "left";
Locale.loadLanguageXML(lang_cb.value);

function langListener(eventObj:Object):Void {
Locale.loadLanguageXML(eventObj.target.value);

}
function localeListener(success:Boolean):Void {

if (success) {
greeting_txt.text = Locale.loadString("IDS_GREETING");

} else {
greeting_txt.text = "unable to load language XML file.";

}
}

The preceding ActionScript is split into two sections. The first section of code imports the
Locale class and specifies a callback listener that is called whenever a language XML file is
finished loading. Next, the lang_cb combo box is populated with a sorted array of
available languages. Whenever the lang_cb value changes, Flash’s event dispatcher triggers
the langListener() function, which loads the specified-language XML file. The second
section of code defines two functions, langListener(), and localeListener(). The
first function, langListener(), is called whenever the lang_cb combo box’s value is
changed by the user. The second function, localeListener(), is called whenever a
language XML file is finished loading. The function checks if the load was successful, and
if so, sets the text property of the greeting_txt instance to the greeting for the
selected language.

11. Select Control > Test Movie to test the Flash document.

T
IP The XML file that you use must use the XML Localization Interchange File Format

(XLIFF).

C
A

U
T

IO
N

The Locale class is different from the other classes in the ActionScript 2.0 Language
Reference, since it is not part of the Flash Player. Because this class installed in the
Flash Authoring classpath, it is automatically compiled into your SWF files. Using the
Locale class increases the SWF file size slightly, because the class must be
compiled into the SWF file.

416 Working with Text and Strings

For more information, see Locale (mx.lang.Locale) in the ActionScript 2.0 Language
Reference.

Using an input method editor
An input method editor (IME) lets users type non-ASCII text characters in Asian languages
such as Chinese, Japanese, and Korean. The IME class in ActionScript lets you directly
manipulate the operating system’s IME in the Flash Player application that is running on a
client computer.

Using ActionScript, you can determine the following:

■ Whether an IME is installed on the user’s computer.
■ Whether the IME is enabled or disabled on the user’s computer.
■ Which conversion mode the current IME is using.

The IME class can determine which conversion mode the current IME is using: for example,
if the Japanese IME is active, you can determine if the conversion mode is Hiragana,
Katakana (and so on) using the System.IME.getConversionMode() method. You can set it
with the System.IME.setConversionMode() method.

You can also disable or enable the IME by using your application at runtime, and perform
other functions, depending on the user’s operating system. You can check whether a system
has an IME by using the System.capabilities.hasIME property. The next example shows
how to determine whether the user has an IME installed and active.

To determine whether the user has an IME installed and active:

1. Create a new Flash document and save it as ime.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
if (System.capabilities.hasIME) {

if (System.IME.getEnabled()) {
trace("You have an IME installed and enabled.");

} else {
trace("You have an IME installed but not enabled.");

}
} else {

trace("Please install an IME and try again.");
}

The preceding code first checks whether the current system has an IME installed. If an
IME is installed, Flash checks whether it is currently enabled.

N
O

T
E

Curently, you cannot tell which IME is active (if any), or change from one IME to another
(for instance, English to Japanese or Korean to Chinese)

About strings and the String class 417

3. Select Control > Test Movie to test the document.

A message appears in the Output panel stating whether you have an IME installed and
currently active.

You can also use the IME class to enable and disable the IME in Flash at runtime. The
following example requires that you have an IME installed on your system. For more
information on installing an IME on your specific platform, see the following links:

■ www.microsoft.com/globaldev/default.mspx
■ http://developer.apple.com/documentation/
■ http://java.sun.com

You can enable and disable an IME while the SWF file plays, as shown in the following
example.

To enable and disable an input method editor at runtime:

1. Create a new Flash document and save it as ime2.fla.

2. Create two button symbol instances on the Stage and give them the instance names
enable_btn and disable_btn.

3. Add the following ActionScript to Frame 1 of the main Timeline:
checkIME();

var my_fmt:TextFormat = new TextFormat();
my_fmt.font = "_sans";

this.createTextField("ime_txt", 10, 100, 10, 320, 240);
ime_txt.border = true;
ime_txt.multiline = true;
ime_txt.setNewTextFormat(my_fmt);
ime_txt.type = "input";
ime_txt.wordWrap = true;

enable_btn.onRelease = function() {
System.IME.setEnabled(true);

};
disable_btn.onRelease = function() {

System.IME.setEnabled(false);
};

function checkIME():Boolean {
if (System.capabilities.hasIME) {

if (System.IME.getEnabled()) {
trace("You have an IME installed and enabled.");
return true;

} else {
trace("You have an IME installed but not enabled.");

http://www.microsoft.com/globaldev/default.mspx
http://developer.apple.com/documentation/
http://java.sun.com

418 Working with Text and Strings

return false;
}

} else {
trace("Please install an IME and try again.");
return false;

}
}

The preceding code is separated into five sections. The first section calls the checkIME()
method, which displays a message in the Output panel if the system has an IME installed
or active. The second section defines a custom text-format object, which sets the font to
_sans. The third section creates an input text field and applies the custom text format.
The fourth section creates some event handlers for the enable_btn and disable_btn
instances created in an earlier step. The fifth, and final, section of code defines the custom
checkIME() function, which checks whether the current system has an IME installed and
if so, whether or not the IME is active.

4. Save the FLA file and select Control > Test Movie to test the document.

Type some text into the input text field on the Stage. Switch your IME to a different
language and type in the input text field again. Flash Player inputs characters by using the
new IME. If you click the disable_btn button on the Stage, Flash reverts to using the
previous language and ignores the current IME settings.

For information on System.capabilities.hasIME, see hasIME (capabilities.hasIME
property) in the ActionScript 2.0 Language Reference.

About the String class
A string is also a class and data type in the core ActionScript language. The String data type
represents a sequence of 16-bit characters that might include letters, numbers, and
punctuation marks. Strings are stored as Unicode characters, using the UTF-16 format. An
operation on a String value returns a new instance of the string. The default value for a
variable declared with the String data type is null.

For more information on strings, data, and values, see Chapter 3, “Data and Data Types.”

The String class contains methods that let you work with text strings. Strings are important in
working with many objects, and the methods described in this chapter are useful in working
with strings used in many objects, such as TextField, XML, ContextMenu, and FileReference
instances.

N
O

T
E

This example requires that you have an IME installed on your system. For information
on installing an IME, see the links that precede this example.

About strings and the String class 419

The String class is a wrapper for the String primitive data type, and provides methods and
properties that let you manipulate primitive string values. You can convert the value of any
object into a string by using the String() function. All the methods of the String class,
except for concat(), fromCharCode(), slice(), and substr(), are generic, which means
the methods call the toString() function before they perform their operations, and you can
use these methods with other non-String objects.

Because all string indexes are zero-based, the index of the last character for any myStr string is
myStr.length - 1.

For a sample source file, strings.fla, that shows you how to build a simple word processor that
compares and retrieves string and substring selections, see the Flash Sample page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Strings folder to access the sample.

Creating strings
You can call any of the methods of the String class by using the new String() constructor
method or by using a string literal value. If you specify a string literal, the ActionScript
interpreter automatically converts it to a temporary String object, calls the method, and
discards the temporary String object. You can also use the String.length property with a
string literal.

Do not confuse a string literal with a String object. For more information on string literals and
the String object, see Chapter 4, “About literals,” on page 94.

In the following example, the line of code creates the firstStr string literal. To declare a
string literal, use single straight quotation mark (') or double straight quotation mark (")
delimiters.

To create and use strings:

1. Create a new Flash document and save it as strings.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var firstStr:String = "foo";
var secondStr:String = new String("foo");
trace(firstStr == secondStr); // true
var thirdStr:String;
trace(thirdStr); // undefined

This code defines three String objects, one that uses a string literal, one that uses the new
operator, and the other without an initial value. Strings can be compared by using the
equality (==) operator, as shown in the third line of code. When referring to variables, you
specify the data type only when the variable is being defined.

http://www.adobe.com/go/learn_fl_samples

420 Working with Text and Strings

3. Select Control > Test Movie to test the document.

Always use string literals unless you specifically need to use a String object. For more
information on string literals and the String object, see Chapter 4, “About literals,” on
page 94.

To use single straight quotation mark (') and double straight quotation mark (") delimiters
within a single string literal, use the backslash character (\) to escape the character. The
following two strings are equivalent:
var firstStr:String = "That's \"fine\"";
var secondStr:String = 'That\'s "fine"';

For more information on using the backslash character in strings, see “About the escape
character” on page 420.

Remember that you cannot use “curly quotation mark” or “special quotation mark” characters
within your ActionScript code; they are different from the straight quotation marks (') and
(") that you can use in your code. When you paste text from another source into
ActionScript, such as the web or a Word document, be sure to use straight quote delimiters.

For a sample source file, strings.fla, that shows you how to build a simple word processor that
compares and retrieves string and substring selections, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Strings folder to access the sample.

About the escape character
You can use the backslash escape character (\), to define other characters in string literals.

Escape sequence Description

\b The backspace character.

\f The form feed character.

\n The newline character.

\r The carriage return.

\t The tab character.

\unnnn The Unicode character with the character code specified by the
hexadecimal number nnnn. For example, \u263a is the smile
character.

\xnn The ASCII character with the character code specified by the
hexadecimal number nn.

\' A single quotation mark.

http://www.adobe.com/go/learn_fl_samples

About strings and the String class 421

For more information on string literals, see Chapter 4, “About literals,” on page 94 and
“Creating strings” on page 419.

Analyzing and comparing characters in strings
Every character in a string has an index position in the string (an integer). The index position
of the first character is 0. For example, in the string yellow, the character y is in position 0
and the character w is in position 5.

Every string has a length property, which is equal to the number of characters in the string:
var companyStr:String = "adobe";
trace(companyStr.length); // 10

An empty string and a null string both have a length of zero:
var firstStr:String = new String();
trace(firstStr.length); // 0

var secondStr:String = "";
trace(secondStr.length); // 0

If a string doesn’t contain a value, its length is set to undefined:
var thirdStr:String;
trace(thirdStr.length); // undefined

You can also use character codes to define a string. For more information on character codes
and character encoding, see “About strings and the String class” on page 411.

The following example creates a variable named myStr and sets the string’s value based on
ASCII values passed to the String.fromCharCode() method:
var myStr:String =

String.fromCharCode(104,101,108,108,111,32,119,111,114,108,100,33);
trace(myStr); // hello world!

Each number listed in the fromCharCode() method in the previous code represents a single
character. For example, the ASCII value 104 represents a lowercase h, and the ASCII value 32
represents the space character.

\" A double quotation mark.

\\ A single backslash character.

W
A

R
N

IN
G

If your string contains a null byte character (\0), the string value will be truncated.

Escape sequence Description

422 Working with Text and Strings

You can also use the String.fromCharCode() method to convert Unicode values, although
the unicode value must be converted from hexadecimal to decimal values, as shown in the
following ActionScript:
// Unicode 0068 == "h"
var letter:Number = Number(new Number(0x0068).toString(10));
trace(String.fromCharCode(letter)); // h

You can examine the characters in various positions in a string, as in the following example.

To loop over a string:

1. Create a new Flash document.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var myStr:String = "hello world!";
for (var i:Number = 0; i < myStr.length; i++) {

trace(myStr.charAt(i));
}

3. Select Control > Test Movie to preview your Flash document. You should see each
character traced to the Output panel on a separate line.

4. Modify the existing ActionScript code so that it traces the ASCII value for each character:
var myStr:String = "hello world!";
for (var i:Number = 0; i < myStr.length; i++) {

trace(myStr.charAt(i) + " - ASCII=" + myStr.charCodeAt(i));
}

5. Save the current Flash document and select Control > Test Movie to preview the SWF file.

When you run this code, the following is displayed in the Output panel:
h - ASCII=104
e - ASCII=101
l - ASCII=108
l - ASCII=108
o - ASCII=111
 - ASCII=32
w - ASCII=119
o - ASCII=111
r - ASCII=114
l - ASCII=108
d - ASCII=100
! - ASCII=33

T
IP You can also split a string into an array of characters by using the String.split()

method and entering an empty string ("") as a delimiter; for example, var
charArray:Array = myStr.split("");

About strings and the String class 423

You can use operators to compare strings. For information on using operators with strings, see
“About using operators with strings” on page 143.

You can use these operators with conditional statements, such as if and while. The following
example uses operators and strings to make a comparison.

To compare two strings:

1. Create a new Flash document and save it as comparestr.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var str1:String = "Apple";
var str2:String = "apple";
if (str1 < str2) {

trace("Uppercase letters sort first.");
}

3. Save the Flash document and select Control > Test Movie to test the SWF file.

You can use the equality (==) and inequality (!=) operators to compare strings with other
types of objects, as shown in the following example.

To compare strings to other data types:

1. Create a new Flash document and save it as comparenum.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var myStr:String = "4";
var total:Number = 4;
if (myStr == total) {

trace("Types are converted.");
}

3. Save the Flash document and select Control > Test Movie to test the SWF file.

When comparing two different data types (such as strings and numbers), Flash tries to
convert the data types so that a comparison can be made.

Use the strict equality (===) and strict inequality (!==) operators to verify that both
comparison objects are of the same type. The following example uses strict comparison
operators to ensure that Flash doesn’t try to convert data types while trying to compare values.

To force strict data type comparisons:

1. Create a new Flash document and save it as comparestrict.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var str1:String = "4";
var str2:String = "5";
var total:Number = 4;
if (str1 !== total) {

trace("Types are not converted.");

424 Working with Text and Strings

}
if (str1 !== str2) {

trace("Same type, but the strings don't match.");
}

3. Save the Flash document and select Control > Test Movie.

For more information on using operators with strings, see “About using operators with
strings” on page 143.

For a sample source file, strings.fla, that shows you how to build a simple word processor that
compares and retrieves string and substring selections, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Strings folder to access the sample.

Converting and concatenating strings
You can use the toString() method to convert many objects to strings. Most built-in objects
have a toString() method for this purpose:
var n:Number = 0.470;
trace(typeof(n.toString())); // string

When you use the addition (+) operator with a combination of string and nonstring instances,
you don’t need to use the toString() method. For details on concatenation, see the second
procedure in this section.

The toLowerCase() method and the toUpperCase() method convert alphabetical characters
in the string to lowercase and uppercase, respectively. The following example demonstrates
how to convert a string from lowercase to uppercase characters.

To convert a string from lowercase to uppercase:

1. Create a new Flash document and save it as convert.fla.

2. Type the following code on Frame 1 of the Timeline:
var myStr:String = "Dr. Bob Roberts, #9.";
trace(myStr.toLowerCase()); // dr. bob roberts, #9.
trace(myStr.toUpperCase()); // DR. BOB ROBERTS, #9.
trace(myStr); // Dr. Bob Roberts, #9.

3. Save the Flash document and select Control > Test Movie.

myStr = myStr.toUpperCase();

N
O

T
E

After these methods are executed, the source string remains unchanged. To
transform the source string, use the following:

http://www.adobe.com/go/learn_fl_samples

About strings and the String class 425

When you concatenate strings, you take two strings and join them sequentially into one
string. For example, you can use the addition (+) operator to concatenate two strings. The
next example shows you how to concatenate two strings.

To concatenate two strings:

1. Create a new Flash document and save it as concat.fla.

2. Add the following code to Frame 1 of the Timeline:
var str1:String = "green";
var str2:String = str1 + "ish";
trace(str2); // greenish
//
var str3:String = "yellow";
str3 += "ish";
trace(str3); // yellowish

The preceding code shows two methods of concatenating strings. The first method uses
the addition (+) operator to join the str1 string with the string "ish". The second
method uses the addition and assignment (+=) operator to concatenate the string "ish"
with the current value of str3.

3. Save the Flash document and select Control > Test Movie.

You can also use the concat() method of the String class to concatenate strings. This method
is demonstrated in the following example.

To concatenate two strings with the concat() method:

1. Create a new Flash document and save it as concat2.fla.

2. Add the following code to Frame 1 of the Timeline:
var str1:String = "Bonjour";
var str2:String = "from";
var str3:String = "Paris";
var str4:String = str1.concat(" ", str2, " ", str3);
trace(str4); // Bonjour from Paris

3. Select Control > Test Movie to test the Flash document.

If you use the addition (+) operator (or the addition and assignment [+=] operator) with a
string and a nonstring object, ActionScript automatically converts nonstring objects to strings
in order to evaluate the expression. This conversion is demonstrated in the following
code example:
var version:String = "Flash Player ";
var rel:Number = 9;
version = version + rel;
trace(version); // Flash Player 9

426 Working with Text and Strings

However, you can use parentheses to force the addition (+) operator to evaluate arithmetically,
as demonstrated in the following ActionScript code:
trace("Total: $" + 4.55 + 1.46); // Total: $4.551.46
trace("Total: $" + (4.55 + 1.46)); // Total: $6.01

You can use the split() method to create an array of substrings of a string, which is divided
based on a delimiter character. For example, you could segment a comma- or tab-delimited
string into multiple strings.

For example, the following code shows how you can split an array into substrings by using the
ampersand (&) character as a delimiter.

To create an array of substrings segmented by delimiter:

1. Create a new Flash document and save it as strsplit.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var queryStr:String = "first=joe&last=cheng&title=manager&startDate=3/6/

65";
var params:Array = queryStr.split("&", 2);
trace(params); // first=joe,last=cheng

/* params is set to an array with two elements:
params[0] == "first=joe"
params[1] == "last=cheng"

*/

3. Select Control > Test Movie to test the Flash document.

var queryStr:String = "first=joe&last=cheng&title=manager&startDate=3/6/
65";

var my_lv:LoadVars = new LoadVars();
my_lv.decode(queryStr);
trace(my_lv.first); // joe

For more information on using operators with strings, see “About using operators with
strings” on page 143.

For a sample source file, strings.fla, that shows you how to build a simple word processor that
compares and retrieves string and substring selections, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Strings folder to access the sample.

T
IP The second parameter of the split() method defines the maximum size of the array.

If you don’t want to limit the size of the array created by the split() method, you can
omit the second parameter.

T
IP The easiest way to parse a query string (a string delimited with & and = characters) is

to use the LoadVars.decode() method, as shown in the following ActionScript:

http://www.adobe.com/go/learn_fl_samples

About strings and the String class 427

Returning substrings
The substr() and substring() methods of the String class are similar. Both return a
substring of a string and both take two parameters. In both methods, the first parameter is the
position of the starting character in the given string. However, in the substr() method, the
second parameter is the length of the substring to return, and in the substring() method
the second parameter is the position of the character at the end of the substring (which is
not included in the returned string). This example shows the difference between these
two methods:

To find a substring by character position:

1. Create a new Flash document and save it as substring.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var myStr:String = "Hello from Paris, Texas!!!";
trace(myStr.substr(11,15)); // Paris, Texas!!!
trace(myStr.substring(11,15)); // Pari

The first method, substr(), returns a string 15 characters long starting from the eleventh
character. The second method, substring(), returns a string four characters long by
grabbing all characters between the eleventh and fifteenth index.

3. Add the following ActionScript below the code added in the preceding step:
trace(myStr.slice(11, 15)); // Pari
trace(myStr.slice(-3, -1)); // !!
trace(myStr.slice(-3, 26)); // !!!
trace(myStr.slice(-3, myStr.length)); // !!!
trace(myStr.slice(-8, -3)); // Texas

The slice() method functions similarly to the substring() method. When given two
non-negative integers as parameters, it works exactly the same. However, the slice()
method can take negative integers as parameters.

4. Select Control > Test Movie to test the Flash document.

You can use the indexOf() and lastIndexOf() methods to locate matching substrings
within a string, as shown in the following example.

N
O

T
E

You can combine non-negative and negative integers as the parameters of the
slice() method.

428 Working with Text and Strings

To find the character position of a matching substring:

1. Create a new Flash document and save it as indexof.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var myStr:String = "The moon, the stars, the sea, the land";
trace(myStr.indexOf("the")); // 10
trace(myStr.indexOf("the", 11)); // 21

The first index of the word the begins at the 10th character because the indexOf()
method is case sensitive; therefore the first instance of The isn’t considered. You can also
specify a second parameter to the indexOf() method to indicate the index position in the
string from which to start the search. In the preceding code, Flash searches for the first
index of the word the that occurs after the 11th character.

3. Add the following ActionScript below the code that you added in the previous step:
trace(myStr.lastIndexOf("the")); // 30
trace(myStr.lastIndexOf("the", 29)); // 21

The lastIndexOf() method finds the last occurrence of a substring in the string. For
example, instead searching for a character or substring from the beginning of a string,
lastIndexOf() starts from the end of a string and works backward. Similarly to the
indexOf() method, if you include a second parameter with the lastIndexOf() method,
the search is conducted from that index position, although with lastIndexOf() the
string is searched backward (from right to left).

4. Select Control > Test Movie to test your Flash document.

For a sample source file, strings.fla, that shows you how to build a simple word processor that
compares and retrieves string and substring selections, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download and decompress the Sample zip file and
navigate to the ActionScript2.0/Strings folder to access the sample.

T
IP The indexOf() and lastIndexOf() methods are case sensitive.

http://www.adobe.com/go/learn_fl_samples

429

12
CHAPTER 12

Animation, Filters,
and Drawings

This chapter describes how to add animation to your Flash CS3 Professional applications
using ActionScript instead of (or in addition to) timeline-based animations that use motion or
shape tweens. Using code to create animation and effects often reduces the file size of your
finished application, and can also improve the performance and consistency of the animation
itself. At times, ActionScript-based animations might even reduce your workload: code can be
faster to write, and it’s easy to apply to many instances at once or reuse in other applications.
This chapter also shows you how to animate by using fundamental ActionScript basics, the
Tween and TransitionManager classes, the Drawing API, filter classes, and blend modes.

You can use the Drawing API, which consists of the drawing methods in the MovieClip class,
to add animation and draw. These methods let you use code to create lines, fills, and shapes,
instead of using the drawing tools in the authoring tool.

Filters and other expressive effects are also important in many Flash applications, to quickly
apply an effect and animate it. You can use code to add and animate filter effects, blend
modes, and bitmap images.

This chapter contains the following sections, which describe using ActionScript to create
animation and add effects, as well as using the Drawing API to draw in ActionScript:
Scripting animation with ActionScript 2.0 . 430

About bitmap caching, scrolling, and performance . 440

About the Tween and TransitionManager classes . 441

Using filter effects. .456

Working with filters using ActionScript .463

Manipulating filter effects with code . 489

Creating bitmaps with the BitmapData class . 493

About blending modes . 496

About operation order . 498

Drawing with ActionScript . 499

Understanding scaling and slice guides . 514

430 Animation, Filters, and Drawings

Scripting animation with ActionScript 2.0
You can use ActionScript 2.0 to add animation to your Flash applications, instead of using
motion or shape tweens on a timeline.The following sections show you how to use code to
animate instances, such as changing the transparency and appearance of the instance, and
moving the instance around the Stage.

For information on using the Tween and TransitionManager classes to further automate code-
based animations, see ActionScript 2.0 Components Language Reference. These classes help you
add advanced easing equations and transition animations to movie clip instances in your
application. Many of these effects are difficult to recreate using ActionScript without these
prebuilt classes, because the code you need to use involves writing complex mathematical
equations to achieve the effect.

For more information about how to animate drawings that you create with code, see
“Drawing with ActionScript” on page 499.

The following sections describe how to script animations:

■ “About animation and frame rate” on page 431
■ “Fading objects with code” on page 432
■ “Adding color and brightness effects with code” on page 434
■ “Moving objects with code” on page 437
■ “Panning an image with code” on page 438

For a source sample of scripted animation in Flash, animation.fla, see the Flash Samples page
at www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Animation folder to access the sample.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/
Galleries folder to access these samples:

■ gallery_tree.fla
■ gallery_tween.fla

These files provide examples of how to use ActionScript to control movie clips dynamically
while loading image files into a SWF file, which includes scripted animation.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Scripting animation with ActionScript 2.0 431

About animation and frame rate
When you add animation to an application, consider the frame rate that you set your FLA file
to. You need to think about frame rate when working with animations because it can affect
the performance of your SWF file and the computer that plays it. Setting a frame rate too
high can lead to processor problems, especially when you use many assets or use ActionScript
to create animation.

However, you also need to consider the frame rate setting, because it affects how smoothly
your animation plays. For example, an animation set to 12 frames per second (fps) in the
Property inspector plays 12 frames each second. If the document’s frame rate is set to 24 fps,
the animation appears to animate more smoothly than if it ran at 12 fps. However, your
animation at 24 fps also plays much faster than it does at 12 fps, so the total duration (in
seconds) is shorter. Therefore, if you need to make a 5-second animation using a higher frame
rate, it means you need to add additional frames to fill those five seconds than at a lower frame
rate (and thus, this raises the total file size of your animation). A 5-second animation at 24 fps
typically has a higher file size than a 5-second animation at 12 fps.

Use the lowest possible frame rate that makes your animation appear to play smoothly at
runtime, which helps reduce the strain on the end-user’s processor. Try not to use a frame rate
that’s more than 30 to 40 fps; high frame rates put a lot of stress on processors, and do not
change the appearance of the animation much or at all at runtime.

Also, especially if you’re working with timeline-based animation, select a frame rate for your
animation as early as possible in the development process. When you test the SWF file, check
the duration, and the SWF file size, of your animation. The frame rate greatly affects the
speed of the animation.

N
O

T
E

When you use an onEnterFrame event handler to create scripted animations, the
animation runs at the document’s frame rate, similar to if you created a motion tween on
a timeline. An alternative to the onEnterFrame event handler is setInterval (see
setInterval function in the ActionScript 2.0 Language Reference). Instead of depending
on frame rate, you call functions at a specified interval. Like onEnterFrame, the more
frequently you use setInterval to call a function, the more resource intensive the
animation is on your processor.

432 Animation, Filters, and Drawings

Fading objects with code
When you work with movie clips on the Stage, you might want to fade the movie clip in or
out instead of toggling its _visible property. The following procedure demonstrates how to
use an onEnterFrame event handler to animate a movie clip.

To fade a movie clip by using code:

1. Create a new Flash document called fade1.fla.

2. Draw some graphics on the Stage using the drawing tools, or import an image to the Stage
(File > Import > Import to Stage).

3. Select the content on the Stage and select Modify > Convert to Symbol.

4. Select the Movie clip option and click OK to create the symbol.

5. Select the movie clip instance on the Stage and type img1_mc in the Instance Name text
box in the Property inspector.

6. Select Frame 1 of the Timeline, and add the following code to the Actions panel:
img1_mc.onEnterFrame = function() {

img1_mc._alpha -= 5;
if (img1_mc._alpha <= 0) {

img1_mc._visible = false;
delete img1_mc.onEnterFrame;

}
};

This code uses an onEnterFrame event handler, which is invoked repeatedly at the frame
rate of the SWF file. The number of times per second that the event handler is called
depends on the frame rate at which the Flash document is set. If the frame rate is
12 frames per second (fps), the onEnterFrame event handler is invoked 12 times per
second. Likewise, if the Flash document’s frame rate is 30 fps, the event handler is invoked
30 times per second.

7. Select Control > Test Movie to test the document.

The movie clip you added to the Stage slowly fades out.

You can modify the _alpha property by using the setInterval() function instead of an
onEnterFrame event handler, as the next procedure shows.

Scripting animation with ActionScript 2.0 433

To fade an object by using the setInterval() function:

1. Create a new Flash document called fade2.fla.

2. Draw some graphics on the Stage, or import an image to the Stage (File > Import > Import
to Stage).

3. Select the content on the Stage and select Modify > Convert to Symbol.

4. Select the Movie clip option and click OK to create the symbol.

5. Select the movie clip instance on the Stage and type img1_mc in the Instance Name text
box in the Property inspector.

6. Select Frame 1 of the Timeline and add the following code to the Actions panel:
var alpha_interval:Number = setInterval(fadeImage, 50, img1_mc);
function fadeImage(target_mc:MovieClip):Void {

target_mc._alpha -= 5;
if (target_mc._alpha <= 0) {

target_mc._visible = false;
clearInterval(alpha_interval);

}
}

The setInterval() function behaves slightly differently than the onEnterFrame event
handler, because the setInterval() function tells Flash precisely how frequently the
code should call a particular function. In this code example, the user-defined
fadeImage() function is called every 50 milliseconds (20 times per second). The
fadeImage() function decrements the value of the current movie clip’s _alpha property.
When the _alpha value is equal to or less than 0, the interval is cleared, which causes the
fadeImage() function to stop executing.

7. Select Control > Test Movie to test the document.

The movie clip you added to the Stage slowly fades out.

For more information on user-defined functions, see “Defining global and timeline functions”
on page 173. For more information on the onEnterFrame event handler, see onEnterFrame
(MovieClip.onEnterFrame handler) in the ActionScript 2.0 Language Reference. For more
information on the setInterval() function, see setInterval global function in the
ActionScript 2.0 Language Reference.

For a source sample of scripted animation in Flash, animation.fla, see the Flash Samples page
at www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Animation folder to access the sample.

http://www.adobe.com/go/learn_fl_samples

434 Animation, Filters, and Drawings

Adding color and brightness effects with code
In addition to using ActionScript to set and animate alpha fades (see “Fading objects with
code” on page 432), you can animate various color and brightness effects by using code
instead of using the Filters panel in the Property inspector.

The following procedure loads a JPEG image and applies a color transform filter, which
modifies the red and green channels as the mouse pointer moves along the x-axis and y-axis.

To change an object’s color channels by using ActionScript:

1. Create a new Flash document called colorTrans.fla.

2. Select Frame 1 of the Timeline, and add the following code to the Actions panel:
import flash.geom.Transform;
import flash.geom.ColorTransform;

var imageClip:MovieClip = this.createEmptyMovieClip("imageClip", 1);
var clipLoader:MovieClipLoader = new MovieClipLoader();
clipLoader.loadClip("http://www.helpexamples.com/flash/images/

image1.jpg", imageClip);

var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {
 var transformer:Transform = new Transform(imageClip);
 var colorTransformer:ColorTransform = transformer.colorTransform;
 colorTransformer.redMultiplier = (_xmouse / Stage.width) * 1;
 colorTransformer.greenMultiplier = (_ymouse / Stage.height) * 1;
 transformer.colorTransform = colorTransformer;
}
Mouse.addListener(mouseListener);

3. Select Control > Test Movie to test the document, and then move the mouse pointer
around the Stage.

The image file that loads transforms colors as you move the mouse.

You can also use the ColorMatrixFilter class to convert a color image to a black and white
image, as the following procedure shows.

Scripting animation with ActionScript 2.0 435

To use the ColorMatrixFilter class to change an image to a grayscale image:

1. Create a new Flash document called grayscale.fla.

2. Select Frame 1 of the Timeline, and add the following code to the Actions panel:
import flash.filters.ColorMatrixFilter;
System.security.allowDomain("http://www.helpexamples.com");
var mcl_obj:Object = new Object();
mcl_obj.onLoadInit = function(target_mc:MovieClip):Void {

var myElements_array:Array = [0.3, 0.59, 0.11, 0, 0,
0.3, 0.59, 0.11, 0, 0,
0.3, 0.59, 0.11, 0, 0,
0, 0, 0, 1, 0];

var myColorMatrix_filter:ColorMatrixFilter = new
ColorMatrixFilter(myElements_array);
target_mc.filters = [myColorMatrix_filter];

}
this.createEmptyMovieClip("img_mc", this.getNextHighestDepth());
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mcl_obj);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

The preceding code begins by importing the ColorMatrixFilter class, and creates a listener
object that will be used with a new MovieClipLoader instance created in some later code.
Next, a new movie clip instance is created with the instance name img_mc, as well as a new
movie clip loader instance with the instance name img_mcl. Finally, the source movie clip
is loaded into the img_mc movie clip on the Stage. When the image is successfully loaded,
the onLoadInit event handler is called and attaches a ColorMatrixFilter to the loaded
image.

3. Select Control > Test Movie to test the document.

The image that you load onto the Stage changes to a grayscale image. View the image
online (http://www.helpexamples.com/flash/images/image1.jpg) to see the
original color of the image.

You can also set an image’s brightness by using the ActionScript code in the following
procedure.

http://www.helpexamples.com/flash/images/image1.jpg

436 Animation, Filters, and Drawings

To change an image’s brightness:

1. Create a new Flash document called brightness.fla.

2. Select Frame 1 of the Timeline and add the following code to the Actions panel:
import flash.filters.ColorMatrixFilter;
System.security.allowDomain("http://www.helpexamples.com/");
var mcl_obj:Object = new Object();
mcl_obj.onLoadInit = function(target_mc:MovieClip):Void {

var myElements_array:Array = [1, 0, 0, 0, 100,
0, 1, 0, 0, 100,
0, 0, 1, 0, 100,
0, 0, 0, 1, 0];

var myColorMatrix_filter:ColorMatrixFilter = new
ColorMatrixFilter(myElements_array);
target_mc.filters = [myColorMatrix_filter];

}
this.createEmptyMovieClip("img_mc", this.getNextHighestDepth());
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mcl_obj);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image2.jpg",

img_mc);

This block of code uses the MovieClipLoader class to load an external JPEG. When the
image successfully loads, the MovieClipLoader class onLoadInit event handler is called
and modifies the image brightness to 100 using the ColorMatrixFilter filter.

3. Select Control > Test Movie to test the document.

The image that you load into the SWF file changes its brightness when you test the SWF
file. View the image online (http://www.helpexamples.com/flash/images/
image2.jpg) to see the original appearance of the image.

For a source sample of scripted animation in Flash, animation.fla, see the Flash Samples page
at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/Animation folder to access the sample.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/
Galleries folder to access these samples:

■ gallery_tree.fla
■ gallery_tween.fla

These files provide examples of how to use ActionScript to control movie clips dynamically
while loading image files into a SWF file, which includes scripted animation.

http://www.helpexamples.com/flash/images/image2.jpg
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Scripting animation with ActionScript 2.0 437

Moving objects with code
Using ActionScript to move an object is similar to modifying an object’s _alpha property,
except that you instead modify the object’s _x or _y property.

The following procedure animates a dynamically loaded JPEG image and slides it horizontally
across the Stage.

To move an instance on the Stage by using code:

1. Create a new Flash document called moveClip.fla.

2. Change the frame rate of the document to 24 fps in the Property inspector.

The animation is much smoother if you use a higher frame rate, such as 24 fps.
3. Select Frame 1 of the Timeline, and add the following code to the Actions panel:

// Create a movie clip instance.
this.createEmptyMovieClip("img1_mc", 10);
var mcl_obj:Object = new Object();
mcl_obj.onLoadInit = function (target_mc:MovieClip):Void {

target_mc._x = Stage.width;
target_mc.onEnterFrame = function() {

target_mc._x -= 3; // decrease current _x position by 3 pixels
if (target_mc._x <= 0) {

target_mc._x = 0;
delete target_mc.onEnterFrame;

}
};

};
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mcl_obj);
// Load an image into the movie clip
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img1_mc);

This code example loads an external image from a remote web server and, when the image
is fully loaded, animates it horizontally across the Stage. Instead of using an
onEnterFrame event handler, you could use the setInterval() function to animate the
image.

4. Select Control > Test Movie to test the document.

The image loads and then animates from the right side of the Stage to the upper-left
corner of the Stage.

For information on using an onEnterFrame event handler or setInterval() function to
animate the image, see “Fading objects with code” on page 432.

438 Animation, Filters, and Drawings

For a source sample of scripted animation in Flash, animation.fla, see the Flash Samples page
at www.adobe.com/go/learn_fl_samples. Download and decompress the Samples zip file and
navigate to the ActionScript2.0/Animation folder to access the sample.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/
Galleries folder to access these samples:

■ gallery_tree.fla
■ gallery_tween.fla

These files provide examples of how to use ActionScript to control movie clips dynamically
while loading image files into a SWF file, which includes scripted animation.

Panning an image with code
Using ActionScript, you can easily pan large images within your Flash documents. This is
useful when your image doesn’t fit on the Stage, or you want to create an animation effect in
which you pan a movie clip from one side of the Stage to the other. For example, if you have a
large panoramic image that is larger than your Stage size, but you don’t want to reduce the
dimensions of your image or increase the dimensions of your Stage, you can create a movie
clip that acts as a mask for the larger image.

The following procedure demonstrates how you can dynamically mask a movie clip and use
an onEnterFrame event handler to animate an image behind the mask.

To pan an instance on the Stage using code:

1. Create a new Flash document called pan.fla.

2. Change the frame rate of the document to 24 fps in the Property inspector.

The animation is much smoother if you use a higher frame rate, such as 24 fps.
3. Select Frame 1 of the Timeline, and add the following code to the Actions panel:

System.security.allowDomain("http://www.helpexamples.com/");
// initialize variables
var direction:Number = -1;
var speed:Number = 5;
// create clip to load an image into
this.createEmptyMovieClip("img_mc", 10);
// create a clip to use as a mask
this.createEmptyMovieClip("mask_mc", 20);
// use the Drawing API to draw/create a mask
with (mask_mc) {

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Scripting animation with ActionScript 2.0 439

beginFill(0xFF0000, 0);
moveTo(0, 0);
lineTo(300, 0);
lineTo(300, 100);
lineTo(0, 100);
lineTo(0, 0);
endFill();

}

var mcl_obj:Object = new Object();
mcl_obj.onLoadInit = function(target_mc:MovieClip) {

// set the target movie clip's mask to mask_mc
target_mc.setMask(mask_mc);
target_mc.onEnterFrame = function() {

target_mc._x += speed * direction;
// if the target_mc is at an edge, reverse the animation direction
if ((target_mc._x <= -(target_mc._width-mask_mc._width)) ||

(target_mc._x >= 0)) {
direction *= -1;

}
};

};

var my_mcl:MovieClipLoader = new MovieClipLoader();
my_mcl.addListener(mcl_obj);
my_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

The first section of code in this code example defines two variables: direction and
speed. The direction variable controls whether the masked image scrolls from left to
right (1) or right to left (-1). The speed variable controls how many pixels are moved each
time the onEnterFrame event handler is called. Larger numbers cause the animation to
move more quickly, although the animation appears a bit less smooth.
The next section of code creates two empty movie clips: img_mc and mask_mc. A 300 pixel
by 100 pixel rectangle is drawn inside the mark_mc movie clip using the Drawing API.
Next, a new object (mcl_obj) is created, which you use as a listener for a
MovieClipLoader instance created in the final block of code. This object defines an event
listener for the onLoadInit event, masks the dynamically loaded image, and sets up the
scrolling animation. After the image reaches the left or right edge of the mask, the
animation reverses.
The final block of code defines a MovieClipLoader instance, specifies the listener object
you created earlier, and begins loading the JPEG image into the img_mc movie clip.

4. Select Control > Test Movie to test the document.

440 Animation, Filters, and Drawings

The image loads and then animates back and forth in a panning motion (side to side
motion). The image is masked at runtime. To see the original image, you can view it
online (http://www.helpexamples.com/flash/images/image1.jpg).

About bitmap caching, scrolling, and
performance
Flash includes bitmap caching, which helps you enhance the performance of nonchanging
movie clips in your applications. When you set the MovieClip.cacheAsBitmap or
Button.cacheAsBitmap property to true, Flash Player caches an internal bitmap
representation of the movie clip or button instance. This can improve performance for movie
clips that contain complex vector content. All of the vector data for a movie clip that has a
cached bitmap is drawn to the bitmap, instead of to the main Stage.

For detailed information on caching button or movie clip instances see the following sections
in Chapter 10, “Working with Movie Clips”:

■ “About caching and scrolling movie clips with ActionScript” on page 330
■ “Caching a movie clip” on page 334
■ “Setting the background of a movie clip” on page 336

It’s ideal to use the cacheAsBitmap property with movie clips that have mostly static content
and that do not scale and rotate frequently. With such movie clips, using the cacheAsBitmap
property can lead to performance improvements when the movie clip is translated (when its x
and y position is changed). For detailed information about when to use this feature, see
“When to enable caching” on page 332.

For samples of how bitmap caching can be applied to an instance and how to apply bitmap
caching to scrolling text, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
The following samples are available:

■ cacheBitmap.fla; Download the Samples zip file and navigate to the ActionScript2.0/
CacheBitmap folder.

■ aliasing.fla; Download the Samples zip file and navigate to the ActionScript2.0/Advanced
Anti-Aliasing folder.

N
O

T
E

The bitmap is copied to the main Stage as unstretched, unrotated pixels snapped to the
nearest pixel boundaries. Pixels are mapped one-to-one with the parent object. If the
bounds of the bitmap change, the bitmap is re-created instead of being stretched.

http://www.helpexamples.com/flash/images/image1.jpg
http://www.adobe.com/go/learn_fl_samples

About the Tween and TransitionManager classes 441

About the Tween and TransitionManager
classes
When you install Flash CS3 Professional, you also install the Tween and TransitionManager
classes. This section describes how to use these two powerful classes with movie clips and
Adobe components to easily add animation to your SWF files.

If you create a slide presentation or form application with Flash (ActionScript 2.0 only), you
can select behaviors that add different kinds of transitions between slides, which is similar to
when you create a PowerPoint presentation. You add this functionality into a screen
application by using the Tween and TransitionManager classes, which generate ActionScript
that animates the screens depending on the behavior that you choose.

You can also use the Tween and TransitionManager classes outside of a screen-based
document in Flash. For example, you can use the classes with the component set of version 2
of the Adobe Component Architecture, or with movie clips. If you want to change the way a
ComboBox component animates, you can use the TransitionManager class to add some easing
when the menu opens. Easing refers to gradual acceleration or deceleration during an
animation, which helps your animations appear more realistic. You can also use the Tween
and TransitionManager classes, instead of creating motion tweens on the timeline or writing
custom code, to create your own animated menu system.

For information on each method and property of the Tween class, see ActionScript 2.0
Components Language Reference. For information on each method and property of the
TransitionManager class, see ActionScript 2.0 Components Language Reference. For information
on working with packages, see “Working with filter packages” on page 458.

For a sample source file that uses the Tween and TransitionManager classes, tweenProgress.fla,
see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download and
decompress the Samples zip file and navigate to the ActionScript2.0/Tween ProgressBar folder
to access the sample.

For more information on the Tween and TransitionManager classes, see the following topics:

■ “Adding tweens and transitions to a file in Flash” on page 442
■ “Animating with the TransitionManager and Tween classes” on page 444
■ “About easing classes and methods” on page 447
■ “About the Tween class” on page 448

N
O

T
E

The Tween and TransitionManager classes are available only in ActionScript 2.0, but
these classes are available in Flash.

http://www.adobe.com/go/learn_fl_samples

442 Animation, Filters, and Drawings

■ “Using the Tween class” on page 449
■ “Combining the TransitionManager and Tween classes” on page 455

Adding tweens and transitions to a file in Flash

The Tween and TransitionManager classes are designed to let you use simple ActionScript to
add animations to parts of your SWF file. The Flash authoring environment contains
behaviors that let you use these prebuilt classes for transitions in a screen-based application.
To create a slide presentation or form application, you can select behaviors that add different
kinds of transitions between slides.

Before you start to use these transitions with movie clips in Flash, you should see what they do
when you use a screen-based application.

To view the ActionScript that creates a transition in a slide presentation:

1. Select File > New to create a new slide presentation in Flash.

2. Select Flash Slide Presentation from the General tab and click OK.

3. Select Window > Behaviors to open the Behaviors panel.

4. Click Add Behavior (+).

5. Select Screen > Transition from the pop-up menu to open the Transitions dialog box.

6. Select the Zoom transition.

7. Type 1 into the Duration text box.

8. Select Bounce from the Easing pop-up menu.

9. Click OK to apply the settings and close the dialog box.

This adds about 15 lines of ActionScript directly onto the slide. The following snippet
shows the relevant transition code:
mx.transitions.TransitionManager.start(eventObj.target,

{type:mx.transitions.Zoom, direction:0, duration:1,
easing:mx.transitions.easing.Bounce.easeOut, param1:empty,
param2:empty});

N
O

T
E

This section describes adding tweens and transitions to a Flash slide presentation to
demonstrate what they look like for Flash users. However, you can add transitions and
tweens to your Flash applications if you use code. The following sections include
examples that show you how.

About the Tween and TransitionManager classes 443

This code calls the TransitionManager class and then applies the Zoom transition with the
specified mx.transitions.easing.Bounce.easeOut easing method. In this case, the
transition applies to the selected slide. To apply this effect to a movie clip, you can modify
the ActionScript to use in your Flash animations. Modifying the code to work with a
movie clip symbol is easy: change the first parameter from eventObj.target to the
desired movie clip’s instance name.

Flash comes with ten transitions, which you can customize by using the easing methods and
several optional parameters. Remember, easing refers to gradual acceleration or deceleration
during an animation, which helps your animations appear more realistic. For example, a ball
might gradually increase its speed near the beginning of an animation, but slow down before
it arrives at a full stop at the end of the animation. There are many equations for this
acceleration and deceleration, which change the easing animation accordingly.

The following table describes the transitions included in Flash.

Each transition has slightly different customizations that you can apply to the animation. The
Transitions dialog box lets you preview a sample animation before you apply the effect to the
slide or form.

Transition Description

Iris Reveals the screen or movie clip by using an animated mask of a shape
that zooms in.

Wipe Reveals the screen or movie clip by using an animated mask of a shape
that moves horizontally.

Pixel Dissolve Masks the screen or movie clip by using disappearing or appearing
rectangles.

Blinds Reveals the next screen or movie clip by using disappearing or
appearing rectangles.

Fade Fades the screen or movie clip in or out.

Fly Slides in the screen or movie clip from a particular direction.

Zoom Zooms the screen or movie clip in or out.

Squeeze Scales the current screen or movie clip horizontally or vertically.

Rotate Rotates the current screen or movie clip.

Photo Has the screen or movie clip appear like a photographic flash.

T
IP To preview how each transition works with the different methods in the easing classes,

you can double-click Transition.swf in boot drive\Program Files\Adobe\Adobe Flash
CS3\language\First Run\Behaviors\ folder or Macintosh HD:Applications:Adobe Flash
CS3:First Run:Behaviors: to open the SWF file in the stand-alone player.

444 Animation, Filters, and Drawings

Animating with the TransitionManager and
Tween classes
You can use the TransitionManager and Tween classes in Flash to add animations to movie
clips, components, and frames using ActionScript. If you don’t use the TransitionManager or
the Tween class, you have to write custom code to animate movie clips or modify their level of
transparency (alpha) and coordinates (location). If you add easing to the animation, the
ActionScript (and mathematics) can become complex quickly. However, if you want to
change the easing on a particular animation and you use these prebuilt classes, you can select a
different class instead of trying to figure out the new mathematical equations you need to
create a smooth animation.

The following procedure animates a movie clip so that it uses the TransitionManager class to
zoom in on the Stage.

To animate a movie clip using the TransitionManager class:

1. Select File > New and select Flash Document.

2. Click OK to create the new FLA file.

3. Save the FLA file as zoom.fla.

4. Select File > Import > Import to Stage, and select an image on your hard disk to import
into the FLA file.

The image is imported into your file as a bitmap image, so you need to convert the image
manually into a movie clip symbol.

5. Click Open to import the image.

6. Select the imported image on the Stage and select Modify > Convert to Symbol

7. Name the symbol img1, and make sure you set the behavior to Movie Clip.

By default, the registration point of the symbol is in the upper-left corner of the symbol.
8. Click OK to convert the bitmap image into a movie clip.

9. With the image still selected, open the Property inspector (Window > Properties >
Properties), and assign the movie clip the instance name img1_mc.

About the Tween and TransitionManager classes 445

10. Select Frame 1 of the main Timeline and add the following ActionScript to the
Actions panel:
mx.transitions.TransitionManager.start(img1_mc,

{type:mx.transitions.Zoom, direction:0, duration:1,
easing:mx.transitions.easing.Bounce.easeOut, param1:empty,
param2:empty});

11. Select Control > Test Movie to test the animation.

The image grows and has a slight bouncing effect before it returns to its original size. If the
animation moves too quickly, increase the animation’s duration (in the previous code
snippet) from one second to two or three seconds (for example, duration:3).
You might notice that the image is anchored in the upper-left corner and grows toward the
lower-right corner. This is different from the preview you see in the Transitions
dialog box.
Creating complex animations is easy using the Tween and TransitionManager classes and
doesn’t require you to create motion or shape tweens on the timeline. Most importantly,
you don’t need to write complex math to create easing methods. If you want images to
zoom in from the center instead of anchoring on a corner, modify the symbol’s
registration point when you convert the image from a bitmap into a symbol.

To zoom images in from the center of the image:

1. Complete the steps in the previous procedure.

2. Open the zoom.fla file, and select File > Save As to save a new copy of the document.

Save the file as zoom2.fla.
3. Drag a copy of the bitmap symbol from the Library panel onto the Stage beside the current

movie clip symbol.

4. With the bitmap image still selected on the Stage, press F8 to convert the symbol into a
movie clip.

Name the symbol img2.

N
O

T
E

For information on working with packages, see “Working with filter packages”
on page 458.

446 Animation, Filters, and Drawings

5. In the Convert to Symbol dialog box, click the center of the coordinate grid to set the
registration point to the center of the bitmap and click OK.

6. Select the new movie clip on the Stage and use the Property inspector to give it an instance
name of img2_mc.

7. Select Frame 1 of the main Timeline and add the following ActionScript to the
existing code:
mx.transitions.TransitionManager.start(img2_mc,

{type:mx.transitions.Zoom, direction:mx.transitions.Transition.IN,
duration:1, easing:mx.transitions.easing.Bounce.easeOut});

8. Select Control > Test Movie to test the animation.

The second movie clip grows from the center of the symbol instead of the corner.

For information on each method and property of the Tween class and TransitionManager
class, see ActionScript 2.0 Components Language Reference.

For a sample source file that adds scripted animation using the Tween and TransitionManager
classes, tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween ProgressBar folder
to access this sample.

N
O

T
E

Some transitions are sensitive to where you locate the registration point. Changing
the registration point can have a dramatic effect on how the animation looks in a
SWF file. For example, if the registration point is in the upper-left corner (default)
when you use the Zoom transition, the transition begins from that location.

http://www.adobe.com/go/learn_fl_samples

About the Tween and TransitionManager classes 447

About easing classes and methods
“Adding tweens and transitions to a file in Flash” on page 442 describes how to use the
Bounce easing class to add a bouncing effect to the movie clip. In addition to Bounce, Flash
offers five additional easing classes, which are described in the following table:

These six easing classes each have three easing methods, which are described in the following
table:

To open these classes in Flash or your ActionScript editor, browse to Hard Disk\Program
Files\Adobe\Adobe Flash CS3\language\First Run\Classes\mx\transitions\easing\ folder on
Windows (assumes a default installation), or Macintosh HD:Applications:Adobe Flash
CS3:First Run:Classes:mx:transitions:easing.

The procedure on zooming images under “Animating with the TransitionManager and
Tween classes” on page 444 used the mx.transitions.easing.Bounce.easeOut easing class and
method. In the folder on your hard disk, the ActionScript refers to the easeOut() method
within the Bounce.as class. This ActionScript file is in the easing folder.

Transition Description

Back Extends the animation beyond the transition range at one or both ends
once to resemble an overflow effect.

Bounce Adds a bouncing effect within the transition range at one or both ends.
The number of bounces relates to the duration—longer durations
produce more bounces.

Elastic Adds an elastic effect that falls outside the transition range at one or
both ends. The amount of elasticity is unaffected by the duration.

Regular Adds slower movement at one or both ends. This feature lets you add a
speeding up effect, a slowing down effect, or both.

Strong Adds slower movement at one or both ends. This effect is similar to
Regular easing, but it’s more pronounced.

None Adds an equal movement from start to end without effects, slowing
down, or speeding up. This transition is also called a linear transition.

Method Description

easeIn Provides the easing effect at the beginning of the transition.

easeOut Provides the easing effect at the end of the transition.

easeInOut Provides the easing effect at the beginning and end of the transition.

448 Animation, Filters, and Drawings

For information on each method and property of the Tween class and TransitionManager
class, see ActionScript 2.0 Components Language Reference.

For a sample source file that adds scripted animation using the Tween and TransitionManager
classes, tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween ProgressBar folder
to access this sample.

About the Tween class
The Tween class lets you move, resize, and fade movie clips easily on the Stage. The
constructor for the mx.transitions.Tween class has the following parameter names and types:
function Tween(obj, prop, func, begin, finish, duration, useSeconds) {
 // code ...
}

obj The movie clip object that the Tween instance targets.

prop A string name of a property in obj to which the values are to be tweened.

func The easing method that calculates an easing effect for the tweened object’s
property values.

begin A number that indicates the starting value of prop (the target object property to
be tweened).

finish A number that indicates the ending value of prop (the target object property to
be tweened).

duration A number that indicates the length of time of the tween motion. If omitted, the
duration is set to infinity by default.

useSeconds A Boolean value related to the value you specify in the duration parameter,
which indicates to use seconds if true, or frames if false.

T
IP To preview how each transition works with the different methods in the easing classes,

you can double-click Transition.swf in boot drive\Program Files\Adobe\Adobe Flash
CS3\language\First Run\Behaviors\ or Macintosh HD:Applications:Adobe Flash
CS3:First Run:Behaviors: to open the SWF file in the stand-alone player.

http://www.adobe.com/go/learn_fl_samples

About the Tween and TransitionManager classes 449

For example, imagine that you want to move a movie clip across the Stage. You can add
keyframes to a timeline and insert a motion or shape tween between them, you can write
some code in an onEnterFrame event handler, or you can use the setInterval() function to
call a function at periodic intervals. If you use the Tween class, you have another option that
lets you modify a movie clip’s _x and _y properties. You can also add the previously described
easing methods. To take advantage of the Tween class, you can use the following ActionScript:
new mx.transitions.Tween(ball_mc, "_x",

mx.transitions.easing.Elastic.easeOut, 0, 300, 3, true);

This ActionScript snippet creates a new instance of the Tween class, which animates the
ball_mc movie clip on the Stage along the x-axis (left to right). The movie clip animates from
0 pixels to 300 pixels in three seconds, and the ActionScript applies an elastic easing method.
This means that the ball extends past 300 pixels on the x-axis before using a fluid motion
effect to animating back.

For a sample source file that adds scripted animation using the Tween and TransitionManager
classes, tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween ProgressBar folder
to access this sample.

Using the Tween class
If you use the Tween class in more than one place in your Flash document, you might opt to
use an import statement. This lets you import the Tween class and easing methods rather
than give the fully qualified class names each time you use them, as the following
procedure shows.

To import and use the Tween class:

1. Create a new document and call it easeTween.fla.

2. Create a movie clip on the Stage.

3. Select the movie clip instance and type ball_mc into the Instance Name text box in the
Property inspector.

4. Select Frame 1 of the Timeline and add the following code in the Actions panel:
import mx.transitions.Tween;
import mx.transitions.easing.*;
new Tween(ball_mc, "_x", Elastic.easeOut, Stage.width, 0, 3, true);

http://www.adobe.com/go/learn_fl_samples

450 Animation, Filters, and Drawings

This code example uses two import statements. The first statement imports the
mx.transitions.Tween class only, and the second import statement uses the wildcard (*)
shortcut to import each of the six easing classes by using a single line of code. The second
statement imports an entire package of classes.

5. Select Control > Test Movie to see the animation.

Flash documentation defines package as directories that contain one or more class files and
that reside in a designated classpath directory. In this case, the package resides in the
C:\Program Files\Adobe\Adobe Flash CS3\language\First Run\Classes\mx\transitions\easing
folder (Windows), or HD:Applications:Adobe Flash CS3:First
Run:Classes:mx:transitions:easing (Macintosh). You might agree that importing an entire
package is much better than having to import the six classes separately. Instead of referring to
the mx.transitions.Tween class, your ActionScript directly refers to the Tween class. Likewise,
instead of using the fully qualified class name for the easing classes,
mx.transitions.easing.Elastic.easeOut for example, you can type Elastic.easeOut in your
ActionScript code. For more information, see “Working with filter packages” on page 458.

Using similar code, you set the _alpha property to fade instances in and out, instead of the _x
property, as the next procedure shows.

To fade instances using the Tween class:

1. Create a new document, and call it fadeTween.fla.

2. Create a movie clip on the Stage.

3. Select the movie clip instance, and type ball_mc into the Instance Name text box in the
Property inspector.

4. Select Frame 1 of the Timeline and add the following code in the Actions panel:
import mx.transitions.Tween;
import mx.transitions.easing.*;
new Tween(ball_mc, "_alpha", Strong.easeIn, 100, 0, 3, true);

Instead of moving around the Stage, now ball_mc fades from 100% visible to completely
transparent in three seconds. To make the symbol fade out more quickly, change the
duration parameter from 3 to 1 or 2.

5. Select Control > Test Movie to see the animation.

If you change the document’s frame rate, the animation appears to play more smoothly.
For information on animation and frame rate, see “About animation and frame rate”
on page 431.

N
O

T
E

For information on working with packages, see “Working with filter packages”
on page 458.

About the Tween and TransitionManager classes 451

Instead of using seconds, you can fade the symbol over a few frames. To set the duration in
frames instead of seconds in the Tween class, you change the final parameter, useSeconds,
from true to false. When you set the parameter to true, you tell Flash that the specified
duration is in seconds. If you set the parameter to false, the duration is the number of
frames you want to use for the tween. The next procedure shows how to set a tween to frames
instead of seconds.

To set a duration of frames instead of seconds:

1. Create a new document, and call it framesTween.fla.

2. Create a movie clip on the Stage.

3. Select the movie clip instance, and type ball_mc into the Instance Name text box in the
Property inspector.

4. Select Frame 1 of the Timeline, and add the following code in the Actions panel:
import mx.transitions.Tween;
import mx.transitions.easing.*;
new Tween(ball_mc, "_alpha", Strong.easeIn, 100, 0, 24, false);

This code fades out the ball_mc instance using the Strong.easeIn easing method.
Instead of fading the instance for three seconds, it fades the instance across 24 frames.

5. Select Control > Test Movie to see the animation.

Wait a moment, then the instance fades out across 24 frames.
6. Return to the authoring environment and open the Property inspector.

7. Change the document’s frame rate to 24 fps.

If you increase the frame rate of your FLA file, you see the instance fade out sooner. For
information on animation and frame rate, see “About animation and frame rate”
on page 431.

Using frames instead of seconds offers more flexibility, but remember that the duration relates
to the frame rate of the current Flash document. If your Flash document uses a frame rate of
12 frames per second (fps), the previous code snippet fades the instance over two seconds
(24 frames/12 fps = 2 seconds). However, if your frame rate is 24 fps, the same code fades the
instance over one second (24 frames/24 fps = 1 second). If you use frames to measure
duration, you can significantly change the speed of your animation when you change the
document’s frame rate, without modifying your ActionScript.

The Tween class has several more useful features. For example, you can write an event handler
that triggers when the animation completes, as the next procedure shows.

452 Animation, Filters, and Drawings

To trigger code when an animation is completed:

1. Create a new document, and call it triggerTween.fla.

2. Create a movie clip on the Stage.

3. Select the movie clip instance and type ball_mc into the Instance Name text box in the
Property inspector.

4. Select Frame 1 of the Timeline and add the following code in the Actions panel:
import mx.transitions.Tween;
import mx.transitions.easing.*;
var tween_handler:Tween = new Tween(ball_mc, "_alpha", Strong.easeIn,

100, 0, 3, true);
tween_handler.onMotionFinished = function() {

trace("onMotionFinished triggered");
};

If you test this ActionScript in your FLA file, you see the message “onMotionFinished
triggered” appear in the Output panel after ball_mc finishes fading on the Stage.

5. Select Control > Test Movie to see the animation.

Wait for a moment, and then the instance fades out. When it finishes tweening, you see
the message appear in the Output panel.

For more information on functions, see Chapter 6, “Classes.”

About continuing animations using the continueTo() method
“Using the Tween class” on page 449 demonstrates how to use the Tween class in your
applications. However, if you want to move the ball after the initial animation is complete,
there are at least two ways you can do it. One solution is to reanimate the ball by using the
onMotionFinished event handler. However, the Tween class offers a simpler solution, the
continueTo() method. The continueTo() method instructs the tweened animation to
continue from its current value to a new value, as the following ActionScript shows:
import mx.transitions.Tween;
import mx.transitions.easing.*;
var ball_tween:Tween = new Tween(ball_mc, "_x", Regular.easeIn, 0, 300, 3,

true);
ball_tween.onMotionFinished = function() {
 ball_tween.continueTo(0, 3);
};

About the Tween and TransitionManager classes 453

After the initial tween finishes, the ball_mc movie clip tweens back to its original position at
0 pixels. The following snippet (edited for brevity) shows the function prototype for the
continueTo() method:
function continueTo(finish:Number, duration:Number):Void {
 /* omitted to save space. */
}

Only two arguments pass to the continueTo() method, instead of the seven arguments for
the Tween constructor method, as the following snippet shows:
function Tween (obj, prop, func, begin, finish, duration, useSeconds) {
 /* omitted to save space. */
}

The five parameters that aren’t required by the continueTo() method (obj, prop, func,
begin, and useSeconds) use the arguments that you defined earlier in the call to the Tween
class. When you call the continueTo() method, you assume that the obj, prop, func (easing
type), and useSeconds arguments are the same as in the earlier call to the Tween class. The
continueTo() method uses the finish value from the call to the Tween class, instead of
specifying a value for the begin argument, as the following ActionScript shows:
import mx.transitions.Tween;
import mx.transitions.easing.*;
var ball_tween:Tween = new Tween(ball_mc, "_x", Regular.easeIn, 0, 300, 3,

true);
ball_tween.onMotionFinished = function() {
 ball_tween.continueTo(0, 3);
};

This code moves the ball_mc instance along the x-axis from 0 pixels to 300 pixels in three
seconds. After the animation finishes, the onMotionFinished event handler is triggered and
calls the continueTo() method. The continueTo() method tells the target object
(ball_mc) to proceed from its current position and animate for three seconds along the x-axis
to 0 pixels and to use the same easing method. You use the values specified in the call to the
Tween constructor method for any parameters that you don’t define in the continueTo()
method. If you don’t specify a duration for the continueTo() method, it uses the duration
you specify in the call to the Tween constructor.

Creating animations that run continuously
You can make an animation continue moving back and forth along the x-axis without
stopping. The Tween class accommodates this kind of animation with the aptly named
yoyo() method. The yoyo() method waits for the onMotionFinished event handler to
execute, and then it reverses the begin and finish parameters. The animation begins again,
as the following procedure demonstrates.

454 Animation, Filters, and Drawings

To create an animation that continues endlessly:

1. Create a new Flash document called yoyo.fla.

2. Open the Actions panel and enter the following ActionScript on Frame 1 of the Timeline:
import mx.transitions.Tween;
import mx.transitions.easing.*;

this.createEmptyMovieClip("box_mc", this.getNextHighestDepth());
with (box_mc) {

beginFill(0xFF0000, 60);
moveTo(0, 0);
lineTo(20, 0);
lineTo(20, Stage.height);
lineTo(0, Stage.height);
lineTo(0, 0);
endFill();

}

The first section code begins by importing the Tween class, as well as each class in the
easing package. The next section of code creates a new movie clip with an instance name
of box_mc and draws a rectangle 20 pixels wide and the same height as the Stage.

3. Add the following ActionScript after the code created in the previous step:
var box_tween:Tween = new Tween(box_mc, "_x", Regular.easeInOut, 0,

Stage.width, 3, true);
box_tween.onMotionFinished = function() {
 box_tween.yoyo();
};

This code creates a new tween to animate the box_mc movie clip across the Stage along the
x-axis over 3 seconds.

4. Select Control > Test Movie to test the animation.

The box animates from left to right and back. If the animation isn’t smooth, you might
want to increase the document’s frame rate from 12 fps to 24 fps.
As the box approaches the right edge of the Stage, it animates outside the boundaries of
the Stage. While this might not seem significant, you might not want the rectangle to
disappear from view off the side of the Stage and then reappear a second later and animate
in the other direction.
To make adjustments, animate the rectangle from 0 pixels to the width of the Stage minus
the width of the box_mc movie clip.

5. To stop the rectangle from disappearing, revise the corresponding lines of code from step 3
to match the following code:
var box_tween:Tween = new Tween(box_mc, "_x", Regular.easeInOut, 0,

(Stage.width - box_mc._width), 3, true);

About the Tween and TransitionManager classes 455

6. Test the animation again (Control > Test Movie).

Now, the box stops easing before it goes off the boundaries of the Stage.

Combining the TransitionManager and
Tween classes
You can generate interesting effects when you combine the TransitionManager and Tween
classes. You can use the TransitionManager class to move a movie clip along the x-axis while
you adjust the same clip’s _alpha property using the Tween class. Each class can use a
different easing method, which means you have many animation possibilities for objects in
your SWF files. You can take advantage of the continueTo() and yoyo() methods in the
Tween class or the onMotionFinished event handler to create a unique effect.

You combine the TransitionManager and Tween classes to animate a dynamically loaded
movie clip and fade it in on the Stage after it fully loads from the remote server, as the
following procedure shows.

To use the TransitionManager and Tween classes together:

1. Create a new Flash document and save the file as combination.fla.

2. Add the following ActionScript on Frame 1 of the Timeline:
import mx.transitions.*;
import mx.transitions.easing.*;

var mcl_obj:Object = new Object();
mcl_obj.onLoadInit = function(target_mc:MovieClip) {
 new Tween(target_mc, "_alpha", Strong.easeIn, 0, 100, 2, true);
 TransitionManager.start(target_mc, {type:Fly,

direction:Transition.IN, duration:3, easing:Elastic.easeInOut,
startPoint:6});

};

var my_mcl:MovieClipLoader = new MovieClipLoader();
my_mcl.addListener(mcl_obj);
my_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

this.createEmptyMovieClip("img_mc", this.getNextHighestDepth()));

This code is separated into three main sections.
The first section of code imports the classes within the transitions package as well as the
transitions.easing package. You import the entire transitions package in this example
so you do not need to enter the fully qualified class name for the Tween class,
TransitionManager class, or the selected transition (in this case, Fly). This process can
reduce the amount of code you type and save you from potential typographical errors.

456 Animation, Filters, and Drawings

The second section of ActionScript creates a listener object for the MovieClipLoader class
instance, which you create in the third section of code. When the target movie clip loads
into the MovieClipLoader instance, the onLoadInit event triggers and executes the block
of code, which calls both the Tween class and the TransitionManager class. This event
handler fades in the target movie clip because you modify the _alpha property in the
Tween class, and flies the target movie clip along the x-axis.
The third section of ActionScript code creates a MovieClipLoader instance and applies the
listener object that you created earlier (so the target movie clip loader instance can listen
for the onLoadInit event). Then you load the target JPEG image into a movie clip that
you create dynamically by calling the createEmptyMovieClip() method.

3. Save your document and select Control > Test Movie to view the animation in the
test environment.

After the external JPEG image finishes downloading from the server, the image fades in
gradually and animates from right to left across the Stage.

For information on using the Tween class, see “Using the Tween class” on page 449.

For information on each method and property of the Tween class and TransitionManager
class, see ActionScript 2.0 Components Language Reference.

For a sample source file that adds scripted animation using the Tween and TransitionManager
classes, tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween ProgressBar folder
to access this sample.

Using filter effects
Filters are visual effects that you can apply to objects rendered at runtime by Flash Player, such
as movie clip instances. The filters include drop shadow, blur, glow, bevel, gradient glow, and
gradient bevel. You can also use an adjust color filter that lets you edit a movie clip’s
brightness, contrast, saturation, and hue. You can apply filters using the Flash user interface in
Flash Professional 8, or using ActionScript in Flash Basic 8 or Flash Professional 8.

You can apply each of these filter effects to movie clips, buttons, or text fields by using either
the Filters tab in the Property inspector or by using ActionScript. If you use ActionScript to
apply the filters to an instance, you can also use a displacement map filter (see “Using the
displacement map filter” on page 487) or a convolution filter (see “Using the convolution
filter” on page 486). These filters are applied to the vector definitions, so there is no overhead
of storing a bitmap image within the SWF file. You can also write ActionScript that lets you
modify an existing filter that you applied to a text field, movie clip, or button.

http://www.adobe.com/go/learn_fl_samples

Using filter effects 457

The following procedure demonstrates how you could use an onEnterFrame event handler to
animate a glow filter effect on a movie clip.

To animate a filter effect applied to a movie clip instance:

1. Create a new Flash document and save it as animFilter.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createEmptyMovieClip("box_mc", 10);
box_mc.lineStyle(20, 0x000000);
box_mc.beginFill(0x000000);
box_mc.moveTo(0, 0);
box_mc.lineTo(160, 0);
box_mc.lineTo(160, 120);
box_mc.lineTo(0, 120);
box_mc.lineTo(0, 0);
box_mc.endFill();
box_mc._x = 100;
box_mc._y = 100;

box_mc.filters = [new flash.filters.GlowFilter()];
var dir:Number = 1;
box_mc.blur = 10;
box_mc.onEnterFrame = function() {

box_mc.blur += dir;
if ((box_mc.blur >= 30) || (box_mc.blur <= 10)) {

dir *= -1;
}
var filter_array:Array = box_mc.filters;
filter_array[0].blurX = box_mc.blur;
filter_array[0].blurY = box_mc.blur;
box_mc.filters = filter_array;

};

This code completes two different functionalities. The first section creates and positions a
movie clip instance, and draws a black rounded rectangle on the Stage. The second block
of code applies a glow filter to the rectangle on the Stage and defines an onEnterFrame
event handler, which is responsible for animating the filter effect. The onEnterFrame
event handler animates the glow filter between a blur of 10 and 30 pixels, and after the
animation is greater than or equal to 30, or less than or equal to 10, the direction of the
animation reverses.

3. Save your changes to the Flash document and select Control > Test Movie to test the
SWF file.

For more information on working with filters in an application, see the following topics:

■ “Working with filter packages” on page 458
■ “Working with filters, caching, and the MovieClip class” on page 460

458 Animation, Filters, and Drawings

■ “About hit detection, rotating, skewing, and scaling filters” on page 461
■ “Applying filters to object instances and BitmapData instances” on page 462
■ “About error handling, performance, and filters” on page 462

For a sample of using ActionScript to apply filters, Filters.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/Filters folder to access this sample.

Working with filter packages
Packages are directories that contain one or more class files and reside in a designated
classpath directory. For example, the flash.filters package is a directory on your hard disk that
contains several class files for each filter type (such as BevelFilter, BlurFilter,
DropShadowFilter, and so on) in Flash. When class files are organized this way, you must
access the classes in a specific way. You either import the class, or reference it using a fully
qualified name.

The import statement lets you access classes without specifying their fully qualified names.
For example, to use a BlurFilter in a script, you must refer to it by its fully qualified name
(flash.filters.BlurFilter) or import it; if you import it, you can refer to it by its class name
(BlurFilter) in your code instead. The following ActionScript code demonstrates the
differences between using the import statement and using fully qualified class names.

If you don’t import the BlurFilter class, your code needs to use the fully qualified class name
(package name followed by class name) in order to use the filter:
// without importing
var myBlur:flash.filters.BlurFilter = new flash.filters.BlurFilter(10, 10,

3);

The same code, written with an import statement, lets you access the BlurFilter using the
class name instead of continually referencing it using the fully qualified name. This can save
typing and reduces the chance of making typing mistakes:
// with importing
import flash.filters.BlurFilter;
var myBlur:BlurFilter = new BlurFilter(10, 10, 3);

N
O

T
E

To use the import statement, you must specify ActionScript 2.0 and Flash Player 6 or
later in the Flash tab of your FLA file’s Publish Settings dialog box.

http://www.adobe.com/go/learn_fl_samples

Using filter effects 459

To import several classes within a package (such as the BlurFilter, DropShadowFilter, and
GlowFilter) you can use one of two ways to import each class. The first way to import
multiple classes is to import each class by using a separate import statement, as seen in the
following snippet:
import flash.filters.BlurFilter;
import flash.filters.DropShadowFilter;
import flash.filters.GlowFilter;

If you use individual import statements for each class within a package, it becomes time
consuming to write and prone to typing mistakes. You can avoid importing individual class
files by using a wildcard import, which imports all classes within a certain level of a package.
The following ActionScript shows an example of using a wildcard import:
import flash.filters.*; // imports each class within flash.filters package

The import statement applies only to the current script (frame or object) in which it's called.
For example, suppose on Frame 1 of a Flash document you import all the classes in the
macr.util package. On that frame, you can reference classes in the package by using their
class names instead of their fully qualified name. To use the class name on another frame
script, reference classes in that package by their fully qualified names or add an import
statement to the other frame that imports the classes in that package.

When you use import statements, remember that classes are only imported for the level that
you specify. For example, if you import all classes in the mx.transitions package, only the
classes within the /transitions/ directory are imported, not all classes within subdirectories
(such as the classes in the mx.transitions.easing package).

For a sample of using ActionScript to apply filters, Filters.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/Filters folder to access this sample.

T
IP If you import a class but don't use it in your script, the class isn't exported as part of the

SWF file. This means that you can import large packages without being concerned
about the size of the SWF file; the bytecode associated with a class is included in a SWF
file only if that class is actually used.

http://www.adobe.com/go/learn_fl_samples

460 Animation, Filters, and Drawings

Working with filters, caching, and the MovieClip class
If a movie clip has an associated filter, it’s marked to cache itself as a transparent bitmap when
the SWF file loads. As long as the movie clip has at least one filter applied to it, Flash Player
caches the movie clip as a bitmap at runtime by forcing the cacheAsBitmap property to be
true. The cached bitmap is used as a source image for the filter effects. Each movie clip
usually has two bitmaps: one bitmap is the original unfiltered source movie clip, the second
bitmap is the final image after filtering. If you do not change the appearance of the movie clip
at runtime, the final image does not need to update, which helps improve performance.

You can access filters applied to an instance by calling the MovieClip.filters property.
Calling this property returns an array that contains each filter object currently associated with
the movie clip instance. A filter itself has a set of properties unique to that filter, such as
the following:
trace(my_mc.filters[0].angle); // 45.0
trace(my_mc.filters[0].distance); // 4

You can access and modify filters as you would a regular array object. Setting and getting the
filters by using the property returns a duplicate of the filters object, not a reference.

To modify an existing filter, you can use code similar to the code in the following procedure.

To modify a filter’s properties when applied to a movie clip instance:

1. Create a new Flash document and save the file as modifyFilter.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createEmptyMovieClip("my_mc", 10);
// draw square
with (my_mc) {

beginFill(0xFF0000, 100);
moveTo(0, 0);
lineTo(100, 0);
lineTo(100, 100);
lineTo(0, 100);
lineTo(0, 0);
endFill();

}
my_mc._x = 100;
my_mc._y = 100;

// use default DropShadowFilter values
my_mc.filters = [new flash.filters.DropShadowFilter()];
trace(my_mc.filters[0].distance); // 4
var filter_array:Array = my_mc.filters;
filter_array[0].distance = 10;
my_mc.filters = filter_array;
trace(my_mc.filters[0].distance); // 10

Using filter effects 461

The first section of this code uses the Drawing API to create a red square, and positions
the shape on the Stage. The second section of code applies a drop shadow filter to the
square. Next, the code creates a temporary array to hold the current filters to apply to the
red square on the Stage. The distance property of the first filter is set to 10 pixels, and
the modified filter is reapplied to the my_mc movie clip instance.

3. Select Control > Test Movie to test the document.

For a source sample of using ActionScript to apply filters, Filters.fla, see the Flash Samples
page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to
the ActionScript2.0/Filters folder to access this sample.

About hit detection, rotating, skewing, and
scaling filters
No filtered region (drop shadow, for example) outside of a movie clip instance’s bounding box
rectangle is considered to be part of the surface for hit detection purposes (determining if an
instance overlaps or intersects with another instance). Because hit detection is vector-based,
you cannot perform a hit detection on the bitmap result. For example, if you apply a bevel
filter to a button instance, hit detection is not available on the beveled portion of the instance.

Scaling, rotating, and skewing are not supported by filters; if the instance itself is scaled
(_xscale and _yscale are not 100%), the filter effect does not scale with the instance. This
means that the original shape of the instance rotates, scales, or skews; however, the filter does
not rotate, scale, or skew with the instance.

You can animate an instance with a filter to create realistic effects, or nest instances and use
the BitmapData class to animate filters to achieve this effect.

N
O

T
E

Currently, no support is available for having any filters perform rotation based upon
their parent’s rotation or some sort of other rotation. The blur filter always blurs
perfectly horizontally or vertically, independently of the rotation or skew of any item
in the parent object tree.

T
IP Filtered content has the same restrictions on size as content with its cacheAsBitmap

property set to true. If the author zooms in too far on the SWF file, the filters are no
longer visible when the bitmap representation is greater than 2880 pixels in either
direction. When you publish SWF files with filters, it is a good idea to disable the
zoom menu options.

http://www.adobe.com/go/learn_fl_samples

462 Animation, Filters, and Drawings

Applying filters to object instances and BitmapData
instances
The use of filters depends on the object instance to which you apply the filter. Use the
following guidelines when you apply a filter to an object or BitmapData instance:

■ To apply filters to movie clips, text fields, and buttons at runtime, use the filters
property. Setting the filters property of an object does not modify the object and can be
undone by clearing the filters property.

■ To apply filters to BitmapData instances, use the BitmapData.applyFilter() method.
Calling applyFilter() on a BitmapData object takes the source BitmapData object and
the filter object and generates a filtered image.

About error handling, performance, and filters
One problem that arises if you use too many filters in an application is the potential to use
large amounts of memory and cause Flash Player performance to suffer. Because a movie clip
with filters attached has two bitmaps that are both 32-bit, these bitmaps can cause your
application to use a significant amount of memory if you use many bitmaps. You might see an
out-of-memory error generated by the computer’s operating system. On a modern computer,
out-of-memory errors should be rare, unless you are using filter effects extensively in an
application (for example, you have thousands of bitmaps on the Stage).

However, if you do encounter an out-of-memory error, the following occurs:

■ The filters array is ignored.
■ The movie clip is drawn using the regular vector renderer.
■ No bitmaps are cached for the movie clip.

N
O

T
E

You can also apply filter effects to images and video during authoring using the
Filters tab in the Property inspector.

Working with filters using ActionScript 463

After you see an out-of-memory error, a movie clip never attempts to use a filters array or a
bitmap cache. Another factor that affects player performance is the value that you use for the
quality parameter for each filter that you apply. Higher values require more CPU and
memory for the effect to render, whereas setting the quality parameter to a lower value
requires less computer resources. Therefore, you should avoid using an excessive number of
filters, and use a lower quality setting when possible.

You can also encounter errors if you use invalid parameter types. Some filter parameters also
have a particular valid range. If you set a value that’s outside of the valid range, the value
changes to a valid value that’s within the range. For example, quality should be a value from
1 to 3 for a standard operation, and can only be set to 0 to 15. Anything higher than 15 is set
to 15.

Also, some constructors have restrictions on the length of arrays required as input parameters.
If a convolution filter or color matrix filter is created with an invalid array (not the right size),
the constructor fails and the filter is not created successfully. If the filter object is then used as
an entry on a movie clip’s filters array, it is ignored.

Working with filters using ActionScript
The flash.filters package contains classes for the bitmap filter effects in Flash Player 8 and
later. Filters let you use ActionScript to apply rich visual effects, such as blur, bevel, glow, and
drop shadow, to text, movie clip, and button instances. You can also use the Flash authoring
tool to apply filter effects to objects such as text, images, and video. Flash has nine filter
effects, although only seven are accessible by using the user interface. The ConvolutionFilter
and DisplacementMapFilter filters are only available by using ActionScript code.

C
A

U
T

IO
N

If a 100 pixel by 100 pixel object is zoomed in once, it uses four times the memory since
the content’s dimensions are now 200 pixels by 200 pixels. If you zoom another two
times, the shape is drawn as an 800 pixel by 800 pixel object which uses 64 times the
memory as the original 100 pixel by 100 pixel object. Whenever you use filters in a SWF
file, it is always a good idea to disable the zoom menu options from the SWF file’s
context menu.

T
IP When using a blur filter, using values for blurX and blurY that are powers of 2 (such as 2,

4, 8, 16, and 32) can be computed faster and give a 20% to 30% performance
improvement.

N
O

T
E

All filters are available by using ActionScript

464 Animation, Filters, and Drawings

The following procedure loads a semitransparent PNG image, and applies a GlowFilter effect
to the nontransparent portion of the image.

To apply filters to semitransparent images:

1. Create a new Flash document and save it as transparentImg.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.GlowFilter;
System.security.allowDomain("http://www.helpexamples.com");
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip) {

target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;
var glow:GlowFilter = new GlowFilter();
target_mc.filters = [glow];

};
this.createEmptyMovieClip("img_mc", 10);
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/logo.png",

img_mc);

This code uses a movie clip loader instance to load a semi-transparent PNG image. After
the image finishes loading, the image moves to the center of the Stage and a glow filter
is applied.

3. Select Control > Test Movie to test the document.

The glow filter effect is only applied to the opaque (nontransparent) area of the
PNG image.

The following sections describe how to use the filters:

■ “Using the blur filter” on page 465
■ “Using the drop shadow filter” on page 467
■ “Using the glow filter” on page 472
■ “Creating gradient glows” on page 473
■ “Using the bevel filter” on page 475
■ “Applying a gradient bevel filter” on page 482
■ “Using the color matrix filter” on page 483
■ “Using the convolution filter” on page 486
■ “Using the displacement map filter” on page 487

For a source sample of using ActionScript to apply filters, Filters.fla, see the Flash Samples
page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to
the ActionScript2.0/Filters folder to access this sample.

http://www.adobe.com/go/learn_fl_samples

Working with filters using ActionScript 465

Using the blur filter
The BlurFilter class lets you apply a blur visual effect to a variety of objects in Flash. A blur
effect softens the details of an image. You can produce blurs that range from creating a softly
unfocused look to a Gaussian blur, a hazy appearance like viewing an image through semi-
opaque glass. The blur filter is based on a box-pass blur filter. The quality parameter
defines how many times the blur should be repeated (three passes approximates a Gaussian
blur filter).

For more information on this filter, see BlurFilter (flash.filters.BlurFilter) in the ActionScript
2.0 Language Reference.

The following procedure blurs a dynamically loaded image based on the mouse pointer’s
current position on the Stage. The further the pointer is from the center of the Stage, the
more the image is blurred.

N
O

T
E

The blur filter scales only when you zoom into the Stage.

466 Animation, Filters, and Drawings

To blur an image based on the mouse pointer’s position:

1. Create a new Flash document and save it as dynamicblur.fla.

2. Add the following code to Frame 1 of the Timeline:
import flash.filters.BlurFilter;
System.security.allowDomain("http://www.helpexamples.com");
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip) {

// Center the target_mc movie clip on the Stage.
target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;

};
this.createEmptyMovieClip("img_mc", 10);
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);
var blur:BlurFilter = new BlurFilter(10, 10, 2);

var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

/* Moving the pointer to the center of the Stage sets the blurX and
blurY properties to 0%. */
blur.blurX = Math.abs(_xmouse - (Stage.width / 2)) / Stage.width * 2 *
255;
blur.blurY = Math.abs(_ymouse - (Stage.height / 2)) / Stage.height * 2
* 255;
img_mc.filters = [blur];

};
Mouse.addListener(mouseListener);

The first section of this code loads and positions a dynamically loaded image on the Stage.
The second section defines a listener that is called whenever the mouse moves. You
calculate the amount of horizontal and vertical blurring based on the mouse pointer’s
current position on the Stage. The further you move the pointer away from the center of
the Stage, the more blurring is applied to the instance.

Working with filters using ActionScript 467

3. Select Control > Test Movie to test the Flash document.

Move the mouse pointer along the x-axis to modify the amount of horizontal blurring.
The instance blurs more when the pointer moves farther away from the horizontal center
of the Stage. Moving the pointer along the y-axis causes the vertical blurring to increase or
decrease, depending on the distance from the vertical center of the Stage.

Using the drop shadow filter
The DropShadowFilter class lets you add a drop shadow to a variety of objects in Flash. The
shadow algorithm is based on the same box filter that the blur filter uses (see “Using the blur
filter” on page 465). Several options are available for the style of the drop shadow, including
inner or outer shadow and knockout mode.

For more information on the drop shadow filter, see DropShadowFilter
(flash.filters.DropShadowFilter) in the ActionScript 2.0 Language Reference.

The following procedure uses the Drawing API to draw a square on the Stage. When you
move the mouse pointer horizontally along the Stage, this code modifies the distance from the
square that the drop shadow appears, whereas moving the cursor vertically modifies how
much the drop shadow blurs.

To use the drop shadow filter:

1. Create a new Flash document and save it as dropshadow.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
// import the filter classes
import flash.filters.DropShadowFilter;
// create a movie clip called shapeClip
this.createEmptyMovieClip("shapeClip", 1);
// use the Drawing API to draw a shape
with (shapeClip) {

T
IP When you use a blur filter, using values for blurX and blurY that are powers of two

(such as 2, 4, 8, 16, and 32) can be computed faster and give a 20% to 30%
performance improvement.

C
A

U
T

IO
N

Setting a blur value lower than 1.03125 disables the blur effect.

468 Animation, Filters, and Drawings

beginFill(0xFF0000, 100);
moveTo(0, 0);
lineTo(100, 0);
lineTo(100, 100);
lineTo(0, 100);
lineTo(0, 0);
endFill();

}
// position the shape
shapeClip._x = 100;
shapeClip._y = 100;
// click the square, increase shadow strength
shapeClip.onPress = function():Void {

dropShadow.strength++;
shapeClip.filters = [dropShadow];

};
// create a filter
var dropShadow:DropShadowFilter = new DropShadowFilter(4, 45, 0x000000,

0.4, 10, 10, 2, 3);

var mouseListener:Object = new Object();
// create and apply a listener that controls the filter when the mouse

moves
mouseListener.onMouseMove = function():Void {

dropShadow.distance = (_xmouse / Stage.width) * 50 - 20;
dropShadow.blurX = (_ymouse / Stage.height) * 10;
dropShadow.blurY = dropShadow.blurX;
shapeClip.filters = [dropShadow];

};
Mouse.addListener(mouseListener);

The first section of code creates a new movie clip and uses the Drawing API to draw a red
square. The second section of code defines a mouse listener, which is called whenever the
mouse moves. The mouse listener calculates the drop shadow’s distance and level of
blurring based on the current x and y positions of the mouse pointer, and reapplies the
drop shadow filter. If you click the red square, the drop shadow’s strength increases.

Working with filters using ActionScript 469

3. Select Control > Test Movie to test the Flash document.

Move the mouse pointer along the x-axis to change the value of the drop shadow’s
distance, and move the mouse pointer along the y-axis to change the amount of blur
applied to the movie clip instance.

You can also create drop shadows and apply them to dynamically loaded images. The
following procedure demonstrates how you can load an external image and apply a drop
shadow that follows the mouse pointer. The further the pointer moves away from the image’s
upper-left corner, the more horizontal and vertical blurring is applied to the image.

470 Animation, Filters, and Drawings

To create a drop shadow that follows the mouse pointer:

1. Create a new Flash document and save it as dropshadowmouse.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.DropShadowFilter;
System.security.allowDomain("http://www.helpexamples.com");
var dropShadow:DropShadowFilter = new DropShadowFilter(4, 45, 0x000000,

0.8, 10, 10, 2, 2);
// Load and position the image on the Stage.
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip):Void {

target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;

};
this.createEmptyMovieClip("img_mc", 10);
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

// When mouse moves, recalculate the position of the drop shadow.
var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

var p1:Number = img_mc._y - _ymouse;
var p2:Number = img_mc._x - _xmouse;
var degrees:Number = Math.atan2(p1, p2) / (Math.PI / 180);
dropShadow.distance = Math.sqrt(Math.pow(p1, 2) + Math.pow(p2, 2)) *
0.5;
dropShadow.blurX = dropShadow.distance;
dropShadow.blurY = dropShadow.blurX;
dropShadow.angle = degrees - 180;
img_mc.filters = [dropShadow];

};
Mouse.addListener(mouseListener);

The first section of this code defines a drop shadow instance, loads an external image, and
repositions the image at the center of the Stage. The second section of code defines a
mouse listener, which you call whenever the user moves the mouse pointer around the
Stage. Whenever the mouse moves, the event handler recalculates the distance and angle
between the mouse pointer and the upper-left corner of the image. Based on this
calculation, the drop shadow filter is reapplied to the movie clip.

3. Select Control > Test Movie to test the Flash document.

When you run the SWF file, the drop shadow follows the mouse pointer. The closer you
move the mouse pointer to the upper-left corner of the image on the Stage, the less of a
blur effect is applied to the image. As the mouse pointer moves further from the upper-left
corner of the image, the drop shadow effect becomes more apparent.

Working with filters using ActionScript 471

You can also apply drop shadows to dynamically loaded semitransparent PNG images. In the
following procedure, the drop shadow filter is applied only to the solid area of the PNG, not
the transparency.

To apply a drop shadow to a semitransparent image:

1. Create a new Flash document and save it as dropshadowTransparent.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.DropShadowFilter;
System.security.allowDomain("http://www.helpexamples.com");
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip):Void {

target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;
var dropShadow:DropShadowFilter = new DropShadowFilter(4, 45,
0x000000, 0.5, 10, 10, 2, 3);
target_mc.filters = [dropShadow];

};
mclListener.onLoadError = function(target_mc:MovieClip):Void {

trace("unable to load image.");
};
this.createEmptyMovieClip("logo_mc", 10);
var my_mcl:MovieClipLoader = new MovieClipLoader();
my_mcl.addListener(mclListener);
my_mcl.loadClip("http://www.helpexamples.com/flash/images/logo.png",

logo_mc);

This ActionScript code uses the MovieClipLoader class to load an image and apply a drop
shadow filter when the image is completely loaded from the remote server.

3. Select Control > Test Movie to test the Flash document.

Flash loads a PNG image with a transparent background. When you apply the drop
shadow filter, only the opaque (nontransparent) portion of the image has the filter
applied.

472 Animation, Filters, and Drawings

Using the glow filter
The GlowFilter class lets you add a glow effect to various objects in Flash. The glow algorithm
is based on the same box filter that is the blur filter uses (see “Using the blur filter”
on page 465). You can set the style of the glow in several ways, including inner or outer glow
and knockout mode. The glow filter is similar to the drop shadow filter with the distance
and angle properties of the drop shadow set to 0.

For more information on the glow filter, see GlowFilter (flash.filters.GlowFilter) in the
ActionScript 2.0 Language Reference.

The following procedure demonstrates how you can apply a glow filter to a dynamically
created movie clip on the Stage. Moving your mouse pointer around the Stage causes the
movie clip’s blur to change, and clicking the dynamically created shape causes the filter’s
strength to increase.

To use the glow filter:

1. Create a new Flash document and save it as glowfilter.fla.

2. Add the following ActionScript code to Frame 1 of the Timeline:
import flash.filters.GlowFilter;

this.createEmptyMovieClip("shapeClip", 10);
with (shapeClip) {

beginFill(0xFF0000, 100);
moveTo(0, 0);
lineTo(100, 0);
lineTo(100, 100);
lineTo(0, 100);
lineTo(0, 0);
endFill();

}
shapeClip._x = 100;
shapeClip._y = 100;
shapeClip.onPress = function():Void {

glow.strength++;
shapeClip.filters = [glow];

};
var glow:GlowFilter = new GlowFilter(0xCC0000, 0.5, 10, 10, 2, 3);
var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

glow.blurX = (_xmouse / Stage.width) * 255;
glow.blurY = (_ymouse / Stage.width) * 255;
shapeClip.filters = [glow];

};
Mouse.addListener(mouseListener);

Working with filters using ActionScript 473

This code uses the Drawing API to draw a square on the Stage, and applies a glow filter to
the shape. Whenever the mouse pointer moves along the x-axis or y-axis, the glow filter’s
blur is calculated and applied to the shape.

3. Select Control > Test Movie to test the document.

The amount of horizontal and vertical blurring is calculated by the mouse pointer’s
current _xmouse and _ymouse position. As you move the mouse pointer to the upper-left
corner of the Stage, the amount of horizontal and vertical blurring decreases. Conversely,
as the mouse pointer moves to the lower-right corner of the Stage, the amount of
horizontal and vertical blurring increases.

Creating gradient glows
The GradientGlowFilter class lets you create a gradient glow effect for a variety of objects in
Flash. A gradient glow is a realistic-looking glow with a color gradient that you can specify.
You can apply a gradient glow around the inner or outer edge of an object or on top of
an object.

For more information on this filter, see GradientBevelFilter (flash.filters.GradientBevelFilter
in the ActionScript 2.0 Language Reference.

The following procedure uses the Drawing API to draw a square on the Stage, and then
applies a gradient glow filter to the shape. Clicking the square on the Stage increases the filter’s
strength, whereas moving the mouse pointer horizontally or vertically modifies the amount of
blurring along the x-axis or y-axis.

474 Animation, Filters, and Drawings

To apply a gradient glow filter:

1. Create a new Flash document and save it as gradientglow.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.GradientGlowFilter;
// create a new shapeClip instance
var shapeClip:MovieClip = this.createEmptyMovieClip("shapeClip", 10);
// use Drawing API to create a shape
with (shapeClip) {

beginFill(0xFF0000, 100);
moveTo(0, 0);
lineTo(100, 0);
lineTo(100, 100);
lineTo(0, 100);
lineTo(0, 0);
endFill();

}

// position the shape
shapeClip._x = 100;
shapeClip._y = 100;
// define a gradient glow
var gradientGlow:GradientGlowFilter = new GradientGlowFilter(0, 45,

[0x000000, 0xFF0000], [0, 1], [0, 255], 10, 10, 2, 3, "outer");

// define a mouse listener, listen for two events
var mouseListener:Object = new Object();
mouseListener.onMouseDown = function():Void {

gradientGlow.strength++;
shapeClip.filters = [gradientGlow];

};
mouseListener.onMouseMove = function():Void {

gradientGlow.blurX = (_xmouse / Stage.width) * 255;
gradientGlow.blurY = (_ymouse / Stage.height) * 255;
shapeClip.filters = [gradientGlow];

};
Mouse.addListener(mouseListener);

The previous code is split into three sections. The first section of code uses the Drawing
API to create a square and positions the shape on the Stage. The second section of code
defines a new gradient glow filter instance, which creates a glow from red to black. The
third section of code defines a mouse listener, which listens for two mouse event handlers.
The first event handler is onMouseDown, which causes the strength of the gradient glow to
increase. The second event handler is onMouseMove, which is called whenever the mouse
pointer moves within the SWF file. The further the mouse pointer moves from the upper-
left corner of the Flash document, the stronger the glow effect that is applied.

Working with filters using ActionScript 475

3. Select Control > Test Movie to test the document.

As you move your mouse pointer around the Stage, the gradient glow filter’s blur increases
and decreases strength. Click the left mouse button to increase the glow’s strength.

Using the bevel filter
The BevelFilter class lets you add a bevel effect to a variety of objects in Flash. A bevel effect
gives objects a three-dimensional look. You can customize the look of the bevel with different
highlight and shadow colors, the amount of blur on the bevel, the angle of the bevel, the
placement of the bevel, and a knockout effect.

For more information on this filter, see BevelFilter (flash.filters.BevelFilter) in the ActionScript
2.0 Language Reference.

The following procedure uses the Drawing API to create a square, and adds a bevel to
the shape.

476 Animation, Filters, and Drawings

To use the bevel filter:

1. Create a new Flash document and save it as bevel.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.BevelFilter;
// define a bevel filter
var bevel:BevelFilter = new BevelFilter(4, 45, 0xFFFFFF, 1, 0xCC0000, 1,

10, 10, 2, 3);
// create a new shapeClip instance
var shapeClip:MovieClip = this.createEmptyMovieClip("shapeClip", 1);
// use the Drawing API to create a shape
with (shapeClip) {

beginFill(0xFF0000, 100);
moveTo(0, 0);
lineTo(100, 0);
lineTo(100, 100);
lineTo(0, 100);
lineTo(0, 0);
endFill();

}
// position the shape on the Stage
shapeClip._x = 100;
shapeClip._y = 100;
// click the mouse to increase the strength
shapeClip.onPress = function():Void {

bevel.strength += 2;
shapeClip.filters = [bevel];

};

// define a listener to modify the filter when pointer moves
var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

bevel.distance = (_xmouse / Stage.width) * 10;
bevel.blurX = (_ymouse / Stage.height) * 10;
bevel.blurY = bevel.blurX;
shapeClip.filters = [bevel];

};
Mouse.addListener(mouseListener);

The first section of code defines a BevelFilter instance, and uses the Drawing API to draw
a square on the Stage. When you click the square on the Stage, the current strength value
of the bevel increments and gives the bevel a taller, sharper appearance. The second
section of code defines a mouse listener, which modifies the bevel’s distance and blurring
based on the current position of the mouse pointer.

Working with filters using ActionScript 477

3. Select Control > Test Movie to test the Flash document.

When you move the mouse pointer along the x-axis, the offset distance of the bevel
increases or decreases. When you move the mouse pointer along the y-axis, the mouse
pointer’s current coordinates modifies the amount of horizontal and vertical blurring.

About the gradient bevel filter
The gradient bevel filter is applied to an object as a rectangle, with the colors of the gradient
distributed to three portions of the rectangle: two bevel edges (a highlight and a shadow) and
an area we’ll call the base fill. The following diagrams depicts the rectangle, with the bevel type
set to inner. In the rectangle on the left, the dark gray areas are the bevel edges, and the light
gray area is the base fill. In the rectangle on the right, a rainbow gradient bevel, with a four-
color bevel on each edge, is applied.

478 Animation, Filters, and Drawings

The different properties of the gradient bevel filter control the way the filter is applied. The
colors of the gradient bevel are set in the colors array. The actual distribution of colors in each
portion of the rectangle is determined by the ratios array. The distance property determines
the offset distance, or how many pixels away from the object the bevel edge is applied. The
blurX and blurY properties control the sharpness of the colors in the bevel; higher values
effectively make the bevel wider and softer, while lower values make the bevel thinner and
sharper. The angle property is the theoretical light source falling on the object, thus causing a
highlight and shadow effect on the object’s edges. The strength property controls the spread
of the colors: a lower strength value mutes the colors, as in the example; a higher strength
value makes the outer numbers in the array stronger, forcing the middle colors in the array to
be less prominent. Finally, knockout and type properties determine how and where the bevel
filter is applied to the whole object: whether the filter knocks out the object and where it
is placed.

One of the more complicated concepts to apply in the gradient bevel filter is the color
distribution. To understand how the colors in a gradient bevel are distributed, think first of
the colors you want in your gradient bevel. Because a simple bevel has the understood
concepts of highlight color and shadow color, you can apply the same concepts to understand
the gradient bevel filter: you have a highlight gradient and a shadow gradient. The highlight
appears on the top left corner, and the shadow appears on the bottom right corner. There are
four colors in the highlight and four in the shadow. However, you have to add another color
(the base fill color), which appears where the edges of the highlight and shadow meet. There
are nine colors for the colors array, which you can see in the previous diagram.

The number of colors in the colors array determine the number of elements in the alphas and
ratios array. The first item in the colors array corresponds to the first item in the alphas array
and in the ratios array, and so on. Because you have nine colors, you also have nine values in
the alphas array and nine in the ratios array. The alpha values set the alpha transparency value
of the colors.

The ratio values in the ratios array can range from 0 to 255 pixels. The middle value is 128;
128 is the base fill value. For most usages, to get the bevel effect you want, you should assign
the ratio values as follows, using the example of nine colors:

■ The first four colors range from 0 through 127, increasing in value so each value is greater
than or equal to the previous one. This is the first bevel edge, say, our highlight.

■ The fifth color (the middle color) is the base fill, set to 128. The pixel value of 128 sets the
base fill, which appears either outside the shape (and around the bevel edges) if type is set
to outer; or inside the shape, effectively covering the object’s own fill, if the type is set
to inner.

Working with filters using ActionScript 479

■ The last four colors range from 129 through 255, increasing in value so each value is
greater than or equal to the previous one. This is the second bevel edge, for example,
your shadow.

If you think of a gradient as composed of stripes of various colors, blending into each other,
each ratio value sets the number of pixels for the associated color, thus setting the width of the
color stripe in the gradient. If you want an equal distribution of colors for each edge:

■ Use an odd number of colors, where the middle color is the base fill.
■ Distribute the values between 0 through 127 and 129 through 255 equally among

your colors.
■ Adjust the value to change the width of each stripe of color in the gradient.

The angle value determines the angle at which the gradient colors are applied to the object;
meaning, where the highlight and shadow appear on the object. The colors are applied in the
same order as the array.

The following code takes a pink square (drawn with the Drawing API) and applies a rainbow
gradient filter. The colors, in the order in which they are present in the array, are: blue, green,
purple, and yellow (highlight); red (base fill); yellow, purple, green, black (shadow). To
determine the ratios values, we assign four highlight colors values from 0 to 127, making
them roughly equal, and shadow colors from 129 to 255. The colors on the outer edges, blue
(16) and black (235).
var colors:Array = [0x0000FF, 0x00FF00, 0x9900FF, 0xFFFF00, 0xFF0000,

0xFFFF00, 0x9900FF, 0x00FF00,0x000000];
var alphas:Array = [1, 1, 1, 1, 1, 1, 1, 1, 1];
var ratios:Array = [16, 32, 64, 96, 128, 160, 192, 224, 235];
var gradientBevel:GradientBevelFilter = new GradientBevelFilter(8, 225,

colors, alphas, ratios, 16, 16, 1.3, 2, "inner", false);

N
O

T
E

The angle value determines which edge is the highlight and which edge is the
shadow.

480 Animation, Filters, and Drawings

The following figure shows the gradient bevel filter created by the code above, a nine-color
rainbow bevel applied to a red rectangle movie clip:

The dashed line shows how angles are determined. The figure shows how the angle of 225° is
realized on the filter, and also shows each ratio value for each color. Setting the angle at 225°
indicates that the first color in the array begins at 225°, which is in the top left corner (the
highlight). The dotted line shows where the highlight gradient is applied and where the
shadow gradient is applied.

The original movie clip color is pink, but setting the 128 value to red means the 128-pixel
value is the base fill and covers the original movie clip fill. However, when you set the filters
property, the original object is not altered; by simply clearing the filters property, you can
restore the original movie clip fill.

The properties of all filters affect each other, so if you adjust one property to change the effect
that you’re applying, you might need to adjust another property as well.

Working with filters using ActionScript 481

The full ActionScript code to create the previous figure is as follows:
import flash.filters.GradientBevelFilter;

// draws a filled square shape
this.createEmptyMovieClip("square_mc", this.getNextHighestDepth());

 square_mc.beginFill(0xFF99CC);
 square_mc.moveTo(40, 40);
 square_mc.lineTo(200, 40);
 square_mc.lineTo(200, 200);
 square_mc.lineTo(40, 200);
 square_mc.lineTo(40, 40);
 square_mc.endFill();

/* GradientBevelFilter(distance:Number, angle:Number, colors:Array,
alphas:Array, ratios:Array, blurX:Number, blurY:Number, strength:Number,
quality:Number, type:String, knockout:Boolean) */

// create colors, alphas, and ratios arrays
var colors:Array = [0x0000FF, 0x00FF00, 0x9900FF, 0xFFFF00, 0xFF0000,

0xFFFF00, 0x9900FF, 0x00FF00,0x000000];//blue, green, purple, yellow,
red, yellow, purple, green, black

var alphas:Array = [1, 1, 1, 1, 1, 1, 1, 1, 1];
var ratios:Array = [16, 32, 64, 96, 128, 160, 192, 224, 235];

// create the filter object
var gradientBevel:GradientBevelFilter = new GradientBevelFilter(8, 225,

colors, alphas, ratios, 16, 16, 1.3, 2, "inner", false);

// apply the filter to the square movie clip
square_mc.filters = [gradientBevel];

482 Animation, Filters, and Drawings

Applying a gradient bevel filter
The GradientBevelFilter class lets you apply a gradient bevel effect to objects in Flash. A
gradient bevel is a beveled edge that’s enhanced with gradient color on the outside, inside, or
top of an object. Beveled edges bring a three-dimensional look to objects, and can have
colorful results as shown in the following figure.

For more information on this filter, see GradientBevelFilter (flash.filters.GradientBevelFilter)
in the ActionScript 2.0 Language Reference.

The following procedure uses the Drawing API to draw a square on the Stage, and applies a
gradient bevel filter to the shape.

To use the gradient bevel filter:

1. Create a new Flash document and save it as gradientbevel.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.GradientBevelFilter;
var shapeClip:MovieClip = this.createEmptyMovieClip("shape_mc", 1);
with (shapeClip) {

beginFill(0xFF0000, 100);
moveTo(0, 0);
lineTo(200, 0);
lineTo(200, 200);
lineTo(0, 200);
lineTo(0, 0);
endFill();

}

Working with filters using ActionScript 483

shapeClip._x = (Stage.width - shapeClip._width) / 2;
shapeClip._y = (Stage.height - shapeClip._height) / 2;
var colors:Array = new Array(0xFFFFFF, 0xCCCCCC, 0x000000);
var alphas:Array = new Array(1, 0, 1);
var ratios:Array = new Array(0, 128, 255);
var gradientBevel:GradientBevelFilter = new GradientBevelFilter(10, 45,

colors, alphas, ratios, 4, 4, 5, 3);
var mouseListener:Object = new Object();
mouseListener.onMouseDown = function() {

gradientBevel.strength++;
shapeClip.filters = [gradientBevel];

};
mouseListener.onMouseMove = function() {

gradientBevel.blurX = (_xmouse / Stage.width) * 255;
gradientBevel.blurY = (_ymouse / Stage.height) * 255;
shapeClip.filters = [gradientBevel];

};
Mouse.addListener(mouseListener);

This code uses the Drawing API to draw a square on the Stage, which is placed at the
center of the Stage. When you move the mouse pointer around the Stage, the amount of
blurring along the x-axis and y-axis increases or decreases. When you move your pointer
towards the left of the Stage, the amount of horizontal blurring decreases. When you
move the pointer towards the right of the Stage, the blurring increases. Similarly, the
higher the pointer is on the Stage, the smaller the amount of blurring that occurs along
the y-axis.

3. Select Control > Test Movie to test the document and view the results.

Using the color matrix filter
The ColorMatrixFilter class lets you apply a 4 x 5 matrix transformation on the ARGB color
and alpha values of every pixel on the input image to produce a result with a new set of ARGB
color and alpha values. This filter allows hue (distinct color or shade) rotation, saturation
(intensity of a specific hue) changes, luminance (brightness or intensity of a color) to alpha,
and various other effects. Also, you can animate these filters to create effects in your
applications.

For more information on the color matrix filter, see ColorMatrixFilter
(flash.filters.ColorMatrixFilter) in the ActionScript 2.0 Language Reference.

You can use the color matrix filter to modify the brightness of an instance, as the following
example demonstrates.

N
O

T
E

You can apply the color matrix filter to bitmaps and movie clip instances.

484 Animation, Filters, and Drawings

To increase the brightness of a movie clip:

1. Create a new Flash document and save it as brightness.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.ColorMatrixFilter;
System.security.allowDomain("http://www.helpexamples.com/");
var mcl_obj:Object = new Object();
mcl_obj.onLoadInit = function(target_mc:MovieClip):Void {

var myElements_array:Array = [1, 0, 0, 0, 100,
0, 1, 0, 0, 100,
0, 0, 1, 0, 100,
0, 0, 0, 1, 0];

var myColorMatrix_filter:ColorMatrixFilter = new
ColorMatrixFilter(myElements_array);
target_mc.filters = [myColorMatrix_filter];

}
this.createEmptyMovieClip("img_mc", this.getNextHighestDepth());
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mcl_obj);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image2.jpg",

img_mc);

This code dynamically loads a JPEG image by using a MovieClipLoader instance. After
the image is completely loaded and is placed on the Stage, the instance’s brightness is set to
100% by using a color matrix filter.

3. Select Control > Test Movie to test the document.

You could also create an animated brightness effect by combining the Tween class with the
ColorMatrixFilter class, as the next procedure shows.

To animate the brightness level of an instance by using the Tween class:

1. Create a new Flash document and save it as brightnesstween.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.ColorMatrixFilter;
import mx.transitions.Tween;
import mx.transitions.easing.*;
System.security.allowDomain("http://www.helpexamples.com");
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip):Void {

// center movie clip instance on Stage
target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;
target_mc.watch("brightness", brightnessWatcher, target_mc);
// animate the target_mc movie clip between -100 and +100 brightness

Working with filters using ActionScript 485

var myTween:Tween = new Tween(target_mc, "brightness",
Elastic.easeOut, 100, -100, 3, true);
myTween.onMotionFinished = function() {

this.yoyo();
};

};
this.createEmptyMovieClip("img_mc", 10);
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

function brightnessWatcher(prop:String, oldVal:Number, newVal:Number,
target_mc:MovieClip):Number {
var brightness_array:Array = [1, 0, 0, 0, newVal,

0, 1, 0, 0, newVal,
0, 0, 1, 0, newVal,
0, 0, 0, 1, 0];

target_mc.filters = [new ColorMatrixFilter(brightness_array)];
return newVal;

};

The first section of code uses the MovieClipLoader class to load a JPEG image onto the
Stage. After the image completely loads, you reposition the image to the center of the
Stage. Then you use the Tween class to animate the image brightness level. To animate the
brightness, you use the Object.watch() method, which registers an event handler that
you start when a specified property of an ActionScript object changes. Whenever some
ActionScript tries to set the custom brightness property of the target_mc instance, you
call the brightnessWatcher function. The custom brightnessWatcher function creates
a new array, which uses the color matrix filter to set the target image’s brightness to a
specified amount.

3. Select Control > Test Movie to test the document.

After the image loads and is placed on the Stage, the image’s brightness animates between
-100 and 100. After the brightness tween is complete, the animation is reversed using the
Tween.yoyo() method, which causes the tween to constantly animate.

486 Animation, Filters, and Drawings

Using the convolution filter
The ConvolutionFilter class applies a matrix convolution filter effect. A convolution
combines pixels in a source image that you specify with neighboring pixels to produce an
image. You can achieve a wide variety of imaging operations by using the convolution filter,
which includes blurring, edge detection, sharpening, embossing, and beveling effects.

A matrix convolution is based on an n x m matrix, which describes how a given pixel value in
the input image is combined with its neighboring pixel values to produce a resulting pixel
value. Each resulting pixel is determined by applying the matrix to the corresponding source
pixel and its neighboring pixels.

This filter is only available by using ActionScript. For more information on this filter, see
ConvolutionFilter (flash.filters.ConvolutionFilter) in the ActionScript 2.0 Language Reference.

The following procedure applies the convolution filter to a dynamically loaded JPEG image.

To use the convolution filter to modify an image’s color:

1. Create a new Flash document and save it as convolution.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.ConvolutionFilter;
import flash.display.BitmapData;

this.createEmptyMovieClip("shape_mc", 1);
shape_mc.createEmptyMovieClip("holder_mc", 1);
var imageLoader:MovieClipLoader = new MovieClipLoader();
imageLoader.loadClip("http://www.helpexamples.com/flash/images/

image1.jpg", shape_mc.holder_mc);
var matrixArr:Array = [1, 4, 6, 4, 1, 4, 16, 24, 16, 4, 16, 6, 24, 36,

24, 6, 4, 16, 24, 16, 4, 1, 4, 6, 4, 1];
var convolution:ConvolutionFilter = new ConvolutionFilter(5, 5,

matrixArr);
shape_mc.filters = [convolution];

var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

convolution.divisor = (_xmouse / Stage.width) * 271;
convolution.bias = (_ymouse / Stage.height) * 100;
shape_mc.filters = [convolution];

};
Mouse.addListener(mouseListener);

N
O

T
E

You can apply this filter on bitmaps and movie clip instances.

Working with filters using ActionScript 487

The preceding code is separated into three sections. The first section imports two classes:
ConvolutionFilter and BitmapData. The second section creates a nested movie clip and
uses a movie clip loader object to load an image into the nested movie clip. A convolution
filter object is created and applied to the shape_mc movie clip. The final section of code
defines a mouse listener object that modifies the convolution filter’s divisor and bias
properties based on the current position of the mouse pointer and reapplies the
convolution filter to the shape_mc movie clip.

3. Select Control > Test Movie to test the Flash document.

Moving the mouse pointer along the x-axis of the Stage modifies the filter’s divisor,
whereas moving the mouse pointer along the y-axis of the Stage modifies the filter’s bias.

Using the displacement map filter
The DisplacementMapFilter class uses the pixel values from the specified BitmapData object
(called the displacement map image) to perform a displacement of an instance that’s on the
Stage, such as a movie clip instance or a bitmap data instance. You can use this filter to achieve
a warped or mottled effect on a specified instance.

This filter is only available by using ActionScript. For more information on this filter, see
DisplacementMapFilter (flash.filters.DisplacementMapFilter) in the ActionScript 2.0
Language Reference.

The following procedure loads a JPEG image and applies a displacement map filter to it,
which causes the image to look distorted. Whenever the user moves the mouse, the
displacement map is regenerated.

To distort an image with the displacement map filter:

1. Create a new Flash document and save it as displacement.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.DisplacementMapFilter;
import flash.geom.Point;
import flash.display.BitmapData;

488 Animation, Filters, and Drawings

var perlinBmp:BitmapData;
var displacementMap:DisplacementMapFilter;
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip):Void {
 target_mc._x = (Stage.width - target_mc._width) / 2;
 target_mc._y = (Stage.height - target_mc._height) / 2;
 perlinBmp = new BitmapData(target_mc._width, target_mc._height);
 perlinBmp.perlinNoise(target_mc._width, target_mc._height, 10,

Math.round(Math.random() * 100000), false, true, 1, false);
 displacementMap = new DisplacementMapFilter(perlinBmp, new Point(0,

0), 1, 1, 100, 100, "color");
 shapeClip.filters = [displacementMap];
};
var shapeClip:MovieClip = this.createEmptyMovieClip("shapeClip", 1);
shapeClip.createEmptyMovieClip("holderClip", 1);
var imageLoader:MovieClipLoader = new MovieClipLoader();
imageLoader.addListener(mclListener);
imageLoader.loadClip("http://www.helpexamples.com/flash/images/

image1.jpg", shapeClip.holderClip);

var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

perlinBmp.perlinNoise(shapeClip._width, shapeClip._height, 10,
Math.round(Math.random() * 100000), false, true, 1, false);
shapeClip.filters = [displacementMap];

};
Mouse.addListener(mouseListener);

This code loads a JPEG image and places it on the Stage. After the image is completely
loaded, this code creates a BitmapData instance and uses the perlinNoise() method to
fill it with randomly placed pixels. The BitmapData instance passes to the displacement
map filter, which is applied to the image and causes the image to look distorted.

Manipulating filter effects with code 489

3. Select Control > Test Movie to test the document.

Move your mouse pointer around the Stage to re-create a displacement map by calling the
perlinNoise() method, which changes the appearance of the JPEG image.

Manipulating filter effects with code
Flash lets you dynamically add various filters to your movie clips, text fields, and buttons on
the Stage. When you add and manipulate filters during playback, you can add realistic
shadows, blurs, and glows that react to mouse movements or user events.

For examples of how to manipulate filters with code, see the following topics:

■ “Adjusting filter properties” on page 489
■ “Animating a filter by using ActionScript” on page 491
■ “Using the clone() method” on page 492

Adjusting filter properties
The array of filters applied to an object can be accessed through standard ActionScript calls by
using the MovieClip.filters property. This process returns an array that contains each filter
object currently associated with the MovieClip. Each filter has a set of properties unique to
that filter. The filters can be accessed and modified just like an array object, although getting
and setting the filters by using the filters property returns a duplicate of the filters object
instead of a reference.

490 Animation, Filters, and Drawings

Setting the filters property duplicates the filters array passed in and does not store it as a
reference. When getting the filters property, it returns a new copy of the array. One negative
implication of this approach is that the following code does not work:
// does not work
my_mc.filters[0].blurX = 20;

Because the previous code snippet returns a copy of the filters array, the code modifies the
copy instead of the original array. In order to modify the blurX property, you would need to
use the following ActionScript code instead:
// works
var filterArray:Array = my_mc.filters;
filterArray[0].blurX = 20;
my_mc.filters = filterArray;

The following procedure blurs an image based on the current position of the mouse pointer
on the Stage. Whenever the mouse pointer moves horizontally or vertically, the blurX and
blurY properties of the blur filter are modified accordingly.

To adjust a movie clip’s filter properties:

1. Create a new Flash document and save it as adjustfilter.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.BlurFilter;

this.createEmptyMovieClip("holder_mc", 10);
holder_mc.createEmptyMovieClip("img_mc", 20);
holder_mc.img_mc.loadMovie("http://www.helpexamples.com/flash/images/

image2.jpg");
holder_mc.filters = [new BlurFilter(10, 10, 2)];
holder_mc._x = 75;
holder_mc._y = 75;

holder_mc.onMouseMove = function() {
var tempFilter:BlurFilter = holder_mc.filters[0];
tempFilter.blurX = Math.floor((_xmouse / Stage.width) * 255);
tempFilter.blurY = Math.floor((_ymouse / Stage.height) * 255);
holder_mc.filters = [tempFilter];

};

The previous code is split into three sections. The first section imports the
flash.filters.BlurFilter class so that you don’t have to use the fully qualified class name
when you refer to the BlurFilter class. The second section of code creates a couple of
movie clips and loads an image into one of the nested clips. The third section of code
responds to the mouse movement on the Stage and adjusts the blur accordingly.

3. Select Control > Test Movie to test the Flash document.

Manipulating filter effects with code 491

Moving the mouse pointer along the x-axis modifies the blur filter’s blurX property.
Moving the mouse pointer along the y-axis modifies the blur filter’s blurY property. The
closer the mouse pointer is to the upper-left corner of the Stage, the less blurring is applied
to the movie clip.

Animating a filter by using ActionScript
You can use ActionScript, such as the Tween class, to animate filters at runtime, which lets
you apply interesting, animated effects to your Flash applications.

In the following example, you see how to combine the BlurFilter with the Tween class to
create an animated blur that modifies the Blur filter between a value of 0 and 10 at runtime.

To animate blurs using the Tween class:

1. Create a new Flash document and save it as animatedfilter.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.filters.BlurFilter;
import mx.transitions.Tween;
import mx.transitions.easing.*;

this.createEmptyMovieClip("holder_mc", 10);
holder_mc.createEmptyMovieClip("img_mc", 20);

var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip) {

target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;
var myTween:Tween = new Tween(target_mc, "blur", Strong.easeInOut, 0,
20, 3, true);
myTween.onMotionChanged = function() {

target_mc._parent.filters = [new BlurFilter(target_mc.blur,
target_mc.blur, 1)];
};
myTween.onMotionFinished = function() {

myTween.yoyo();
}

};
var my_mcl:MovieClipLoader = new MovieClipLoader();
my_mcl.addListener(mclListener);
my_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

holder_mc.img_mc);

492 Animation, Filters, and Drawings

The preceding code is separated into three sections. The first section imports the required
classes and packages. The second section creates a nested movie clip that is used to load an
image and apply filters to the holder movie clip. The final section of code creates a new
MovieClipLoader instance and a listener for the movie clip loader. The listener object
defines a single event handler function, onLoadInit, that is started once the image
successfully loads and is available on the Stage. First the image is repositioned to the center
of the Stage, then a new Tween object is created that animates the movie clip and applies a
blur filter of 0 and 10.

3. Select Control > Test Movie to test the Flash document.

Using the clone() method
The clone() method within each filter class returns a new filter instance with all of the same
properties as the original filter instance. When you work with filters, you might want to make
a copy of a filter, and to do so you need to duplicate the filter using the clone() method. If
you do not use the clone method to duplicate a filter, Flash creates a reference to the original
filter only. If Flash creates a reference to the original filter, any change made to the duplicate
filter also modifies the original filter object.

The following procedure creates a new instance of a DropShadowFilter (greenDropShadow),
calls the clone() method to duplicate the green drop shadow filter, and saves a new filter
named redDropShadow. The cloned filter sets a new drop shadow color, and both filters are
applied to a flower_mc movie clip instance that’s on the Stage.

To use the clone method:

1. Create a new Flash document, and name it clone.fla.

2. Create a movie clip on the Stage.

3. Select the movie clip instance, and type flower_mc in the Instance Name text box in the
Property inspector.

4. Select Frame 1 of the Timeline, and add the following code in the Actions panel:
import flash.filters.DropShadowFilter;
var greenDropShadow:DropShadowFilter = new DropShadowFilter();
greenDropShadow.color = 0x00FF00; // green
var redDropShadow:DropShadowFilter = greenDropShadow.clone();
redDropShadow.color = 0xFF0000; // red
flower_mc.filters = [greenDropShadow, redDropShadow];

Creating bitmaps with the BitmapData class 493

The preceding code creates a new instance of the drop shadow filter and gives it the name
greenDropShadow. The green drop shadow object is duplicated by using the
DropShadowFilter.clone() method and creates a new filter object called
redDropShadow. Both the green drop shadow and red drop shadow filters are applied to
the flower_mc movie clip instance on the Stage. If you did not call the clone() method,
both drop shadows would appear red. The reason for this appearance is that setting the
redDropShadow.color property changes both the red drop shadow and green drop
shadow objects because the red drop shadow contains a reference to the green drop
shadow.

5. Select Control > Test Movie to test the Flash document.

The filter is duplicated and cloned, and both filters are applied to the flower_mc instance.

For more information on the clone() method, see clone (DropShadowFilter.clone method)
in the ActionScript 2.0 Language Reference. For related information, you can also see the
clone() method of any filter class.

Creating bitmaps with the BitmapData
class
The BitmapData class lets you create arbitrarily sized transparent or opaque bitmap images,
then manipulate them in various ways at runtime. When you manipulate a BitmapData
instance directly by using ActionScript, you can create very complex images without incurring
the overhead of constantly redrawing the content from vector data in Flash Player. The
methods of the BitmapData class support a variety of effects that are not available through the
Filters tab in the Flash workspace.

A BitmapData object contains an array of pixel data. This data either can represent a fully
opaque bitmap or a transparent bitmap that contains alpha channel data. Either type of
BitmapData object is stored as a buffer of 32-bit integers. Each 32-bit integer determines the
properties of a single pixel in the bitmap. Each 32-bit integer is a combination of four 8-bit
channel values (from 0 to 255) that describe the alpha transparency and the red, green, and
blue (ARGB) values of the pixel.

For information on working with packages, see “Working with filter packages” on page 458.

For a sample source file that uses the BitmapData class to manipulate an image,
BitmapData.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/BitmapData folder to
access this sample.

http://www.adobe.com/go/learn_fl_samples

494 Animation, Filters, and Drawings

The following procedure dynamically loads a JPEG image onto the Stage, and uses the
BitmapData class to create a noise effect, similar to static on a television. The noise effect is
redrawn with a random pattern every 100 milliseconds (1/10 of a second). Moving the mouse
pointer along the x-axis and y-axis affects how much static is drawn at every interval.

To create a noise effect with the BitmapData class:

1. Create a new Flash document and save it as noise.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import flash.display.BitmapData;
this.createTextField("status_txt", 90, 0, 0, 100, 20);
status_txt.selectable = false;
status_txt.background = 0xFFFFFF;
status_txt.autoSize = "left";
function onMouseMove() {

status_txt._x = _xmouse;
status_txt._y = _ymouse-20;
updateAfterEvent();

}
this.createEmptyMovieClip("img_mc", 10);
img_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");
var noiseBmp:BitmapData = new BitmapData(Stage.width, Stage.height,

true);
this.attachBitmap(noiseBmp, 20);
setInterval(updateNoise, 100);
var grayScale:Boolean = true;
function updateNoise():Void {

var low:Number = 30 * _xmouse / Stage.width;
var high:Number = 200 * _ymouse / Stage.height;
status_txt.text = "low:" + Math.round(low) + ", high:" +
Math.round(high);
noiseBmp.noise(Math.round(Math.random() * 100000), low, high, 8,
true);

}

This code creates a text field with the instance name status_txt, which follows the
mouse pointer and displays the current values for the high and low parameters for the
noise() method. The setInterval() function changes the noise effect, which is
updated every 100 milliseconds (1/10 of a second), by continuously calling the
updateNoise() function. The high and low parameters for the noise() method are
determined by calculating the pointer’s current position on the Stage.

3. Select Control > Test Movie to test the document.

Moving the mouse pointer along the x-axis affects the low parameter; moving the mouse
pointer along the y-axis affects the high parameter.

Creating bitmaps with the BitmapData class 495

The BitmapData class also lets you distort a dynamically loaded image by using a
combination of a perlinNoise() method effect and a displacement map filter. The following
procedure shows this.

To apply a displacement map filter to an image:

1. Create a new Flash document and save it as displacement.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
// Import classes.
import flash.filters.DisplacementMapFilter;
import flash.display.BitmapData;
import flash.geom.Point;
// Create a clip and a nested clip.
var shapeClip:MovieClip = this.createEmptyMovieClip("shapeClip", 1);
shapeClip.createEmptyMovieClip("holderClip", 1);
// Load JPEG.
var imageLoader:MovieClipLoader = new MovieClipLoader();
imageLoader.loadClip("http://www.helpexamples.com/flash/images/

image4.jpg", shapeClip.holderClip);
// Create BitmapData instance.
var perlinBmp:BitmapData = new BitmapData(Stage.width, Stage.height);
perlinBmp.perlinNoise(Stage.width, Stage.height, 10,

Math.round(Math.random() * 100000), false, true, 1, false);
// Create and apply the displacement map filter.
var displacementMap:DisplacementMapFilter = new

DisplacementMapFilter(perlinBmp, new Point(0, 0), 1, 1, 100, 100,
"color", 1);

shapeClip.filters = [displacementMap];
// Create and apply a listener.
var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {
 perlinBmp.perlinNoise(Stage.width, Stage.height, 10,

Math.round(Math.random() * 100000), false, true, 1, false);
 shapeClip.filters = [displacementMap];
}
Mouse.addListener(mouseListener);

This code example consists of five logical sections. The first section imports the necessary
classes for the example. The second block of code creates a nested movie clip and loads a
JPEG image from a remote server. The third block of code creates a new BitmapData
instance named perlinBmp, which is the same size as the dimensions of the Stage. The
perlinBmp instance contains the results of a Perlin noise effect, and is used later as a
parameter for the displacement map filter. The fourth block of code creates and applies
the displacement map filter effect to the dynamically loaded image created earlier. The
fifth, and final, block of code creates a listener for the mouse that regenerates the Perlin
noise that the displacement map filter uses whenever the user moves the mouse pointer.

496 Animation, Filters, and Drawings

3. Select Control > Test Movie to test the Flash document.

About blending modes
You can apply blend modes to movie clip objects by using the Flash workspace or
ActionScript. At runtime, multiple graphics are merged as one shape. For this reason, you
cannot apply different blend modes to different graphic symbols.

For more information on using ActionScript to apply blend modes, see “Applying blending
modes” on page 497.

Blend modes involve combining the colors of one image (the base image) with the colors of
another image (the blend image) to produce a third image. Each pixel value in an image is
processed with the corresponding pixel value of the other image to produce a pixel value for
that same position in the result.

The MovieClip.blendMode property supports the following blend modes:

add Commonly used to create an animated lightening dissolve effect between two images.

alpha Commonly used to apply the transparency of the foreground on the background.

darken Commonly used to superimpose type.

difference Commonly used to create more vibrant colors.

erase Commonly used to cut out (erase) part of the background using the foreground alpha.

hardlight Commonly used to create shading effects.

invert Used to invert the background.

layer Used to force the creation of a temporary buffer for precomposition for a particular
movie clip.

lighten Commonly used to superimpose type.

multiply Commonly used to create shadows and depth effects.

normal Used to specify that the pixel values of the blend image override those of the
base image.

overlay Commonly used to create shading effects.

screen Commonly used to create highlights and lens flares.

subtract Commonly used to create an animated darkening dissolve effect between
two images.

About blending modes 497

Applying blending modes
The following procedure loads a dynamic image and lets you apply different blend modes to
the image by selecting a blending mode from a combo box on the Stage.

To apply different blending modes to an image:

1. Create a new Flash document and save it as blendmodes.fla.

2. Drag a ComboBox component instance onto the Stage and give it an instance name of
blendMode_cb.

3. Add the following ActionScript to Frame 1 of the Timeline:
var blendMode_dp:Array = new Array();
blendMode_dp.push({data:"add", label:"add"});
blendMode_dp.push({data:"alpha", label:"alpha"});
blendMode_dp.push({data:"darken", label:"darken"});
blendMode_dp.push({data:"difference", label:"difference"});
blendMode_dp.push({data:"erase", label:"erase"});
blendMode_dp.push({data:"hardlight", label:"hardlight"});
blendMode_dp.push({data:"invert", label:"invert"});
blendMode_dp.push({data:"layer", label:"layer"});
blendMode_dp.push({data:"lighten", label:"lighten"});
blendMode_dp.push({data:"multiply", label:"multiply"});
blendMode_dp.push({data:"normal", label:"normal"});
blendMode_dp.push({data:"overlay", label:"overlay"});
blendMode_dp.push({data:"screen", label:"screen"});
blendMode_dp.push({data:"subtract", label:"subtract"});
blendMode_cb.dataProvider = blendMode_dp;

var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip) {

var blendModeClip:MovieClip =
target_mc.createEmptyMovieClip("blendModeType_mc", 20);
with (blendModeClip) {

beginFill(0x999999);
moveTo(0, 0);
lineTo(target_mc._width / 2, 0);
lineTo(target_mc._width / 2, target_mc._height);
lineTo(0, target_mc._height);
lineTo(0, 0);
endFill();

}
target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;
blendModeClip.blendMode = blendMode_cb.value;

};

498 Animation, Filters, and Drawings

this.createEmptyMovieClip("img_mc", 10);
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

function cbListener(eventObj:Object):Void {
img_mc.blendModeType_mc.blendMode = eventObj.target.value;

}
blendMode_cb.addEventListener("change", cbListener);

This ActionScript code populates the combo box with each type of blending mode, so the
user can view each effect on the dynamically loaded image. A listener object is created,
which is used with a MovieClipLoader instance. The listener object defines a single event
listener, onLoadInit, which is invoked when the image is completely downloaded and is
initialized by Flash. The event listener creates a new movie clip named
blendModeType_mc, and uses the Drawing API to draw a rectangular shape over the left
half of the image. The currently selected blending mode for the ComboBox instance is
then applied to the blendModeType_mc movie clip.
The rest of the code sets up the MovieClipLoader instance, which is responsible for
loading the specified image into a movie clip on the Stage. Finally, a listener is defined for
the blendMode_cb ComboBox instance, which applies the selected blending mode
whenever a new item is selected from the ComboBox instance.

4. Select Control > Test Movie to test the document.

About operation order
The following list is the order of operations in which a filters array, blend modes, color
transforms, and mask layers are attached or performed for a movie clip instance:

1. The movie clip’s bitmap is updated from vector content (the cacheAsBitmap property is
set to true).

2. If you use the setMask() method, and the mask has a bitmap cache, Flash performs an
alpha blend between the two images.

3. Filters are then applied (blur, drop shadow, glow, and so on.)

4. If you use the ColorTransform class, the color transform operation is performed and
cached as bitmap result.

5. If you apply a blending mode, the blend is then performed (using a vector renderer).

6. If you apply external masking layers, the layers perform masking (using a vector renderer).

Drawing with ActionScript 499

Drawing with ActionScript
You can use methods of the MovieClip class to draw lines and fills on the Stage. This lets you
create drawing tools for users and draw shapes in the SWF file in response to events. The
following are the MovieClip class drawing methods:

■ beginFill()
■ beginGradientFill()
■ clear()

■ curveTo()
■ endFill()
■ lineTo()

■ lineStyle()
■ moveTo()

You can use the drawing methods with any movie clip. However, if you use the drawing
methods with a movie clip that was created in authoring mode, the drawing methods execute
before the clip is drawn. In other words, content that is created in authoring mode is drawn
on top of content drawn with the drawing methods.

You can use movie clips with drawing methods as masks; however, as with all movie clip
masks, strokes are ignored.

For more information on drawing with ActionScript, see the following topics:

■ “Using drawing methods to draw lines, curves, and shapes” on page 500
■ “Drawing specific shapes” on page 501
■ “Using complex gradient fills” on page 505
■ “Using line styles” on page 506
■ “Using Drawing API methods and scripting animation” on page 512

For a sample source file which shows you how to use the Drawing API in a Flash application,
drawingapi.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/DrawingAPI folder to
access this sample.

http://www.adobe.com/go/learn_fl_samples

500 Animation, Filters, and Drawings

Using drawing methods to draw lines, curves, and
shapes
You can use the Flash Drawing API to dynamically create shapes on the Stage at runtime. You
can use these shapes to dynamically mask content, apply filters to them, or animate them
around the Stage. You can also use the Drawing API to create various drawing tools, which let
users use the mouse or keyboard to draw shapes on the SWF file.

To draw a line:

1. Create a new Flash document and save it as line.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createEmptyMovieClip("line_mc", 10);
line_mc.lineStyle(1, 0x000000, 100);
line_mc.moveTo(0, 0);
line_mc.lineTo(200, 100);
line_mc._x = 100;
line_mc._y = 100;

This code draws a line from 0,0 on the Stage to 200,100. The line’s _x and _y coordinates
are then modified to reposition the line to 100,100 on the Stage.

3. Save your Flash document and select Control > Test Movie to test the SWF file.

To draw a more complex shape, continue calling the MovieClip.lineTo() method and draw
a rectangle, square, or oval, as the following procedures show.

To draw a curve:

1. Create a new Flash document and save it as curve.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createEmptyMovieClip("circle_mc", 1);
with (circle_mc) {

lineStyle(4, 0x000000, 100);
beginFill(0xFF0000);
moveTo(200, 300);
curveTo(300, 300, 300, 200);
curveTo(300, 100, 200, 100);
curveTo(100, 100, 100, 200);
curveTo(100, 300, 200, 300);
endFill();

}

3. Save your Flash document and select Control > Test Movie to test the Flash document.

Drawing with ActionScript 501

This code uses the Drawing API to draw a circle on the Stage. The circle shape uses only
four calls to the MovieClip.curveTo() method and therefore can look a little distorted.
For another example that uses the Drawing API to create a circle, see the procedure on
creating a circle under “Drawing specific shapes” on page 501 for code that uses eight calls
to the MovieClip.curveTo() method to draw a more realistic circle.

To draw a triangle:

1. Create a new Flash document and save it as triangle.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createEmptyMovieClip("triangle_mc", 1);

This code uses the MovieClip.createEmptyMovieClip() method to create an empty
movie clip on the Stage. The new movie clip is a child of an existing movie clip (in this
case, the main timeline).

3. Add the following ActionScript to Frame 1 of the Timeline, following the code you added
in the preceding step:
with (triangle_mc) {

lineStyle(5, 0xFF00FF, 100);
moveTo(200, 200);
lineTo(300, 300);
lineTo(100, 300);
lineTo(200, 200);

}

In this code, the empty movie clip (triangle_mc) calls drawing methods. This code
draws a triangle with 5-pixel purple lines and no fill.

4. Save your Flash document and select Control > Test Movie to test the Flash document.

For detailed information on these methods, see their entries in MovieClip in the ActionScript
2.0 Language Reference.

For a sample source file which shows you how to use the Drawing API in a Flash application,
drawingapi.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/DrawingAPI folder to
access this sample.

Drawing specific shapes
This section shows you how to create some more flexible methods that you can use to draw
more advanced shapes, such as rounded rectangles and circles.

To create a rectangle:

1. Create a new Flash document and save it as rect.fla.

http://www.adobe.com/go/learn_fl_samples

502 Animation, Filters, and Drawings

2. Add the following ActionScript code to Frame 1 of the Timeline:
this.createEmptyMovieClip("rectangle_mc", 10);
rectangle_mc._x = 100;
rectangle_mc._y = 100;
drawRectangle(rectangle_mc, 240, 180, 0x99FF00, 100);
function drawRectangle(target_mc:MovieClip, boxWidth:Number,

boxHeight:Number, fillColor:Number, fillAlpha:Number):Void {
with (target_mc) {

beginFill(fillColor, fillAlpha);
moveTo(0, 0);
lineTo(boxWidth, 0);
lineTo(boxWidth, boxHeight);
lineTo(0, boxHeight);
lineTo(0, 0);
endFill();

}
}

3. Save your Flash document and select Control > Test Movie to test the Flash document.

Flash draws a simple green rectangle on the Stage and positions it at 100,100. To change
the dimensions of the rectangle, or its fill color or transparency, you can change those
values within the call to the drawRectangle() method instead of having to modify the
contents of the MovieClip.beginFill() method.

You can also create a rectangle with rounded corners using the Drawing API, as the following
procedure shows.

To create a rounded rectangle:

1. Create a new Flash document and save it as roundrect.fla.

2. Add the following ActionScript code to Frame 1 of the Timeline:
this.createEmptyMovieClip("rectangle_mc", 10);
rectangle_mc._x = 100;
rectangle_mc._y = 100;
drawRoundedRectangle(rectangle_mc, 240, 180, 20, 0x99FF00, 100);
function drawRoundedRectangle(target_mc:MovieClip, boxWidth:Number,

boxHeight:Number, cornerRadius:Number, fillColor:Number,
fillAlpha:Number):Void {
with (target_mc) {

beginFill(fillColor, fillAlpha);
moveTo(cornerRadius, 0);
lineTo(boxWidth - cornerRadius, 0);
curveTo(boxWidth, 0, boxWidth, cornerRadius);
lineTo(boxWidth, cornerRadius);
lineTo(boxWidth, boxHeight - cornerRadius);
curveTo(boxWidth, boxHeight, boxWidth - cornerRadius, boxHeight);
lineTo(boxWidth - cornerRadius, boxHeight);
lineTo(cornerRadius, boxHeight);

Drawing with ActionScript 503

curveTo(0, boxHeight, 0, boxHeight - cornerRadius);
lineTo(0, boxHeight - cornerRadius);
lineTo(0, cornerRadius);
curveTo(0, 0, cornerRadius, 0);
lineTo(cornerRadius, 0);
endFill();

}
}

3. Save the Flash document and select Control > Test Movie to test the document.

A green rectangle appears on the Stage that is 240 pixels wide and 180 pixels high with
20-pixel rounded corners. You can create multiple instances of rounded rectangles by
creating new movie clips using MovieClip.createEmptyMovieClip() and calling your
custom drawRoundedRectangle() function.

You can create a perfect circle using the Drawing API, as the following procedure shows.

To create a circle:

1. Create a new Flash document and save as circle2.fla.

2. Add the following ActionScript code to Frame 1 of the Timeline:
this.createEmptyMovieClip("circle_mc", 10);
circle_mc._x = 100;
circle_mc._y = 100;
drawCircle(circle_mc, 100, 0x99FF00, 100);

function drawCircle(target_mc:MovieClip, radius:Number,
fillColor:Number, fillAlpha:Number):Void {
var x:Number = radius;
var y:Number = radius;
with (target_mc) {

beginFill(fillColor, fillAlpha);
moveTo(x + radius, y);
curveTo(radius + x, Math.tan(Math.PI / 8) * radius + y,

Math.sin(Math.PI / 4) * radius + x, Math.sin(Math.PI / 4) * radius +
y);

curveTo(Math.tan(Math.PI / 8) * radius + x, radius + y, x, radius +
y);

curveTo(-Math.tan(Math.PI / 8) * radius + x, radius+ y, -
Math.sin(Math.PI / 4) * radius + x, Math.sin(Math.PI / 4) * radius +
y);

curveTo(-radius + x, Math.tan(Math.PI / 8) * radius + y, -radius +
x, y);

curveTo(-radius + x, -Math.tan(Math.PI / 8) * radius + y, -
Math.sin(Math.PI / 4) * radius + x, -Math.sin(Math.PI / 4) * radius +
y);

504 Animation, Filters, and Drawings

curveTo(-Math.tan(Math.PI / 8) * radius + x, -radius + y, x, -radius
+ y);

curveTo(Math.tan(Math.PI / 8) * radius + x, -radius + y,
Math.sin(Math.PI / 4) * radius + x, -Math.sin(Math.PI / 4) * radius +
y);

curveTo(radius + x, -Math.tan(Math.PI / 8) * radius + y, radius + x,
y);

endFill();
}

}

3. Save your Flash document and select Control > Test Movie to test the SWF file.

This code creates a more complex, and realistic, circle than the previous circle example.
Instead of only using four calls to the curveTo() method, this example uses eight calls to the
curveTo() method, which gives the shape a much rounder appearance.

You can use the Drawing API to create a triangle, as the following procedure shows.

To create a fancy triangle:

1. Create a new Flash document and save it as fancytriangle.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createEmptyMovieClip("triangle_mc", 10);
triangle_mc._x = 100;
triangle_mc._y = 100;
drawTriangle(triangle_mc, 100, 0x99FF00, 100);

function drawTriangle(target_mc:MovieClip, sideLength:Number,
fillColor:Number, fillAlpha:Number):Void {
var tHeight:Number = sideLength * Math.sqrt(3) / 2;
with (target_mc) {

beginFill(fillColor, fillAlpha);
moveTo(sideLength / 2, 0);
lineTo(sideLength, tHeight);
lineTo(0, tHeight);
lineTo(sideLength / 2, 0);
endFill();

}
}

The Drawing API draws an equilateral triangle on the Stage and fills it with the specified
fill color and amount of alpha (transparency).

3. Save the Flash document and select Control > Test Movie to test the Flash document.

For a sample source file which shows you how to use the Drawing API in a Flash application,
drawingapi.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/DrawingAPI folder to
access this sample.

http://www.adobe.com/go/learn_fl_samples

Drawing with ActionScript 505

Using complex gradient fills
The Flash Drawing API supports gradient fills as well as solid fills. The following procedure
creates a new movie clip on the Stage, use the Drawing API to create a square, and then fills
the square with a radial red and blue gradient.

To create a complex gradient:

1. Create a new Flash document and save it as radialgradient.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
this.createEmptyMovieClip("gradient_mc", 10);
var fillType:String = "radial";
var colors:Array = [0xFF0000, 0x0000FF];
var alphas:Array = [100, 100];
var ratios:Array = [0, 0xFF];
var matrix:Object = {a:200, b:0, c:0, d:0, e:200, f:0, g:200, h:200,

i:1};
var spreadMethod:String = "reflect";
var interpolationMethod:String = "linearRGB";
var focalPointRatio:Number = 0.9;
with (gradient_mc) {

beginGradientFill(fillType, colors, alphas, ratios, matrix,
spreadMethod, interpolationMethod, focalPointRatio);
moveTo(100, 100);
lineTo(100, 300);
lineTo(300, 300);
lineTo(300, 100);
lineTo(100, 100);
endFill();

}

The preceding ActionScript code uses the Drawing API to create a square on the Stage
and calls the beginGradientFill() method to fill the square with a red and blue
circular gradient.

3. Save the Flash document and select Control > Test Movie to view the Flash file.

506 Animation, Filters, and Drawings

Using line styles
The Flash Drawing API lets you specify a line style that Flash uses for subsequent calls to
MovieClip.lineTo() and MovieClip.curveTo() until you call MovieClip.lineStyle()
with different parameters, as follows:
lineStyle(thickness:Number, rgb:Number, alpha:Number, pixelHinting:Boolean,

noScale:String, capsStyle:String, jointStyle:String, miterLimit:Number)

You can call MovieClip.lineStyle() in the middle of drawing a path to specify different
styles for different line segments within a path.

For more information on using ActionScript to set line styles, see the following sections:

■ “Setting stroke and caps styles” on page 506
■ “Setting parameters of line styles” on page 507

Setting stroke and caps styles
Flash 8 includes several improvements to line drawing. New line parameters added in Flash
Player 8 are pixelHinting, noScale, capsStyle, jointStyle, and miterLimit.

The following procedure demonstrates the difference between the three new caps styles in
Flash Player 8: none, round, and square.

To set caps styles using ActionScript:

1. Create a new Flash document and save it as capstyle.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
// Set up grid movie clip.
this.createEmptyMovieClip("grid_mc", 50);
grid_mc.lineStyle(0, 0x999999, 100);
grid_mc.moveTo(50, 0);
grid_mc.lineTo(50, Stage.height);
grid_mc.moveTo(250, 0);
grid_mc.lineTo(250, Stage.height);
// line 1 (capsStyle: round)
this.createEmptyMovieClip("line1_mc", 10);
with (line1_mc) {

createTextField("label_txt", 1, 5, 10, 100, 20);
label_txt.text = "round";
lineStyle(20, 0x99FF00, 100, true, "none", "round", "miter", 0.8);
moveTo(0, 0);
lineTo(200, 0);
_x = 50;
_y = 50;

}

Drawing with ActionScript 507

// line 2 (capsStyle: square)
this.createEmptyMovieClip("line2_mc", 20);
with (line2_mc) {

createTextField("label_txt", 1, 5, 10, 100, 20);
label_txt.text = "square";
lineStyle(20, 0x99FF00, 100, true, "none", "square", "miter", 0.8);
moveTo(0, 0);
lineTo(200, 0);
_x = 50;
_y = 150;

}
// line 3 (capsStyle: none)
this.createEmptyMovieClip("line3_mc", 30);
with (line3_mc) {

createTextField("label_txt", 1, 5, 10, 100, 20);
label_txt.text = "none";
lineStyle(20, 0x99FF00, 100, true, "none", "none", "miter", 0.8);
moveTo(0, 0);
lineTo(200, 0);
_x = 50;
_y = 250;

}

The preceding code dynamically creates four movie clips and uses the Drawing API to
create a series of lines on the Stage. The first movie clip contains two vertical lines, one at
50 pixels and the other at 250 pixels on the x-axis. The next three movie clips each draw a
green line on the Stage and sets their capsStyle to round, square, or none.

3. Select Control > Test Movie to test the document.

The different caps styles appear on the Stage at runtime.

Setting parameters of line styles
You can set the parameters of line styles to change the appearance of your strokes. You can use
parameters to change the thickness, color, alpha, scale, and other attributes of the line style.

Setting line thickness

The thickness parameter of the MovieClip.lineStyle() method lets you specify the
thickness of the line drawn in points as a number. You can draw a line any thickness between
0 and 255 points wide, although setting the thickness to 0 creates what is called a hairline
thickness, where the stroke is always 1 pixel, regardless of whether the SWF file is zoomed in
or resized.

The following procedure demonstrates the difference between a standard 1-pixel thickness
line and a hairline thickness line.

508 Animation, Filters, and Drawings

To create a hairline stroke:

1. Create a new Flash document and save it as hairline.fla.

2. Add the following ActionScript to Frame 1 of your Timeline:
this.createEmptyMovieClip("drawing_mc", 10);
// create a red, hairline thickness line
drawing_mc.lineStyle(0, 0xFF0000, 100);
drawing_mc.moveTo(0, 0);
drawing_mc.lineTo(200, 0);
drawing_mc.lineTo(200, 100);
// create a blue line with a 1 pixel thickness
drawing_mc.lineStyle(1, 0x0000FF, 100);
drawing_mc.lineTo(0, 100);
drawing_mc.lineTo(0, 0);
drawing_mc._x = 100;
drawing_mc._y = 100;

The preceding code uses the Drawing API to draw two lines on the Stage. The first line is
red and has a thickness of 0, indicating a hairline thickness, the second line is blue and has
a thickness of 1 pixel.

3. Save the Flash document and select Control > Test Movie to test the SWF file.

Initially, both the red and blue lines look exactly the same. If you right-click in the SWF
file and select Zoom In from the context menu, the red line always appears as a 1-pixel
line; however, the blue line grows larger each time you zoom in to the SWF file.

Setting line color (rgb)

The second parameter in the lineStyle() method, rgb, lets you control the color of the
current line segment as a number. By default, Flash draws black lines (#000000), although you
can specify different colors by setting a new hexadecimal color value using 0xRRGGBB syntax.
In this syntax, RR is a red value (between 00 and FF), GG is a green value (00 to FF), and BB is a
blue value (00 to FF).

For example, you represent a red line as 0xFF0000, a green line as 0x00FF00, a blue line as
0x0000FF, a purple line as 0xFF00FF (red and blue), a white line as #FFFFFF, a gray line as
#999999, and so on.

Drawing with ActionScript 509

Setting line alpha

The third parameter in the lineStyle() method, alpha, lets you control the transparency
(alpha) level for the line. Transparency is a numerical value between 0 and 100, where 0
represents a completely transparent line, and 100 is completely opaque (visible).

Setting line pixel hinting (pixelHinting)

The pixel hinting for strokes parameter, pixelHinting, means that line and curve anchors are
set on full pixels. The strokes are on full pixels for any stroke thickness, which means that you
never see a blurry vertical or horizontal line. You set the pixelHinting parameter to a
Boolean value (true or false).

Setting line scale (noScale)

You set the noScale parameter by using a String value, which lets you specify a scaling mode
for the line. You can use a nonscaleable stroke in horizontal mode or vertical mode, scale the
line (normal), or use no scaling.

You can use one of four different modes to specify when scaling should occur and when it
shouldn’t. The following are the possible values for the noScale property:

normal Always scale the thickness (default).

vertical Do not scale the thickness if the object is scaled vertically.

horizontal Do not scale the thickness if the object is scaled horizontally.

none Never scale the thickness.

Setting line caps (capsStyle) and joints (jointStyle)

You can set three types of caps styles for the capsStyle parameter:

■ round (default)
■ square
■ none

The following procedure demonstrates the differences between each of the three caps styles. A
visual representation of each cap style appears on the Stage when you test the SWF file.

T
IP It is useful to enable scaling for user interface elements when users zoom in, but not if a

movie clip is only scaled vertically or horizontally.

510 Animation, Filters, and Drawings

To set different caps styles:

1. Create a new Flash document and save it as capsstyle2.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var lineLength:Number = 100;
// round
this.createEmptyMovieClip("round_mc", 10);
round_mc.lineStyle(20, 0xFF0000, 100, true, "none", "round");
round_mc.moveTo(0, 0);
round_mc.lineTo(lineLength, 0);
round_mc.lineStyle(0, 0x000000);
round_mc.moveTo(0, 0);
round_mc.lineTo(lineLength, 0);
round_mc._x = 50;
round_mc._y = 50;
var lbl:TextField = round_mc.createTextField("label_txt", 10, 0, 10,

lineLength, 20);
lbl.text = "round";
var lineLength:Number = 100;
// square
this.createEmptyMovieClip("square_mc", 20);
square_mc.lineStyle(20, 0xFF0000, 100, true, "none", "square");
square_mc.moveTo(0, 0);
square_mc.lineTo(lineLength, 0);
square_mc.lineStyle(0, 0x000000);
square_mc.moveTo(0, 0);
square_mc.lineTo(lineLength, 0);
square_mc._x = 200;
square_mc._y = 50;
var lbl:TextField = square_mc.createTextField("label_txt", 10, 0, 10,

lineLength, 20);
lbl.text = "square";
// none
this.createEmptyMovieClip("none_mc", 30);
none_mc.lineStyle(20, 0xFF0000, 100, true, "none", "none");
none_mc.moveTo(0, 0);
none_mc.lineTo(lineLength, 0);
none_mc.lineStyle(0, 0x000000);
none_mc.moveTo(0, 0);
none_mc.lineTo(lineLength, 0);
none_mc._x = 350;
none_mc._y = 50;
var lbl:TextField = none_mc.createTextField("label_txt", 10, 0, 10,

lineLength, 20);
lbl.text = "none";

The preceding code uses the Drawing API to draw three lines, each with a different value
for capsStyle.

Drawing with ActionScript 511

3. Select Control > Test Movie to test the Flash document.

You can set the following three types of joint styles for the jointStyle parameter:

■ round (default)
■ miter
■ bevel

The following example demonstrates the differences between each of the three joint styles.

To set different joint styles:

1. Create a new Flash document and save it as jointstyles.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
var lineLength:Number = 100;
// miter
this.createEmptyMovieClip("miter_mc", 10);
miter_mc.lineStyle(25, 0xFF0000, 100, true, "none", "none", "miter",

25);
miter_mc.moveTo(0, lineLength);
miter_mc.lineTo(lineLength / 2, 0);
miter_mc.lineTo(lineLength, lineLength);
miter_mc.lineTo(0, lineLength);
miter_mc._x = 50;
miter_mc._y = 50;
var lbl:TextField = miter_mc.createTextField("label_txt", 10, 0,

lineLength + 20, lineLength, 20);
lbl.autoSize = "center";
lbl.text = "miter";
// round
this.createEmptyMovieClip("round_mc", 20);
round_mc.lineStyle(25, 0xFF0000, 100, true, "none", "none", "round");
round_mc.moveTo(0, lineLength);
round_mc.lineTo(lineLength / 2, 0);
round_mc.lineTo(lineLength, lineLength);
round_mc.lineTo(0, lineLength);
round_mc._x = 200;
round_mc._y = 50;
var lbl:TextField = round_mc.createTextField("label_txt", 10, 0,

lineLength + 20, lineLength, 20);
lbl.autoSize = "center";
lbl.text = "round";
// bevel

512 Animation, Filters, and Drawings

this.createEmptyMovieClip("bevel_mc", 30);
bevel_mc.lineStyle(25, 0xFF0000, 100, true, "none", "none", "bevel");
bevel_mc.moveTo(0, lineLength);
bevel_mc.lineTo(lineLength / 2, 0);
bevel_mc.lineTo(lineLength, lineLength);
bevel_mc.lineTo(0, lineLength);
bevel_mc._x = 350;
bevel_mc._y = 50;
var lbl:TextField = bevel_mc.createTextField("label_txt", 10, 0,

lineLength + 20, lineLength, 20);
lbl.autoSize = "center";
lbl.text = "bevel";

Flash uses the Drawing API to draw three triangles on the Stage. Each triangle has a
different value for its joint style.

3. Save the Flash document and select Control > Test Movie to test the document.

Setting line miter (miterLimit)

The miterLimit property is a numerical value that indicates the limit at which a miter joint
(see “Setting line caps (capsStyle) and joints (jointStyle)” on page 509) is cut off. The
miterLimit value is a general multiplier of a stroke. For example, with a value of 2.5,
miterLimit is cut off at 2.5 times the stroke size. Valid values range from 0 to 255 (if a value
for miterLimit is undefined, the default value is 3). The miterLimit property is only used
if jointStyle is set to miter.

Using Drawing API methods and scripting animation
You can combine the Drawing API with the Tween and TransitionManager classes to create
some excellent animated results, and you only have to write a small amount of ActionScript.

The following procedure loads a JPEG image and dynamically masks the image so you can
reveal the image slowly after it loads by tweening the image’s mask.

To animate dynamic masks:

1. Create a new Flash document and save it as dynmask.fla.

2. Add the following ActionScript to Frame 1 of the Timeline:
import mx.transitions.Tween;
import mx.transitions.easing.*;
var mclListener:Object = new Object();
mclListener.onLoadInit = function(target_mc:MovieClip) {

target_mc._visible = false;
// Center the image on the Stage.
target_mc._x = (Stage.width - target_mc._width) / 2;
target_mc._y = (Stage.height - target_mc._height) / 2;

Drawing with ActionScript 513

var maskClip:MovieClip = target_mc.createEmptyMovieClip("mask_mc",
20);
with (maskClip) {

// Draw a mask that is the same size as the loaded image.
beginFill(0xFF00FF, 100);
moveTo(0, 0);
lineTo(target_mc._width, 0);
lineTo(target_mc._width, target_mc._height);
lineTo(0, target_mc._height);
lineTo(0, 0);
endFill();

}
target_mc.setMask(maskClip);
target_mc._visible = true;
var mask_tween:Tween = new Tween(maskClip, "_yscale", Strong.easeOut,
0, 100, 2, true);

};
this.createEmptyMovieClip("img_mc", 10);
var img_mcl:MovieClipLoader = new MovieClipLoader();
img_mcl.addListener(mclListener);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

This code example imports the Tween class and each of the classes in the easing package.
Next, it creates an object that acts as the listener object for a MovieClipLoader instance
that’s created in a later section of the code. The listener object defines a single event
listener, onLoadInit, which centers the dynamically loaded JPEG image on the Stage.
After the code repositions the image, a new movie clip instance is created within the
target_mc movie clip (which contains the dynamically loaded JPEG image). The
Drawing API code draws a rectangle with the same dimensions as the JPEG image within
this new movie clip. The new movie clip masks the JPEG image by calling the
MovieClip.setMask() method. After the mask is drawn and set up, the mask uses the
Tween class to animate, which causes the image to slowly reveal itself.

3. Save the Flash document and select Control > Test Movie to test the SWF file.

For a sample source file which shows you how to use the Drawing API in a Flash application,
drawingapi.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/DrawingAPI folder to
access this sample.

N
O

T
E

To animate _alpha in the previous example instead of _yscale, tween the target_mc
directly instead of the mask movie clip.

http://www.adobe.com/go/learn_fl_samples

514 Animation, Filters, and Drawings

Understanding scaling and slice guides
You can use 9-slice scaling (Scale-9) to specify component-style scaling for movie clips. 9-slice
scaling lets you create movie clip symbols that scale appropriately for use as user interface
components, as opposed to the type of scaling typically applied to graphics and design
elements.

Understanding how 9-slice scaling works
The easiest way to explain how 9-slice scaling works is to look at an example of how 9-slice
scaling works in Flash.

To understand scaling in Flash:

1. Create a new Flash document and save it as dynmask.fla.

2. Drag a copy of the Button component to the Stage from the Components panel (Window
> Components).

3. Increase the Stage’s zoom level to 400% by using the Zoom tool.

By default, the Button component instance is 100 pixels wide by 22 pixels high.
4. Resize the Button component instance to 200 pixels width by 44 pixels high by using the

Property inspector.

Understanding scaling and slice guides 515

You can see that even though the component resized, the Button’s border and text label do
not distort. The button’s label remained centered and maintained its font size. Although
components of version 2 of the Adobe Component Architecture do not use 9-slice scaling,
components handle scaling in the version 2 component architecture so the outlines do not
change size (as shown in the next figure).
Imagine that the button instance is sliced into 9 separate pieces, or a 3 by 3 grid, similar to
a keypad on a telephone or keyboard. When you resize the button instance horizontally,
only the three vertical segments in the center (numbers 2, 5, and 8 on a keypad) stretch so
your content doesn’t appear distorted. If you resized the button instance vertically, only
the three horizontal segments in the center (numbers 4, 5, and 6 on a keypad) would
resize. The four corners of the scaling grid are not scaled at all, which allows the
component to grow without looking like it is being stretched (see the following images).

You can enable slice guides for 9-slice scaling in the Flash environment within the Convert to
Symbol dialog box or the Symbol Properties dialog box. The Enable guides for 9-slice scaling
check box is available only if you are publishing for Flash Player 8 and later and the behavior
is set to movie clip. The 9-slice scaling guides are not available for earlier versions of Flash or if
you are creating a button or graphic symbol. 9-slice scaling can be enabled in ActionScript by
setting the scale9Grid property on a movie clip instance.

Whether you created your slice guides by using the user interface or by using ActionScript,
you can trace the x coordinate, y coordinate, width, and height by tracing the movie clip’s
scale9Grid property.
trace(my_mc.scale9Grid); // (x=20, y=20, w=120, h=120)

This snippet of code traces the value of the Rectangle object being used by the scale9Grid
property. The rectangle has a x and y coordinates of 20 pixels, a width of 120 pixels and a
height of 120 pixels.

T
IP Strokes are created from the edges after the 9-slice scaling transformation, and

therefore don't deform or lose detail.

516 Animation, Filters, and Drawings

Working with 9-slice scaling in ActionScript
In the following example, you use the drawing tools to draw a 300 pixel by 300 pixel square
which is resized by using 9-slice scaling. The square is split up into nine smaller squares, each
one approximately 100 pixels wide by 100 pixels high. When you resize the square, each
segment that isn’t a corner expands to match the specified width and height.

To use 9-slice scaling with ActionScript:

1. Create a new Flash document and save it as ninescale.fla.

2. Drag a Button component into the current document’s library.

3. Select the Rectangle tool and draw a red square (300 pixels by 300 pixels) with a 15-pixel
black stroke on the Stage.

4. Select the Oval tool and draw a purple circle (50 pixels by 50 pixels) with a 2-pixel black
stroke on the Stage.

5. Select the purple circle and drag it into the upper-right corner of the red square
created earlier.

6. Select the Oval tool and draw a new circle that is approximately 200 pixels by 200 pixels
and position it off of the Stage.

7. Select the new circle on the Stage and drag it so that the circle’s center-point is in the lower-
left corner of the square.

8. Click outside of the circle instance to deselect the circle.

9. Double-click the circle again to select it and press backspace to delete the shape and remove
a circular portion of the square.

10. Using the mouse, select the entire red square and inner purple circle.

11. Press F8 to convert the shape into a movie clip symbol.

12. Give the movie clip on the Stage an instance name of my_mc.

Understanding scaling and slice guides 517

13. Add the following ActionScript to Frame 1 of the main Timeline:
import mx.controls.Button;
import flash.geom.Rectangle;

var grid:Rectangle = new Rectangle(100, 100, 100, 100);

var small_button:Button = this.createClassObject(Button, "small_button",
10, {label:"Small"});

small_button.move(10, 10);
small_button.addEventListener("click", smallHandler);
function smallHandler(eventObj:Object):Void {

my_mc._width = 100;
my_mc._height = 100;

}

var large_button:Button = this.createClassObject(Button, "large_button",
20, {label:"Large"});

large_button.move(120, 10);
large_button.addEventListener("click", largeHandler);
function largeHandler(eventObj:Object):Void {

my_mc._width = 450;
my_mc._height = 300;

}

var toggle_button:Button = this.createClassObject(Button,
"toggle_button", 30, {label:"scale9Grid=OFF", toggle:true,
selected:false});

toggle_button.move(420, 10);
toggle_button.setSize(120, 22);
toggle_button.addEventListener("click", toggleListener);
function toggleListener(eventObj:Object):Void {

if (eventObj.target.selected) {
eventObj.target.label = "scale9Grid=ON";
my_mc.scale9Grid = grid;

} else {
eventObj.target.label = "scale9Grid=OFF";
my_mc.scale9Grid = undefined;

}
}

The preceding code is separated into five sections. The first section of code imports two
classes: mx.controls.Button (the Button component class) and flash.geom.Rectangle. The
second section of code creates a new Rectangle class instance and specifies x and y
coordinates of 100 pixels as well as a width and height of 100 pixels. This rectangle
instance is used to set up the 9-slice scaling grid for a movie clip shape created later on.

518 Animation, Filters, and Drawings

Next, you create a new Button component instance and give it an instance name of
small_button. Whenever you click this button, the movie clip that you created earlier
resizes to 100 pixels wide by 100 pixels high. The fourth section of code dynamically
creates a new Button instance named large_button which, when clicked, resizes the
target movie clip to 450 pixels wide by 300 pixels high. The final section of code creates a
new Button instance that the user can toggle on and off. When the button is in the on
state, the 9-slice grid is applied. If the button is in the off state, the 9-slice grid is disabled.

14. Save the Flash document and select Control > Test Movie to test the SWF file.

This code example adds and positions three Button component instances on the Stage and
creates event listeners for each button. If you click the Large button with the 9-slice grid
disabled, you can see that the image becomes distorted and looks stretched. Enable the 9-
slice grid by clicking the toggle button and click the Large button again. With the 9-slice
grid enabled, the circle in the upper-left corner should no longer appear distorted.

519

13
CHAPTER 13

Creating Interaction with
ActionScript

In simple animations, Flash Player plays the scenes and frames of a SWF file sequentially. In
an interactive SWF file, your audience uses the keyboard and mouse to jump to different parts
of a SWF file, move objects, enter information in forms, and perform many other interactive
operations.

You use ActionScript to create scripts that tell Flash Player what action to perform when an
event occurs. Some events that can trigger a script occur when the playhead reaches a frame,
when a movie clip loads or unloads, or when the user clicks a button or presses a key.

A script can consist of a single command, such as instructing a SWF file to stop playing, or a
series of commands and statements, such as first evaluating a condition and then performing
an action. Many ActionScript commands are simple and let you create basic controls for a
SWF file. Other actions require some familiarity with programming languages and are
intended for advanced development.

For more information on creating interaction with ActionScript, see the following topics:
About events and interaction . 520

Controlling SWF file playback. 520

Creating interactivity and visual effects . 524

Creating runtime data bindings using ActionScript .537

Deconstructing a sample script. .546

520 Creating Interaction with ActionScript

About events and interaction
Whenever a user clicks the mouse or presses a key, that action generates an event. These types
of events are generally called user events because they are generated in response to some action
by the user. You can write ActionScript to respond to, or handle, these events. For example,
when a user clicks a button, you might want to send the playhead to another frame in the
SWF file or load a new web page into the browser.

In a SWF file, buttons, movie clips, and text fields all generate events to which you can
respond. ActionScript provides three ways to handle events: event handler methods, event
listeners, and on() and onClipEvent() handlers. For more information about events and
handling events, see Chapter 9, “Handling Events.”

Controlling SWF file playback
The following ActionScript functions let you control the playhead in the timeline and load a
new web page into a browser window:

■ The gotoAndPlay() and gotoAndStop() functions send the playhead to a frame or
scene. These are global functions that you can call from any script. You can also use the
MovieClip.gotoAndPlay() and MovieClip.gotoAndStop() methods to navigate the
timeline of a specific movie clip object. See “Jumping to a frame or scene” on page 520.

■ The play() and stop() actions play and stop SWF files. See “Playing and stopping
movie clips” on page 521.

■ The getURL() action jumps to a different URL. See “Jumping to a different URL”
on page 522.

For more information, see the following topics:

■ “Jumping to a frame or scene” on page 520
■ “Playing and stopping movie clips” on page 521
■ “Jumping to a different URL” on page 522

Jumping to a frame or scene
To jump to a specific frame or scene in the SWF file, you can use the gotoAndPlay() and
gotoAndStop() global functions or the equivalent MovieClip.gotoAndPlay() and
MovieClip.gotoAndStop() methods of the MovieClip class. Each function or method lets
you specify a frame to jump to in the current scene. If your document contains multiple
scenes, you can specify a scene and frame where you want to jump.

Controlling SWF file playback 521

The following example uses the global gotoAndPlay() function within a button object’s
onRelease event handler to send the playhead of the timeline that contains the button to
Frame 10:
jump_btn.onRelease = function () {

gotoAndPlay(10);
};

In the next example, the MovieClip.gotoAndStop() method sends the timeline of a movie
clip instance named categories_mc to Frame 10 and stops. When you use the MovieClip
methods gotoAndPlay() and gotoAndStop(), you must specify an instance to which the
method applies.
jump_btn.onPress = function () {

categories_mc.gotoAndStop(10);
};

In the final example, the global gotoAndStop() function is used to move the playhead to
Frame 1 of Scene 2. If no scene is specified, the playhead goes to the specified frame in the
current scene. You can use the scene parameter only on the root timeline, not within timelines
for movie clips or other objects in the document.
nextScene_mc.onRelease = function() {

gotoAndStop("Scene 2", 1);
}

Playing and stopping movie clips
Unless it is instructed otherwise, after a SWF file starts, it plays through every frame in the
timeline. You can start or stop a SWF file by using the play() and stop() global functions or
the equivalent MovieClip methods. For example, you can use stop() to stop a SWF file at
the end of a scene before proceeding to the next scene. After a SWF file stops, it must be
explicitly started again by calling play() or gotoAndPlay().

You can use the play() and stop() functions or MovieClip methods to control the main
timeline or the timeline of any movie clip or loaded SWF file. The movie clip you want to
control must have an instance name and must be present in the timeline.

The following on(press) handler attached to a button starts the playhead moving in the
SWF file or movie clip that contains the button object:
// Attached to a button instance
on (press) {

// Plays the timeline that contains the button
play();

}

522 Creating Interaction with ActionScript

This same on() event handler code produces a different result when attached to a movie clip
object rather than a button. When attached to a button object, statements made within an
on() handler are applied to the timeline that contains the button, by default. However, when
attached to a movie clip object, statements made within an on() handler are applied to the
movie clip to which the on() handler is attached.

For example, the following onPress() handler code stops the timeline of the movie clip to
which the handler is attached, not the timeline that contains the movie clip:
// Attached to the myMovie_mc movie clip instance
myMovie_mc.onPress() {

stop();
};

The same conditions apply to onClipEvent() handlers attached to movie clip objects. For
example, the following code stops the timeline of the movie clip that bears the
onClipEvent() handler when the clip first loads or appears on the Stage:
onClipEvent(load) {

stop();
}

Jumping to a different URL
To open a web page in a browser window, or to pass data to another application at a defined
URL, you can use the getURL() global function or the MovieClip.getURL() method. For
example, you can have a button that links to a new website, or you can send timeline variables
to a CGI script for processing in the same way as you would an HTML form. You can also
specify a target window, the same as you would when targeting a window with an HTML
anchor tag (<a>).

For example, the following code opens the adobe.com home page in a blank browser window
when the user clicks the button instance named homepage_btn:
// Attach to frame
homepage_btn.onRelease = function () {

getURL("http://www.adobe.com", "_blank");
};

Controlling SWF file playback 523

You can also send variables along with the URL, using GET or POST methods. This is useful if
the page you are loading from an application server, such as a ColdFusion server (CFM) page,
expects to receive form variables. For example, suppose you want to load a CFM page named
addUser.cfm that expects two form variables, firstName and age. To do this, you can create a
movie clip named variables_mc that defines those two variables, as shown in the following
example:
variables_mc.firstName = "Francois";
variables_mc.age = 32;

The following code then loads addUser.cfm into a blank browser window and passes
variables_mc.name and variables_mc.age in the POST header to the CFM page:
variables_mc.getURL("addUser.cfm", "_blank", "POST");

The functionality of getURL() is dependent on what browser you use. The most reliable way
to get all browsers to work the same is to call a JavaScript function in the HTML code that
uses the JavaScript window.open() method to open a window. Add the following HTML and
JavaScript within your HTML template:
<script language="JavaScript">
<--

function openNewWindow(myURL) {
window.open(myURL, "targetWindow");

}
// -->
</script>

You can use the following ActionScript to call openNewWindow from your SWF file:
var myURL:String = "http://foo.com";
getURL("javascript:openNewWindow('" + String(myURL) + "');");

For more information, see getURL function in the ActionScript 2.0 Language Reference.

524 Creating Interaction with ActionScript

Creating interactivity and visual effects
To create interactivity and other visual effects, you need to understand the following
techniques:

■ “Creating a custom mouse pointer” on page 524
■ “Getting the pointer position” on page 525
■ “Capturing keypresses” on page 527
■ “Setting color values” on page 530
■ “Creating sound controls” on page 531
■ “Detecting collisions” on page 534
■ “Creating a simple line drawing tool” on page 536

Creating a custom mouse pointer
A standard mouse pointer is the operating system’s on-screen representation of the position of
the user’s mouse. By replacing the standard pointer with one you design in Flash, you can
integrate the user’s mouse movement within the SWF file more closely. The sample in this
section uses a custom pointer that looks like a large arrow. The power of this feature, however,
is your ability to make the custom pointer look like anything—for example, a football to be
carried to the goal line or a swatch of fabric pulled over a chair to change its color.

To create a custom pointer, you design the pointer movie clip on the Stage. Then, in
ActionScript, you hide the standard pointer and track its movement. To hide the standard
pointer, you use the hide() method of the built-in Mouse class (see hide (Mouse.hide
method) in the ActionScript 2.0 Language Reference).

To create a custom pointer:

1. Create a movie clip to use as a custom pointer, and place an instance of the clip on
the Stage.

2. Select the movie clip instance on the Stage.

3. In the Property inspector, type cursor_mc in the Instance Name text box.

Creating interactivity and visual effects 525

4. Select Frame 1 of the Timeline, and type the following code in the Actions panel:
Mouse.hide();
cursor_mc.onMouseMove = function() {

this._x = _xmouse;
this._y = _ymouse;
updateAfterEvent();

};

The Mouse.hide() method hides the pointer when the movie clip first appears on the
Stage; the onMouseMove function positions the custom pointer at the same place as the
pointer and calls updateAfterEvent() whenever the user moves the mouse.
The updateAfterEvent() function immediately refreshes the screen after the specified
event occurs, rather than when the next frame is drawn, which is the default behavior. (See
updateAfterEvent function in the ActionScript 2.0 Language Reference.)

5. Select Control > Test Movie to test your custom pointer.

Buttons still function when you use a custom mouse pointer. It’s a good idea to put the
custom pointer on the top layer of the timeline so that, as you move the mouse in the SWF
file, the custom pointer appears in front of buttons and other objects in other layers. Also, the
tip of a custom pointer is the registration point of the movie clip you’re using as the custom
pointer. Therefore, if you want a certain part of the movie clip to act as the tip of the pointer,
set the registration point coordinates of the clip to be that point.

For more information about the methods of the Mouse class, see Mouse in the ActionScript
2.0 Language Reference.

Getting the pointer position
You can use the _xmouse and _ymouse properties to find the location of the pointer in a SWF
file. These properties could be used, for example, in a map application that gets the values of
the _xmouse and _ymouse properties and uses the values to calculate the longitude and
latitude of a specific location.

526 Creating Interaction with ActionScript

Each timeline has an _xmouse and _ymouse property that returns the location of the pointer
within its coordinate system. The position is always relative to the registration point. For the
main timeline (_level0), the registration point is the upper left corner. For a movie clip, the
registration point depends on the registration point set when the clip was created or its
placement on the Stage.

The _xmouse and _ymouse properties within the main timeline and a movie clip timeline

The following procedure shows several ways to get the pointer position within the main
timeline or within a movie clip.

To get the current pointer position:

1. Create two dynamic text fields, and name them box1_txt and box2_txt.

2. Add labels for the text boxes: x position and y position, respectively.

3. Select Window > Actions to open the Actions panel if it is not already open.

4. Add the following code to the script pane:
var mouseListener:Object = new Object();
mouseListener.onMouseMove = function() {

// returns the X and Y position of the mouse
box1_txt.text = _xmouse;
box2_txt.text = _ymouse;

};
Mouse.addListener(mouseListener);

5. Select Control > Test Movie to test the Flash movie. The box1_txt and box2_txt fields
show the position of the pointer while you move it over the Stage.

For more information about the _xmouse and _ymouse properties, see _xmouse
(MovieClip._xmouse property) and _ymouse (MovieClip._ymouse property) in the
ActionScript 2.0 Language Reference.

Creating interactivity and visual effects 527

Capturing keypresses
You can use the global on() handler to intercept the built-in behavior of keypresses in Flash
Player, as shown in the following example:
/* When you press the Left or Right Arrow key, the movie clip to which the

handler is attached changes transparency. */
on (keyPress "<Left>") {

this._alpha -= 10;
}
on (keyPress "<Right>") {

this._alpha += 10;
}

Make sure that you select Control > Disable Keyboard Shortcuts, or certain keys with built-in
behavior won’t be overridden when you use Control > Test Movie to test the application. See
the keyPress parameter of on handler in the ActionScript 2.0 Language Reference.

You can use the methods of the built-in Key class to detect the last key that the user pressed.
The Key class does not require a constructor function; to use its methods, you call the
methods on the class, as shown in the following example:
Key.getCode();

You can obtain either virtual key codes or American Standard Code for Information
Interchange (ASCII) values of keypresses:

■ To obtain the virtual key code of the last key pressed, use the getCode() method.
■ To obtain the ASCII value of the last key pressed, use the getAscii() method.

A virtual key code is assigned to every physical key on a keyboard. For example, the left arrow
key has the virtual key code 37. By using a virtual key code, you ensure that your SWF file’s
controls are the same on every keyboard, regardless of language or platform.

ASCII values are assigned to the first 127 characters in every character set. ASCII values
provide information about a character on the screen. For example, the letter “A” and the letter
“a” have different ASCII values.

528 Creating Interaction with ActionScript

To decide which keys to use and determine their virtual key codes, use one of the following
approaches:

■ See the list of key codes in Appendix C, “Keyboard Keys and Key Code Values.”
■ Use a Key class constant. (In the Actions toolbox, click ActionScript 2.0 Classes > Movie >

Key > Constants.)
■ Assign the following onClipEvent() handler to a movie clip, and select Control > Test

Movie and press the desired key:
onClipEvent(keyDown) {

trace(Key.getCode());
}

The key code of the desired key appears in the Output panel.

A common place to use Key class methods is within an event handler. In the following
example, the user moves the car using the arrow keys. The Key.isDown() method indicates
whether the key being pressed is the right, left, up, or down arrow. The event listener,
Key.onKeyDown, determines the Key.isDown(keyCode) value from the if statements.
Depending on the value, the handler instructs Flash Player to update the position of the car
and to show the direction.

The following example shows how to capture keypresses to move a movie clip up, down, left,
or right on the Stage, depending on which corresponding arrow key (up, down, left, or right)
is pressed. Also, a text field shows the name of the pressed key.

To create a keyboard-activated movie clip:

1. On the Stage, create a movie clip that can move in response to keyboard arrow activity.

In this example, the movie clip instance name is car_mc.
2. Select Frame 1 in the Timeline; then select Window > Actions to open the Actions panel

if it is not already visible.

3. To set how far the car moves across the screen with each keypress, define a distance
variable and set its value to 10:
var distance:Number = 10;

4. Add the following ActionScript code to the Actions panel below the existing code:
this.createTextField("display_txt", 999, 0, 0, 100, 20);

5. To create the event handler for the car movie clip that checks which arrow key (left, right,
up, or down) is currently pressed, add the following code to the Actions panel:
var keyListener:Object = new Object();
keyListener.onKeyDown = function() {
};
Key.addListener(keyListener);

Creating interactivity and visual effects 529

6. To check if the Left Arrow key is pressed and to move the car movie clip accordingly, add
code to the body of the onEnterFrame event handler.

Your code should look like the following example (new code is in boldface):
var distance:Number = 10;
this.createTextField("display_txt", 999, 0, 0, 100, 20);
var keyListener:Object = new Object();
keyListener.onKeyDown = function() {

if (Key.isDown(Key.LEFT)) {
car_mc._x = Math.max(car_mc._x - distance, 0);
display_txt.text = "Left";

}
};
Key.addListener(keyListener);

If the Left Arrow key is pressed, the car’s _x property is set to the current _x value minus
distance or the value 0, whichever is greater. Therefore, the value of the _x property can
never be less than 0. Also, the word Left should appear in the SWF file.

7. Use similar code to check if the Right, Up, or Down Arrow key is being pressed.

Your complete code should look like the following example (new code is in boldface):
var distance:Number = 10;
this.createTextField("display_txt", 999, 0, 0, 100, 20);
var keyListener:Object = new Object();
keyListener.onKeyDown = function() {

if (Key.isDown(Key.LEFT)) {
car_mc._x = Math.max(car_mc._x - distance, 0);
display_txt.text = "Left";

} else if (Key.isDown(Key.RIGHT)) {
car_mc._x = Math.min(car_mc._x + distance, Stage.width -

car_mc._width);
display_txt.text = "Right";

} else if (Key.isDown(Key.UP)) {
car_mc._y = Math.max(car_mc._y - distance, 0);
display_txt.text = "Up";

} else if (Key.isDown(Key.DOWN)) {
car_mc._y = Math.min(car_mc._y + distance, Stage.height -

car_mc._height);
display_txt.text = "Down";

}
};
Key.addListener(keyListener);

8. Select Control > Test Movie to test the file.

For more information about the methods of the Key class, see Key in the ActionScript 2.0
Language Reference.

530 Creating Interaction with ActionScript

Setting color values
You can use the methods of the built-in ColorTransform class (flash.geom.ColorTransform) to
adjust the color of a movie clip. The rgb property of the ColorTransform class assigns
hexadecimal red, green, blue (RGB) values to the movie clip. The following example uses rgb
to change an object’s color, based on which button the user clicks.

To set the color value of a movie clip:

1. Create a new Flash document and save it as setrgb.fla.

2. Select the Rectangle Tool and draw a large square on the Stage.

3. Convert the shape to a movie clip symbol and give the symbol an instance name of car_mc
in the Property inspector.

4. Create a button symbol named colorChip, place four instances of the button on the Stage,
and name them red_btn, green_btn, blue_btn, and black_btn.

5. Select Frame 1 in the main Timeline, and select Window > Actions.

6. Add the following code to Frame 1 of the main Timeline:
import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform();
var trans:Transform = new Transform(car_mc);
trans.colorTransform = colorTrans;

7. To make the blue button change the color of the car_mc movie clip to blue, add the
following code to the Actions panel:
blue_btn.onRelease = function() {

colorTrans.rgb = 0x333399; // blue
trans.colorTransform = colorTrans;

};

The preceding snippet of code changes the rgb property of the color transform object and
reapplies the color tranform effect to the car_mc movie clip whenever the button
is pressed.

Creating interactivity and visual effects 531

8. Repeat step 7 for the other buttons (red_btn, green_btn, and black_btn) to change the
color of the movie clip to the corresponding color.

Your code should now look like the following example (new code is in bold):
import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform();
var trans:Transform = new Transform(car_mc);
trans.colorTransform = colorTrans;

blue_btn.onRelease = function() {
colorTrans.rgb = 0x333399; // blue
trans.colorTransform = colorTrans;

};
red_btn.onRelease = function() {

colorTrans.rgb = 0xFF0000; // red
trans.colorTransform = colorTrans;

};
green_btn.onRelease = function() {

colorTrans.rgb = 0x006600; // green
trans.colorTransform = colorTrans;

};
black_btn.onRelease = function() {

colorTrans.rgb = 0x000000; // black
trans.colorTransform = colorTrans;

};

9. Select Control > Test Movie to change the color of the movie clip.

For more information about the methods of the ColorTransform class, see ColorTransform
(flash.geom.ColorTransform) in the ActionScript 2.0 Language Reference.

Creating sound controls
You use the built-in Sound class to control sounds in a SWF file. To use the methods of the
Sound class, you must first create a Sound object. Then you can use the attachSound()
method to insert a sound from the library into a SWF file while the SWF file is running.

The Sound class’s setVolume() method controls the volume, and the setPan() method
adjusts the left and right balance of a sound.

The following procedures show how to create sound controls.

To attach a sound to a timeline:

1. Select File > Import > Import to Library to import a sound.

2. Select the sound in the library, right-click (Windows) or Control-click (Macintosh), and
select Linkage.

532 Creating Interaction with ActionScript

3. Select Export for ActionScript and Export in First Frame; then give the sound the identifier
a_thousand_ways.

4. Add a button to the Stage and name it play_btn.

5. Add a button to the Stage and name it stop_btn.

6. Select Frame 1 in the main Timeline, and select Window > Actions.

Add the following code to the Actions panel:
var song_sound:Sound = new Sound();
song_sound.attachSound("a_thousand_ways");
play_btn.onRelease = function() {

song_sound.start();
};
stop_btn.onRelease = function() {

song_sound.stop();
};

This code first stops the speaker movie clip. It then creates a new Sound object
(song_sound) and attaches the sound whose linkage identifier is a_thousand_ways. The
onRelease event handlers associated with the play_btn and stop_btn objects start and
stop the sound by using the Sound.start() and Sound.stop() methods, and also play
and stop the attached sound.

7. Select Control > Test Movie to hear the sound.

To create a sliding volume control:

1. Using the Rectangle Tool, draw a small rectangle on the Stage, approximately 30 pixels
high by 10 pixels wide.

2. Select the Selection Tool and double-click the shape on the Stage.

3. Press F8 to open the Convert to Symbol dialog box.

4. Select the Button type, enter a symbol name of volume, and click OK.

5. With the button symbol selected on the Stage, enter the instance name of handle_btn in
the Property inspector.

6. Select the button, and select Modify > Convert to Symbol.

Be careful to select the movie clip behavior. This creates a movie clip with the button on
Frame 1.

7. Select the movie clip, and enter volume_mc as the instance name in the Property inspector.

Creating interactivity and visual effects 533

8. Select Frame 1 of the main Timeline, and select Window > Actions.

9. Enter the following code into the Actions panel:
this.createTextField("volume_txt", 10, 30, 30, 200, 20);
volume_mc.top = volume_mc._y;
volume_mc.bottom = volume_mc._y;
volume_mc.left = volume_mc._x;
volume_mc.right = volume_mc._x + 100;
volume_mc._x += 100;

volume_mc.handle_btn.onPress = function() {
startDrag(this._parent, false, this._parent.left, this._parent.top,
this._parent.right, this._parent.bottom);

};
volume_mc.handle_btn.onRelease = function() {

stopDrag();
var level:Number = Math.ceil(this._parent._x - this._parent.left);
this._parent._parent.song_sound.setVolume(level);
this._parent._parent.volume_txt.text = level;

};
volume_mc.handle_btn.onReleaseOutside = slider_mc.handle_btn.onRelease;

The startDrag() parameters left, top, right, and bottom are variables set in a
movie clip action.

10. Select Control > Test Movie to use the volume slider.

To create a sliding balance control:

1. Use the Rectangle Tool to draw a small rectangle on the Stage, approximately 30 pixels
high by 10 pixels wide.

2. Select the Selection Tool and double-click the shape on the Stage.

3. Press F8 to launch the Convert to Symbol dialog box.

4. Select the Button type, enter a symbol name of balance, and click OK.

5. With the button symbol selected on the Stage, enter an instance name of handle_btn in
the Property inspector.

6. Select the button, and select Modify > Convert to Symbol.

Be careful to select the movie clip behavior. This creates a movie clip with the button on
Frame 1.

7. Select the movie clip, and enter balance_mc as the instance name in the Property inspector.

534 Creating Interaction with ActionScript

8. Enter the following code into the Actions panel:
balance_mc.top = balance_mc._y;
balance_mc.bottom = balance_mc._y;
balance_mc.left = balance_mc._x;
balance_mc.right = balance_mc._x + 100;
balance_mc._x += 50;
balance_mc.handle_btn.onPress = function() {

startDrag(this._parent, false, this._parent.left, this._parent.top,
this._parent.right, this._parent.bottom);

};
balance_mc.handle_btn.onRelease = function() {

stopDrag();
var level:Number = Math.ceil((this._parent._x - this._parent.left -
50) * 2);
this._parent._parent.song_sound.setPan(level);

};
balance_mc.handle_btn.onReleaseOutside =

balance_mc.handle_btn.onRelease;

The startDrag() parameters left, top, right, and bottom are variables set in a
movie clip action.

9. Select Control > Test Movie to use the balance slider.

For more information about the methods of the Sound class, see Sound in the ActionScript 2.0
Language Reference.

Detecting collisions
The hitTest() method of the MovieClip class detects collisions in a SWF file. It checks to
see if an object has collided with a movie clip and returns a Boolean value (true or false).

You would want to know whether a collision has occurred either to test if the user has arrived
at a certain static area on the Stage, or to determine when one movie clip has reached another.
With hitTest(), you can determine these results.

You can use the parameters of hitTest() to specify the x and y coordinates of a hit area on
the Stage or use the target path of another movie clip as a hit area. When you specify x and y,
hitTest() returns true if the point identified by (x, y) is a non-transparent point. When a
target is passed to hitTest(), the bounding boxes of the two movie clips are compared. If
they intersect, hitTest() returns true. If the two boxes do not intersect, hitTest()
returns false.

You can also use hitTest() to test a collision between two movie clips.

The following example shows how to detect a collision between a mouse and movie clips on
the Stage.

Creating interactivity and visual effects 535

To detect a collision between a movie clip and the mouse pointer:

1. Select the first frame on Layer 1 in the Timeline.

2. Select Window > Actions to open the Actions panel, if it is not already open.

3. Add the following code in the Actions panel:
this.createEmptyMovieClip("box_mc", 10);
with (box_mc) {

beginFill(0xFF0000, 100);
moveTo(100, 100);
lineTo(200, 100);
lineTo(200, 200);
lineTo(100, 200);
lineTo(100, 100);
endFill();

}

this.createTextField("status_txt", 999, 0, 0, 100, 22);

var mouseListener:Object = new Object();
mouseListener.onMouseMove = function():Void {

status_txt.text = _level0.hitTest(_xmouse, _ymouse, true);
}
Mouse.addListener(mouseListener);

4. Select Control > Test Movie, and move the pointer over the movie clip to test the collision.

The value true appears whenever the pointer is over a non-transparent pixel.

To perform collision detection on two movie clips:

1. Drag two movie clips to the Stage, and give them the instance names car_mc and area_mc.

2. Select Frame 1 on the Timeline.

3. Select Window > Actions to open the Actions panel, if it is not already visible.

4. Enter the following code in the Actions panel:
this.createTextField("status_txt", 999, 10, 10, 100, 22);
area_mc.onEnterFrame = function() {

status_txt.text = this.hitTest(car_mc);
};

car_mc.onPress = function() {
this.startDrag(false);
updateAfterEvent();

};
car_mc.onRelease = function() {

this.stopDrag();
};

536 Creating Interaction with ActionScript

5. Select Control > Test Movie, and drag the movie clip to test the collision detection.

Whenever the bounding box of the car intersects the bounding box of the area, the
status is true.

For more information, see hitTest (MovieClip.hitTest method) in the ActionScript 2.0
Language Reference.

Creating a simple line drawing tool
You can use methods of the MovieClip class to draw lines and fills on the Stage as the SWF
file plays. This lets you create drawing tools for users and draw shapes in the SWF file in
response to events. The drawing methods are beginFill(), beginGradientFill(),
clear(), curveTo(), endFill(), lineTo(), lineStyle(), and moveTo().

You can apply these methods to any movie clip instance (for example, myClip.lineTo()), or
to a level (_level0.curveTo()).

The lineTo() and curveTo() methods let you draw lines and curves, respectively. You
specify a line color, thickness, and alpha setting for a line or curve with the lineStyle()
method. The moveTo() drawing method sets the current drawing position to the x and y
Stage coordinates that you specify.

The beginFill() and beginGradientFill() methods fill a closed path with a solid or
gradient fill, respectively, and endFill() applies the fill specified in the last call to
beginFill() or beginGradientFill(). The clear() method erases what’s been drawn in
the specified movie clip object.

To create a simple line drawing tool:

1. In a new document, create a button on the Stage, and enter clear_btn as the instance
name in the Property inspector.

2. Select Frame 1 in the Timeline.

3. Select Window > Actions to open the Actions panel, if it is not already visible.

Creating runtime data bindings using ActionScript 537

4. In the Actions panel, enter the following code:
this.createEmptyMovieClip("canvas_mc", 999);
var isDrawing:Boolean = false;
//
clear_btn.onRelease = function() {

canvas_mc.clear();
};
//
var mouseListener:Object = new Object();
mouseListener.onMouseDown = function() {

canvas_mc.lineStyle(5, 0xFF0000, 100);
canvas_mc.moveTo(_xmouse, _ymouse);
isDrawing = true;

};
mouseListener.onMouseMove = function() {

if (isDrawing) {
canvas_mc.lineTo(_xmouse, _ymouse);
updateAfterEvent();

}
};
mouseListener.onMouseUp = function() {

isDrawing = false;
};
Mouse.addListener(mouseListener);

5. Select Control > Test Movie to test the document.

6. Drag your pointer to draw a line on the Stage.

7. Click the button to erase what you’ve drawn.

Creating runtime data bindings using
ActionScript
If you use components to create applications, it’s often necessary to add bindings between
those components so that you can interact with data or have components interact with each
other. Interaction between components is necessary for creating usable forms or interfaces that
your users can interact with. You can use the Bindings tab in the Component inspector to add
bindings between components on the Stage.

For more information on using the Bindings tab, see Using Flash. You can also find additional
information in the following online articles: Building a Tip of the day Application (Part 2),
Data Binding in Macromedia Flash MX Professional 2004, and Building a Google Search
Application with Macromedia Flash MX Professional.

http://www.adobe.com/devnet/flash/articles/tipoday_pt2.html
http://www.adobe.com/devnet/flash/articles/databinding.html
http://www.adobe.com/devnet/flash/articles/google_search.html
http://www.adobe.com/devnet/flash/articles/google_search.html

538 Creating Interaction with ActionScript

You can use ActionScript instead of the Bindings tab to create bindings between components.
Adding code is often faster and more efficient than relying on the authoring environment.
Using ActionScript to create bindings is necessary when you use code to add components to
an application. You can choose to use the createClassObject() method to add components
onto the Stage dynamically; however, you couldn’t use the Bindings tab to create a binding
because the components don’t exist until runtime. Using ActionScript to add data binding is
often called runtime data binding.

For more information, see the following topics:

■ Creating bindings between UI components using ActionScript
■ “Using components, bindings, and custom formatters” on page 542
■ “Adding and binding components on the Stage” on page 545

Creating bindings between UI components using
ActionScript
It isn’t difficult to bind data between two components at runtime. You must remember to
include the DataBindingClasses component in your document for it to work, because that
component contains the classes that you need to work with.

To create a binding between two TextInput components using ActionScript:

1. Create a new Flash document called panel_as.fla.

2. Drag two copies of the TextInput component onto the Stage.

3. Give the components the following instance names: in_ti and out_ti.

4. Select Window > Common Libraries > Classes and open the new common library called
Classes.fla.

5. Drag a copy of the DataBindingClasses component into the Library panel, or drag the
component onto the Stage and then delete it.

You can close the common library after you finish. After you delete the
DataBindingClasses component from the Stage, Flash leaves a copy in the library.

T
IP If you forget to delete the DataBindingClasses component from the Stage, the

component’s icon is visible at runtime.

N
O

T
E

When you created a binding using the Component inspector in the previous
example, Flash added the DataBindingClasses component automatically to the FLA
file. When you use ActionScript to create data bindings, you must copy that class
into your library yourself, as shown in the following step.

Creating runtime data bindings using ActionScript 539

6. Insert a new layer and name it actions.

7. Add the following ActionScript to Frame 1 of the actions layer:
var src:mx.data.binding.EndPoint = new mx.data.binding.EndPoint();
src.component = in_ti;
src.property = "text";
src.event = "focusOut";
var dest:mx.data.binding.EndPoint = new mx.data.binding.EndPoint();
dest.component = out_ti;
dest.property = "text";
new mx.data.binding.Binding(src, dest);

If you prefer the somewhat shortened version, you could import the binding classes and
use the following code instead:
import mx.data.binding.*;
var src:EndPoint = new EndPoint();
src.component = in_ti;
src.property = "text";
src.event = "focusOut";
var dest:EndPoint = new EndPoint();
dest.component = out_ti;
dest.property = "text";
new Binding(src, dest);

This ActionScript creates two data binding end points, one for each component that
you’re binding. The first endpoint you create defines which component it is binding from
(in_ti), which property to watch for (text), and which event will trigger the binding
(focusOut). The second endpoint you create lists only the component and property
(out_ti and text, respectively). Finally, you create the binding between the two
endpoints when you call the constructor for the Binding class (new Binding(src,
dest)).
You don’t need to use fully qualified class names (such as mx.data.binding.EndPoint)
in your ActionScript, as you saw in the first code snippet. If you use the import statement
at the beginning of your code, you can avoid using fully qualified names. When you
import all the classes in the mx.data.binding package using the wildcard (*) (the
package includes both the EndPoint and Binding classes), you can shorten your code and
directly reference the EndPoint and Binding classes. For more information on import
statements, see the import entry in the ActionScript 2.0 Language Reference.

8. Select Control > Test Movie to test the code in the test environment. Enter some text into
the in_ti text input field.

After the in_ti instance loses focus (click the Stage, press Tab, or click the second field),
Flash copies any text that you input into in_ti to the out_ti text field.

9. Select File > Save to save your changes.

540 Creating Interaction with ActionScript

If you want to modify the text in the out_ti text input field from the previous exercise, your
code can become a lot more complex. If you use the Component inspector to set up bindings,
by default you create a two-way connection. This means that if you change either text field on
the Stage, the other text field changes as well. When you use ActionScript to create bindings,
your application works the opposite way. Runtime data bindings are one-way by default
unless you specify otherwise, as demonstrated in the following example.

To use ActionScript to create a two-way binding, you need to make some small modifications
to the code snippets from the previous procedure. This example uses the second, shortened
ActionScript snippet from step 7.

To create a two-way binding:

1. Open panel_as.fla from the previous example.

2. Modify your ActionScript slightly (see boldface code) to match the following ActionScript:
import mx.data.binding.*;
var src:EndPoint = new EndPoint();
src.component = in_ti;
src.property = "text";
src.event = "focusOut";
var dest:EndPoint = new EndPoint();
dest.component = out_ti;
dest.property = "text";
dest.event = "focusOut";
new Binding(src, dest, null, true);

The two changes you make to the ActionScript do the following:
■ Define an event property for the destination EndPoint instance.
■ Define two additional parameters for the Binding constructor.
You use the first parameter for advanced formatting options; you can set that value to
null or undefined. The second parameter defines whether the binding is two-way (true)
or one-way (false).
You might wonder where the focusOut event comes from. That’s where the ActionScript
becomes complicated. You can investigate the TextInput class and use some of the listed
methods (such as change() or enter()), but you won’t find the focusOut event there.
The TextInput class inherits from the UIObject and UIComponent classes. If you view
the UIComponent class, which adds focus support to components, you see four
additional events: focusIn, focusOut, keyDown, and keyUp. You can use these events
with the TextInput component.

3. (Optional) If you want the previous example to update the value in the out_ti text input
field, you can change the event from focusOut to change.

Creating runtime data bindings using ActionScript 541

4. Select Control > Test Movie to test the document.

Flash changes the second value in the in_ti text input field and updates the value for
out_ti. You successfully created a two-way connection.

You can use the Binding classes with most user interface components of version 2 of the
Adobe Component Architecture, not just the TextInput component. The following example
demonstrates how to use ActionScript to bind CheckBox instances and Label components
during runtime.

To use binding classes with the CheckBox component:

1. Create a new Flash document.

2. Select File > Save As and name the new file checkbox_as.fla.

3. Select Window > Common Libraries > Classes.

4. Drag a copy of the DataBindingClasses class into the document’s library.

5. Drag a copy of the CheckBox component onto the Stage and give it the instance
name my_ch.

6. Drag a copy of the Label component onto the Stage and give it the instance name my_lbl.

7. Create a new layer and name it actions.

8. Add the following ActionScript to Frame 1 of the actions layer:
var srcEndPoint:Object = {component:my_ch, property:"selected",

event:"click"};
var destEndPoint:Object = {component:my_lbl, property:"text"};
new mx.data.binding.Binding(srcEndPoint, destEndPoint);

You use objects to define the endpoints instead of creating new instances of the EndPoint
class, as demonstrated in the previous exercises in this section. The code snippet in this
step creates two objects, which act as endpoints for the binding. You create the binding
when you call the constructor for the Binding class. To reduce the amount of code (and
readability) even more, define the objects inline as shown in the following snippet:
new mx.data.binding.Binding({component:my_ch, property:"selected",

event:"click"}, {component:my_lbl, property:"text"});

This ActionScript reduces the readability of your code, but it also reduces the amount of
typing you have to do. If you share your FLA (or ActionScript) files, you might want to
use the first snippet of ActionScript, because it is more reader friendly.

542 Creating Interaction with ActionScript

Using components, bindings, and custom formatters
Custom formatters help you format complex data in a specific way. You can also use custom
formatting to help display images, HTML formatted text, or other components within a
component such as the DataGrid. The following example illustrates how useful custom
formatters can be.

To use custom formatters in a document:

1. Create a new FLA file and add the DataBindingClasses class to the library (Window >
Common Libraries > Classes).

2. Drag a copy of the DateChooser component onto the Stage and give it the instance
name my_dc.

3. Drag a copy of the Label component onto the Stage and give it the instance name my_lbl.

4. Insert a new layer and name it actions.

5. Add the following ActionScript code to Frame 1 of the actions layer:
import mx.data.binding.*;
var src:EndPoint = new EndPoint();
src.component = my_dc;
src.property = "selectedDate";
src.event = "change";
var dest:EndPoint = new EndPoint();
dest.component = my_lbl;
dest.property = "text";
new Binding(src, dest);

This code creates a binding between the DateChooser's selectedDate property and the
text property of the Label component on the Stage. Each time you click a new date in the
calendar, the selected date appears in the Label component.

6. Save the Flash document as customformat.fla in a convenient location on your hard disk.

(You will recycle it in the next exercise.)
7. Select Control > Test Movie to test the document.

Try to change the dates in the Calendar component and you’ll see the currently selected
date appear in the Label component. The Label component isn’t wide enough to display
the entire date, so Flash crops off the text.

8. Close the test SWF file and return to the authoring environment.

Either resize the Label component on the Stage or select the Label component and set the
autoSize property to left in the Parameters tab of the Property inspector.

Creating runtime data bindings using ActionScript 543

9. Select Control > Test Movie to test the document again.

Now the text field displays the entire date, although it is awkward and lacks formatting.
Depending on your own time zone and selected date, the date might appear similar to
this: Thu Nov 4 00:00:00 GMT-0800 2004
Even though the binding works properly and displays the selectedDate property, these
dates aren’t very user friendly. Nobody wants to see time-zone offsets, and you might not
want to display hours, minutes, and seconds. What you need is a way to format the date
so that it’s more readable and a little less mechanical. Custom formatters are particularly
useful for formatting text.

Formatting data using the CustomFormatter class
The CustomFormatter class defines two methods, format() and unformat(), that provide
the ability to transform data values from a specific data type to String, and the reverse. By
default, these methods do nothing; you must implement them in a subclass of
mx.data.binding.CustomFormatter. The CustomFormatter class lets you convert data
types to strings and back. In this case, you want to convert the selectedDate property from
the DateChooser component into a nicely formatted string when the value copies into the
Label component.

The following example shows you how to create your own custom formatter, which displays
the date as NOV 4, 2004 instead of displaying a default date string.

To format data using the CustomFormatter class:

1. Select File > New and then select ActionScript File to create a new AS file.

2. Select File > Save As and save the new file as DateFormat.as.

3. Enter the following code into the Script window:
class DateFormat extends mx.data.binding.CustomFormatter {

function format(rawValue:Date):String {
var returnValue:String;
var monthName_array:Array =

["JAN","FEB","MAR","APR","MAY","JUN","JUL","AUG","SEP","OCT","NOV","D
EC"];

returnValue = monthName_array[rawValue.getMonth()]+"
"+rawValue.getDate()+", "+rawValue.getFullYear();

return returnValue;
}

}

N
O

T
E

You need to complete the exercise from “Using components, bindings, and custom
formatters” on page 542 before you begin this one.

544 Creating Interaction with ActionScript

The first section of code defines the new class called DateFormat, which extends the
CustomFormatter class in the mx.data.binding package. Remember that Flash compiles
the binding classes in the DataBindingClasses component file, so you can’t view them
directly or find them within the Classes folder in the Flash install directory.
The only method you use is the format() method, which converts the date instance into
a custom string format. The next step is to create an array of month names so that the end
result looks closer to NOV 4, 2004 rather than the default date format. Remember that
arrays are zero-based in Flash, so if the value of rawValue.getMonth() returns 1, it
represents February instead of January (because January is month 0). The remaining code
builds the custom formatted string by concatenating values and returning the
returnValue string.
A problem can arise when you work with classes within a compiled clip, which you can see
in the previous snippet. Because you extend a class that’s located in the
DataBindingClasses class and it isn’t readily available to Flash, you encounter the
following error when you check the syntax in the previous class:
Error <path to DateFormat class>\DateFormat.as: Line 1: The class

'mx.data.binding.CustomFormatter' could not be loaded.
 class DateFormat extends mx.data.binding.CustomFormatter {

Total ActionScript Errors: 1 Reported Errors: 1

Your code is probably fine. This problem occurs when Flash cannot locate the class, and
because of this, syntax checking fails.

4. Save the DateFormat.as file.

5. Open customformat.fla from the exercise in “Using components, bindings, and custom
formatters”. Make sure you save or copy DateFormat.as in the same directory as this file.

6. In customformat.fla, modify the ActionScript code in Frame 1 of the actions layer to match
the following code:
import mx.data.binding.*;
var src:EndPoint = new EndPoint();
src.component = my_dc;
src.property = "selectedDate";
src.event = "change";
var dest:EndPoint = new EndPoint();
dest.component = my_lbl;
dest.property = "text";
new Binding(src, dest, {cls:mx.data.formatters.Custom,

settings:{classname:"DateFormat", classname_class:DateFormat}});

This time you define a customFormatter object, which tells Flash that you’re using the
newly created DateFormat class to format the endpoint on the binding.

7. Save the changes in your document and select Control > Test Movie to test your code.

Creating runtime data bindings using ActionScript 545

Adding and binding components on the Stage
One of the biggest advantages to using the binding classes with ActionScript is that you can
create bindings between components that Flash has added to the Stage at runtime. Imagine
creating your own custom class that adds the appropriate text fields to the Stage at runtime,
and then validates the necessary data and adds the necessary bindings. As long as you have the
components in your library, you can add them dynamically and use a couple of extra lines of
code to create bindings.

To add and then bind components on the Stage by using ActionScript:

1. Create a new Flash document.

2. Drag a ComboBox and a Label component into the document’s library.

3. Insert a new layer and name it actions.

4. Add the following code to Frame 1 of the actions layer:
import mx.data.binding.*;
this.createClassObject(mx.controls.ComboBox, "my_cb", 1, {_x:10,

_y:10});
this.createClassObject(mx.controls.Label, "my_lbl", 2, {_x:10, _y:40});
my_cb.addItem("JAN", 0);
my_cb.addItem("FEB", 1);
my_cb.addItem("MAR", 2);
my_cb.addItem("APR", 3);
my_cb.addItem("MAY", 4);
my_cb.addItem("JUN", 5);
var src:EndPoint = new EndPoint();
src.component = my_cb;
src.property = "value";
src.event = "change";
var dest:EndPoint = new EndPoint();
dest.component = my_lbl;
dest.property = "text";
new Binding(src, dest);

The first line of ActionScript imports the classes from the mx.data.binding package so
that you don’t need to use fully qualified paths in your code. The next two lines of
ActionScript attach the components from the document’s library to the Stage. Next you
position the components on the Stage.
Finally you add data to the ComboBox instance and create the binding between the my_cb
ComboBox and my_lbl Label component on the Stage.

546 Creating Interaction with ActionScript

Deconstructing a sample script
In the sample SWF file zapper.swf (which you can view in Using Flash Help), when a user
drags the bug to the electrical outlet, the bug falls and the outlet shakes. The main timeline
has only one frame and contains three objects: the ladybug, the outlet, and a reset button.
Each object is a movie clip instance.

The following script is attached to Frame 1 of the main Timeline:
var initx:Number = bug_mc._x;
var inity:Number = bug_mc._y;
var zapped:Boolean = false;

reset_btn.onRelease = function() {
zapped = false;
bug_mc._x = initx;
bug_mc._y = inity;
bug_mc._alpha = 100;
bug_mc._rotation = 0;

};

bug_mc.onPress = function() {
this.startDrag();

};
bug_mc.onRelease = function() {

this.stopDrag();
};
bug_mc.onEnterFrame = function() {

if (this.hitTest(this._parent.zapper_mc)) {
this.stopDrag();
zapped = true;
bug_mc._alpha = 75;
bug_mc._rotation = 20;
this._parent.zapper_mc.play();

}
if (zapped) {

bug_mc._y += 25;
}

};

Deconstructing a sample script 547

The bug’s instance name is bug_mc, and the outlet’s instance name is zapper_mc. In the
script, the bug is referred to as this because the script is attached to the bug and the reserved
word this refers to the object that contains it.

There are event handlers with several different events: onRelease(), onPress(), and
onEnterFrame(). The event handlers are defined on Frame 1 after the SWF file loads. The
actions in the onEnterFrame() event handler executes every time the playhead enters a frame.
Even in a one-frame SWF file, the playhead still enters that frame repeatedly and the script
executes repeatedly.

Two variables, initx and inity, are defined to store the initial x and y positions of the
bug_mc movie clip instance. A function is defined and assigned to the onRelease event
handler of the reset_btn instance. This function is called each time the mouse button is
pressed and released on the reset_btn button. The function places the ladybug back in its
starting position on the Stage, resets its rotation and alpha values, and resets the zapped
variable to false.

A conditional if statement uses the hitTest() method to check whether the bug instance is
touching the outlet instance (this._parent.zapper_mc). The two possible outcomes of the
evaluation are true or false:

■ If the hitTest() method returns true, Flash calls the stopDrag() method, sets the
zapped variable to true, changes the alpha and rotation properties, and instructs the
zapper_mc instance to play.

■ If the hitTest() method returns false, none of the code within the curly braces ({})
immediately following the if statement runs.

The actions in the onPress() statement execute when the mouse button is pressed over the
bug_mc instance. The actions in the onRelease() statement execute when the mouse button
is released over the bug_mc instance.

The startDrag() action lets you drag the ladybug. Because the script is attached to the
bug_mc instance, the keyword this indicates that the bug instance is the one you can drag:
bug_mc.onPress = function() {

this.startDrag();
};

The stopDrag() action stops the drag action:
bug_mc.onRelease = function() {

this.stopDrag();
};

548 Creating Interaction with ActionScript

549

14
CHAPTER 14

Working with Images, Sound,
and Video

If you import an image or a sound while you author a document in Flash CS3 Professional,
the image and sound are packaged and stored in a SWF file when you publish it. In addition
to importing media while authoring, you can load external media, including other SWF files,
at runtime. You might want to keep media outside of a Flash document for several reasons.

Reduce file size By keeping large media files outside of your Flash document and loading
them at runtime, you can reduce the initial downloading time for your applications and
presentations, especially over slow Internet connections.

Modularize large presentations You can divide a large presentation or application into
separate SWF files and load those separate files as needed at runtime. This process reduces
initial downloading time and also makes it easier to maintain and update the presentation.

Separate content from presentation This theme is common in application development,
especially data-driven applications. For example, a shopping cart application might display an
image of each product. By loading each image at runtime, you can easily update a product’s
image without modifying the original FLA file.

Take advantage of runtime-only features Some features, such as dynamically loaded Flash
Video (FLV) and MP3 playback, are available only at runtime through ActionScript.

This section describes how to work with image files, sound files, and FLV video in your Flash
applications. For more information, see the following topics:
About loading and working with external media . 550

Loading external SWF and image files . 551

About loading and using external MP3 files . 555

Assigning linkage to assets in the library. 559

About using FLV video . 560

About creating progress animations for media files . 580

550 Working with Images, Sound, and Video

About loading and working with
external media
You can load several types of media files into a Flash application at runtime: SWF, MP3,
JPEG, GIF, PNG, and FLV files. However, not all versions of Flash Player support each kind
of media. For more information on the image file types that are supported in Flash Player 8
and later, see “Loading external SWF and image files” on page 551. For information on FLV
video support in Flash Player, see “About using FLV video” on page 560

Flash Player can load external media from any HTTP or FTP address, from a local disk using
a relative path, or by using the file:// protocol.

To load external SWF and image files, you can use the loadMovie() or loadMovieNum()
function, the MovieClip.loadMovie() method, or the MovieClipLoader.loadClip()
method. The class methods generally provide more function and flexibility than global
functions and are appropriate for more complex applications. When you load a SWF or image
file, you specify a movie clip or SWF file level as the target for that media. For more
information on loading SWF and image files, see “Loading external SWF and image files”
on page 551.

To play back an external MP3 file, use the loadSound() method of the Sound class. This
method lets you specify whether the MP3 file should progressively download or complete
downloading before it starts to play. You can also read the ID3 information embedded in
MP3 files, if they’re available. For more information, see “Reading ID3 tags in MP3 files”
on page 558.

Flash Video is the native video format used by Flash Player. You can play FLV files over
HTTP or from a local file system. Playing external FLV files provides several advantages over
embedding video in a Flash document, such as better performance and memory management
as well as independent video and Flash frame rates. For more information, see “Playing back
external FLV files dynamically” on page 563.

You can also preload or track the downloading progress of external media with the
MovieClipLoader class, which you can use to track the downloading progress of SWF or
image files. To preload MP3 and FLV files, you can use the getBytesLoaded() method of
the Sound class and the bytesLoaded property of the NetStream class. For more information,
see “Preloading FLV files” on page 566.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/
Galleries to access these samples:

■ gallery_tree.fla

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

Loading external SWF and image files 551

■ gallery_tween.fla

These files provide examples of how to use ActionScript to control movie clips dynamically
while loading image files into a SWF file.

Loading external SWF and image files
To load a SWF or image file, use the loadMovie() or loadMovieNum() global function, the
loadMovie() method of the MovieClip class, or the loadClip() method of the
MovieClipLoader class. For more information on the loadClip() method, see
MovieClipLoader.loadClip() in the ActionScript 2.0 Language Reference.

For image files, Flash Player 8 and later support the JPEG (progressive and non-progressive)
image file type, GIF images (transparent and non-transparent, although only the first frame of
an animated GIF will be loaded), and PNG files (transparent and non-transparent).

To load a SWF or image file into a level in Flash Player, use the loadMovieNum() function.
To load a SWF or image file into a movie clip target, use the loadMovie() function or
method. In either case, the loaded content replaces the content of the specified level or target
movie clip.

When you load a SWF or image file into a movie clip target, the upper-left corner of the SWF
file or image is placed on the registration point of the movie clip. Because this registration
point is often the center of the movie clip, the loaded content might not appear centered.
Also, when you load a SWF file or image to a root timeline, the upper-left corner of the image
is placed on the upper-left corner of the Stage. The loaded content inherits rotation and
scaling from the movie clip, but the original content of the movie clip is removed.

You can optionally send ActionScript variables with a loadMovie() or loadMovieNum() call.
This is useful, for example, if the URL you’re specifying in the method call is a server-side
script that returns a SWF or image file according to data passed from the Flash application.

When you use the global loadMovie() or loadMovieNum() function, specify the target level
or clip as a parameter. The following example loads the Flash application contents.swf into the
movie clip instance named image_mc:
loadMovie("contents.swf", image_mc);

You can use MovieClip.loadMovie() to achieve the same result:
image_mc.loadMovie("contents.swf");

The following example loads the image1.jpg JPEG image into the image_mc movie clip
instance:
image_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");

552 Working with Images, Sound, and Video

For more information about loading external SWF and image files, see “About loading SWF
files and the root timeline” on page 555.

To preload SWF and JPEG files into movie clip instances, you can use the MovieClipLoader
class. This class provides an event listener mechanism to give notification about the status of
file downloads into movie clips. To use a MovieClipLoader object to preload SWF and JPEG
files, you must complete the following:

Create a new MovieClipLoader object You can use a single MovieClipLoader object to
track the downloading progress of multiple files or create a separate object for each file’s
progress. Create a new movie clip, load your contents into it, then create the
MovieClipLoader object as shown in the following code:
this.createEmptyMovieClip("img_mc", 999);
var my_mcl:MovieClipLoader = new MovieClipLoader();

Create a listener object and create event handlers The listener object can be any
ActionScript object, such as a generic Object object, a movie clip, or a custom component.

The following example creates a generic listener object named loadListener and defines for
itself onLoadError, onLoadStart, onLoadProgress, and onLoadComplete functions:
// Create listener object:
var mclListener:Object = new Object();
mclListener.onLoadError = function(target_mc:MovieClip, errorCode:String,

status:Number) {
trace("Error loading image: " + errorCode + " [" + status + "]");

};
mclListener.onLoadStart = function(target_mc:MovieClip):Void {

trace("onLoadStart: " + target_mc);
};
mclListener.onLoadProgress = function(target_mc:MovieClip,

numBytesLoaded:Number, numBytesTotal:Number):Void {
var numPercentLoaded:Number = numBytesLoaded / numBytesTotal * 100;
trace("onLoadProgress: " + target_mc + " is " + numPercentLoaded + "%
loaded");

};
mclListener.onLoadComplete = function(target_mc:MovieClip,

status:Number):Void {
trace("onLoadComplete: " + target_mc);

};

N
O

T
E

Flash Player 8 and later allow you to check the HTTP status of a MovieClipLoader
download within the onLoadComplete and onLoadError event listeners. This ability
allows you to check why the file was unable to download—whether it was a server error,
or the file was unable to be found, and so on.

Loading external SWF and image files 553

Register the listener object with the MovieClipLoader object In order for the listener
object to receive the loading events, you must register it with the MovieClipLoader object, as
shown in the following code:
my_mcl.addListener(mclListener);

Begin loading the file (image or SWF) into a target clip To start downloading an image or
SWF file, you use the MovieClipLoader.loadClip() method, as shown in the following
code:
my_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

The following example uses the setProgress() method of the ProgressBar component to
display the downloading progress of a SWF file. For more information, see ActionScript 2.0
Components Language Reference.

To display downloading progress by using the ProgressBar component:

1. Create a new Flash document, and save it as progress.fla.

2. Open the Components panel (Window > Components).

3. Drag a ProgressBar component from the Components panel to the Stage.

4. In the Property inspector (Window > Properties > Properties), name the ProgressBar
component my_pb.

5. Select Frame 1 in the Timeline, and open the Actions panel (Window > Actions).

N
O

T
E

You can use MovieClipLoader methods only to track the downloading progress of files
loaded with the MovieClipLoader.loadClip() method. You cannot use the loadMovie()
function or MovieClip.loadMovie() method.

554 Working with Images, Sound, and Video

6. Add the following code to the Actions panel:
var my_pb:mx.controls.ProgressBar;
my_pb.mode = "manual";

this.createEmptyMovieClip("img_mc", 999);

var my_mcl:MovieClipLoader = new MovieClipLoader();
var mclListener:Object = new Object();
mclListener.onLoadStart = function(target_mc:MovieClip):Void {

my_pb.label = "loading: " + target_mc._name;
};
mclListener.onLoadProgress = function(target_mc:MovieClip,

numBytesLoaded:Number, numBytesTotal:Number):Void {
var pctLoaded:Number = Math.ceil(100 * (numBytesLoaded /
numBytesTotal));
my_pb.setProgress(numBytesLoaded, numBytesTotal);

};
my_mcl.addListener(mclListener);
my_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

img_mc);

7. Test the document by selecting Control > Test Movie.

The image loads into the movie img_mc clip.
8. Select File > Publish > Formats, and make sure the SWF and HTML options are selected.

9. Click Publish and find the HTML and SWF files on your hard disk.

They’re in the same folder as progress.fla that you saved in step 1.
10. Double-click the HTML document to open it in a browser and see the progress

bar animate.

For related information, see “About loading SWF files and the root timeline” on page 555.
For more information on the MovieClipLoader class, see MovieClipLoader in the
ActionScript 2.0 Language Reference. For information on creating a progress bar animation, see
“Creating a progress animation for loading SWF and image files” on page 581.

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/
Galleries to access these samples:

■ gallery_tree.fla
■ gallery_tween.fla

N
O

T
E

When you load files in the test environment, make sure you load an uncached file
from the Internet and not a local file if you want to see the progress bar work. A local
file loads too quickly to see the progress. Alternatively, upload your SWF file and test
your document on a server.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

About loading and using external MP3 files 555

These files provide examples of how to use ActionScript to control movie clips dynamically
while loading image files into a SWF file.

About loading SWF files and the root timeline
The ActionScript property, _root, specifies or returns a reference to the root timeline of a
SWF file. If you load a SWF file into a movie clip in another SWF file, any references to
_root in the loaded SWF file resolve to the root timeline in the host SWF file, not to that of
the loaded SWF file. This action can sometimes cause unexpected behavior at runtime (for
example, if the host SWF file and the loaded SWF file both use _root to specify a variable).

In Flash Player 7 and later, you can use the _lockroot (MovieClip._lockroot property)
property to force references to _root made by a movie clip to resolve to its own timeline
rather than to the timeline of the SWF file that contains that movie clip. For more
information, see “Specifying a root timeline for loaded SWF files” on page 317. For more
information about using _root and _lockroot, see Chapter 17, “Best Practices and Coding
Conventions for ActionScript 2.0,” on page 665.

One SWF file can load another SWF file from any location on the Internet. However, for a
SWF file to access data (variables, methods, and so forth) defined in another SWF file, the
two files must originate from the same domain. In Flash Player 7 and later, cross-domain
scripting is prohibited unless the loaded SWF file specifies otherwise by calling
System.security.allowDomain().

For more information on System.security.allowDomain, see allowDomain
(security.allowDomain method) in the ActionScript 2.0 Language Reference and
“Restricting networking APIs” on page 648.

About loading and using external
MP3 files
To load MP3 files at runtime, use the loadSound() method of the Sound class. First, you
create a Sound object, as shown in the following example:
var song1_sound:Sound = new Sound();

Use the new object to call loadSound() to load an event or a streaming sound. Event sounds
are loaded completely before being played; streaming sounds play as they download. You can
set the isStreaming parameter of loadSound() to specify a sound as a streaming or event
sound. After you load an event sound, you must call the start() method of the Sound class
to make the sound play. Streaming sounds begin playing when sufficient data is loaded into
the SWF file; you don’t need to use start().

556 Working with Images, Sound, and Video

For example, the following code creates a Sound object named my_sound and then loads an
MP3 file named song1.mp3. Put the following ActionScript in Frame 1 on the Timeline:
var my_sound:Sound = new Sound();
my_sound.loadSound("http://www.helpexamples.com/flash/sound/song1.mp3",

true);

In most cases, set the isStreaming parameter to true, especially if you’re loading large sound
files that should start playing as soon as possible—for example, when creating an MP3
“jukebox” application. However, if you download shorter sound clips and need to play them
at a specified time (for example, when a user clicks a button), set isStreaming to false.

To determine when a sound IS completely downloaded, use the Sound.onLoad event handler.
This event handler automatically receives a Boolean value (true or false) that indicates
whether the file downloaded successfully.

For more information, see the following topics:

■ “Loading an MP3 file” on page 556
■ “Preloading MP3 files” on page 557
■ “Reading ID3 tags in MP3 files” on page 558

For a sample source file that loads MP3 files, jukebox.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ComponentsAS2/Jukebox folder to access this sample. This sample demonstrates how to
create a jukebox by using data types, general coding principles, and several components.

Loading an MP3 file
Suppose you’re creating an online game that uses different sounds that depend on what level
the user has reached in the game. The following code loads an MP3 file (song2.mp3) into the
game_sound Sound object and plays the sound when it IS completely downloaded.

To load an MP3 file:

1. Create a new FLA file called loadMP3.fla.

2. Select Frame 1 on the Timeline, and then type the following code in the Actions panel:
var game_sound:Sound = new Sound();
game_sound.onLoad = function(success:Boolean):Void {

if (success) {
trace("Sound Loaded");
game_sound.start();

}
};
game_sound.loadSound("http://www.helpexamples.com/flash/sound/

song2.mp3", false);

http://www.adobe.com/go/learn_fl_samples

About loading and using external MP3 files 557

3. Select Control > Test Movie to test the sound.

Flash Player supports only the MP3 sound file type for loading sound files at runtime.

For more information, see Sound.loadSound(), Sound.start(), and Sound.onLoad in the
ActionScript 2.0 Language Reference. For information on preloading MP3 files, see “Preloading
MP3 files” on page 557. For information on creating a progress bar animation when you load
a sound file, see “Creating a progress bar for loading MP3 files with ActionScript”
on page 583.

For a sample source file that loads MP3 files, jukebox.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ComponentsAS2/Jukebox folder to access this sample. This sample demonstrates how to
create a jukebox by using data types, general coding principles, and several components.

Preloading MP3 files
When you preload MP3 files, you can use the setInterval() function to create a polling
mechanism that checks the bytes loaded for a Sound or NetStream object at predetermined
intervals. To track the downloading progress of MP3 files, use the Sound.getBytesLoaded()
and Sound.getBytesTotal() methods.

The following example uses setInterval() to check the bytes loaded for a Sound object at
predetermined intervals.

To preload an MP3 file:

1. Create a new FLA file called preloadMP3.fla.

2. Select Frame 1 on the Timeline and type the following code in the Actions panel:
// Create a new Sound object to play the sound.
var songTrack:Sound = new Sound();
// Create the polling function that tracks download progress.
// This is the function that is "polled." It checks
// the downloading progress of the Sound object passed as a reference.
function checkProgress (soundObj:Object):Void {

var numBytesLoaded:Number = soundObj.getBytesLoaded();
var numBytesTotal:Number = soundObj.getBytesTotal();
var numPercentLoaded:Number = Math.floor(numBytesLoaded /
numBytesTotal * 100);
if (!isNaN(numPercentLoaded)) {

trace(numPercentLoaded + "% loaded.");
}

};
// When the file has finished loading, clear the interval polling.
songTrack.onLoad = function ():Void {

trace("load complete");
clearInterval(poll);

http://www.adobe.com/go/learn_fl_samples

558 Working with Images, Sound, and Video

};
// Load streaming MP3 file and start calling checkProgress(),
songTrack.loadSound("http://www.helpexamples.com/flash/sound/song1.mp3",

true);
var poll:Number = setInterval(checkProgress, 100, songTrack);

3. Select Control > Test Movie to test the sound.

The Output panel shows loading progress.

You can use the polling technique to preload external FLV files. To get the total bytes and
current number of bytes loaded for an FLV file, use the NetStream.bytesLoaded and
NetStream.bytesTotal properties (for more information, see bytesLoaded
(NetStream.bytesLoaded property) and bytesTotal (NetStream.bytesTotal property)).

For more information, see MovieClip.getBytesLoaded(), MovieClip.getBytesTotal(),
setInterval(), Sound.getBytesLoaded(), and Sound.getBytesTotal() in the
ActionScript 2.0 Language Reference.

For information on creating a progress bar animation, see “Creating a progress bar for loading
MP3 files with ActionScript” on page 583.

For a sample source file that loads MP3 files, jukebox.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ComponentsAS2/Jukebox folder to access this sample. This sample demonstrates how to
create a jukebox by using data types, general coding principles, and several components.

Reading ID3 tags in MP3 files
ID3 tags are data fields that are added to an MP3 file. ID3 tags contain information about the
file, such as the name of a song, album, and artist.

To read ID3 tags from an MP3 file, use the Sound.id3 property, whose properties correspond
to the names of ID3 tags included in the MP3 file that you load. To determine when ID3 tags
for a downloading MP3 file are available, use the Sound.onID3 event handler. Flash Player 7
supports version 1.0, 1.1, 2.3, and 2.4 tags; version 2.2 tags are not supported.

The following example loads an MP3 file named song1.mp3 into the song_sound Sound
object. When the ID3 tags for the file are available, the display_txt text field shows the
artist name and song name.

To read ID3 tags from an MP3 file:

1. Create a new FLA file called id3.fla.

2. Select Frame 1 on the Timeline and type the following code in the Actions panel:
this.createTextField("display_txt", this.getNextHighestDepth(), 0, 0,

100, 100);

http://www.adobe.com/go/learn_fl_samples

Assigning linkage to assets in the library 559

display_txt.autoSize = "left";
display_txt.multiline = true;
var song_sound:Sound = new Sound();
song_sound.onLoad = function() {

song_sound.start();
};
song_sound.onID3 = function():Void {

display_txt.text += "Artist:\t" + song_sound.id3.artist + "\n";
display_txt.text += "Song:\t" + song_sound.id3.songname + "\n";

};
song_sound.loadSound("http://www.helpexamples.com/flash/sound/

song1.mp3");

3. Select Control > Test Movie to test the sound.

The ID3 tags appear on the Stage, and the sound plays.

Because ID3 2.0 tags are located at the beginning of an MP3 file (before the sound data), they
are available as soon as the file starts downloading. ID3 1.0 tags, however, are located at the
end of the file (after the sound data), so they aren’t available until the entire MP3 file finishes
downloading.

The onID3 event handler is called each time new ID3 data is available. So, if an MP3 file
contains ID3 2.0 tags and ID3 1.0 tags, the onID3 handler is called twice because the tags are
located in different parts of the file.

For a list of supported ID3 tags, see id3 (Sound.id3 property) in the ActionScript 2.0
Language Reference.

For a sample source file that loads MP3 files, jukebox.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ComponentsAS2/Jukebox folder to access this sample. This sample demonstrates how to
create a jukebox by using data types, general coding principles, and several components.

Assigning linkage to assets in the library
You can assign linkage identifiers for assets in the library, such as movie clips and font
symbols. In Flash, you can set linkage identifiers to sound and image assets in the library. This
supports using image and sound files with shared libraries and with the new BitmapData
class.

The following example adds a bitmap image in the library with a linkage set to myImage.
Then you add the image to the Stage and make it draggable.

To use linkage with bitmap files:

1. Create a new FLA file called linkBitmap.fla.

http://www.adobe.com/go/learn_fl_samples

560 Working with Images, Sound, and Video

2. Import a bitmap image to the library.

3. Right-click (Windows) or Control-click (Macintosh) the image in the library, and select
Linkage from the context menu.

4. Select Export for ActionScript and Export in first Frame and type myImage in the
Identifier text box.

5. Click OK to set the linkage identifier.

6. Select Frame 1 on the Timeline, and type the following code in the Actions panel:
import flash.display.BitmapData;
// Create imageBmp and attach the bitmap from the library.
var imageBmp:BitmapData = BitmapData.loadBitmap("myImage");
// create movie clip and attach imageBmp
this.createEmptyMovieClip("imageClip", 10);
imageClip.attachBitmap(imageBmp, 2);
// make the clip draggable
imageClip.onPress = function() {
 this.startDrag();
};
imageClip.onRelease = function() {
 this.stopDrag();
}

7. Select Control > Test Movie to test the document.

The bitmap in the library appears on the Stage, and the image is draggable.

About using FLV video
The FLV file format contains encoded audio and video data for delivery by using Flash Player.
For example, if you have a QuickTime or Windows Media video file, you use an encoder
(such as Flash 8 Video Encoder, or Sorensen Squeeze) to convert that file to an FLV file.

Flash Player 7 supports FLV files that are encoded with the Sorenson Spark video codec. Flash
Player 8 and later supports FLV files encoded with Sorenson Spark or On2 VP6 encoder in
Flash. The On2 VP6 video codec supports an alpha channel. Different Flash Player versions
support FLV in different ways. For more information, see the following table:

Codec SWF file version (publish
version)

Flash Player version
required for playback

Sorenson Spark 6 6 and later

7 7 and later

On2 VP6 6 8* and later

About using FLV video 561

For information on video fundamentals, such as streaming, progressive download,
dimensions, encoding, importing, and bandwidth concerns, see Using Flash.

This section discusses using FLV video without components. You can also use the
FLVPlayback component to play FLV files or use the VideoPlayback class to create a custom
video player that loads FLV files dynamically (see www.adobe.com/devnet/flash or
www.adobe.com/support/documentation/). For information on using FLV video with the
FLVPlayback and Media components, review the FLVPlayback Component and Media
components section in ActionScript 2.0 Components Language Reference.

As an alternative to importing video directly into the Flash authoring environment, you can
use ActionScript to dynamically play external FLV files in Flash Player. You can play FLV files
from an HTTP address or from a local file system. To play FLV files, use the NetConnection
and NetStream classes and the attachVideo() method of the Video class. For more
information, see NetConnection, NetStream, and attachVideo (Video.attachVideo
method) in the ActionScript 2.0 Language Reference.

You can create FLV files by importing video into the Flash authoring tool and exporting it as
an FLV file. If you have Flash, you can use the FLV Export plug-in to export FLV files from
supported video-editing applications.

Using external FLV files provides certain capabilities that are not available when you use
imported video:

■ Longer video clips can be used in your Flash documents without slowing down playback.
External FLV files play using cached memory, which means that large files are stored in
small pieces and accessed dynamically, requiring less memory than embedded video files.

■ An external FLV file can have a different frame rate than the Flash document in which it
plays. For example, you can set the Flash document frame rate to 30 frames per second
(fps) and the video frame rate to 21 fps. This setting gives you better control of the video
than embedded video, to ensure smooth video playback. It also allows you to play FLV
files at different frame rates without the need to alter existing Flash content.

7 8 and later

8 and later 8 and later

* If your SWF file loads an FLV file, you can use the On2 VP6 video with having to republish
your SWF file for Flash Player 8 and later, as long as users use Flash Player 8 and later to
view your SWF file. Flash Player 8 and later supports publish and playback of On2 VP6
video.

Codec SWF file version (publish
version)

Flash Player version
required for playback

http://www.adobe.com/devnet/mx/flash/
http://www.adobe.com/support/documentation/

562 Working with Images, Sound, and Video

■ With external FLV files, Flash document playback does not have to be interrupted while
the video file is loading. Imported video files can sometimes interrupt document playback
to perform certain functions, such as accessing a CD-ROM drive. FLV files can perform
functions independently of the Flash document, which does not interrupt playback.

■ Captioning video content is easier with external FLV files because you can use event
handlers to access metadata for the video.

For more information on FLV video, see the following topics:

■ “Creating a video object” on page 562
■ “Playing back external FLV files dynamically” on page 563
■ “Creating a video banner” on page 564
■ “Preloading FLV files” on page 566
■ “Working with cue points” on page 568
■ “Working with metadata” on page 577
■ “Configuring your server for FLV files” on page 579
■ “About targeting local FLV files on Macintosh” on page 580

Creating a video object
Before you can load and manipulate video using ActionScript, you need to create a video
object, drag it to the Stage, and give it an instance name. The following example describes
how to add a video instance to an application.

To create a video object:

1. With a document open in the Flash authoring tool, select New Video from the pop-up
menu in the Library panel (Window > Library).

2. In the Video Properties dialog box, name the video symbol and select Video (ActionScript
controlled).

3. Click OK to create a video object.

4. Drag the video object from the Library panel to the Stage to create a video object instance.

5. With the video object selected on the Stage, type my_video in the Instance Name text box
in the Property inspector (Window > Properties > Properties).

T
IP To load FLV files from a web server, you might need to register the file extension and

MIME type with your web server; check your web server documentation. The MIME
type for FLV files is video/x-flv. For more information, see “Configuring your server
for FLV files” on page 579.

About using FLV video 563

Now you have a video instance on the Stage, for which you can add ActionScript to load
video or manipulate the instance in a variety of ways.

For information on loading FLV files dynamically, see “Playing back external FLV files
dynamically”. For information on creating a video banner, see “Creating a video banner”
on page 564.

Playing back external FLV files dynamically
You can load FLV files at runtime to play in a SWF file. You can load them into a video object
or into a component such as the FLVPlayback component. The following example shows how
to play back a file named clouds.flv in a video object.

To play back an external FLV file in a Flash document:

1. Create a new Flash document called playFLV.fla.

2. In the Library panel (Window > Library), select New Video from the Library
pop-up menu.

3. In the Video Properties dialog box, name the video symbol and select Video (ActionScript
controlled).

4. Click OK to create a video object.

5. Drag the video object from the Library panel to the Stage to create a video object instance.

6. With the video object selected on the Stage, type my_video in the Instance Name text box
in the Property inspector (Window > Properties > Properties).

7. Select Frame 1 in the Timeline, and open the Actions panel (Window > Actions).

8. Type the following code in the Actions panel:
this.createTextField("status_txt", 999, 0, 0, 100, 100);
status_txt.autoSize = "left";
status_txt.multiline = true;
// Create a NetConnection object
var my_nc:NetConnection = new NetConnection();
// Create a local streaming connection
my_nc.connect(null);
// Create a NetStream object and define an onStatus() function
var my_ns:NetStream = new NetStream(my_nc);
my_ns.onStatus = function(infoObject:Object):Void {

status_txt.text += "status (" + this.time + " seconds)\n";
status_txt.text += "\t Level: " + infoObject.level + "\n";
status_txt.text += "\t Code: " + infoObject.code + "\n\n";

};
// Attach the NetStream video feed to the Video object
my_video.attachVideo(my_ns);
// Set the buffer time

564 Working with Images, Sound, and Video

my_ns.setBufferTime(5);
// Begin playing the FLV file
my_ns.play("http://www.helpexamples.com/flash/video/clouds.flv");

9. Select Control > Test Movie to test the document.

For information on preloading FLV files, see “Preloading FLV files” on page 507. For
information on dynamically loading FLV video into components, see Conponents Language
Reference. For information on FLV files and the server, and FLV files and playing FLV files
locally on the Macintosh, see “Configuring your server for FLV files” on page 579.

Creating a video banner
Video content within banners and other Flash advertisements is often used for advertising,
such as showing Flash movie previews or television advertisements. The following example
shows how you might create a video instance and add ActionScript in a FLA file to create a
banner advertisement that contains video.

To create a video banner:

1. Create a new Flash document called vidBanner.fla.

2. Select Modify > Document.

3. Change the dimensions of your FLA file, type 468 in the width text box and 60 in the
height text box.

4. In the Library panel (Window > Library), select New Video from the Library options.

5. In the Video Properties dialog box, name the video symbol and select Video (ActionScript
controlled).

6. Click OK to create a video object.

7. Drag the video object from the Library panel to the Stage to create a video instance.

8. With the video object selected on the Stage, type my_video in the Instance Name text box
in the Property inspector (Window > Properties > Properties).

9. With the video instance still selected, type 105 in the width text box and 60 in the height
text box in the Property inspector.

10. Drag the video instance to a position on the Stage, or use the Property inspector to set its
x and y coordinates.

11. Select Frame 1 in the Timeline, and open the Actions panel (Window > Actions).

About using FLV video 565

12. Add the following code to the Actions panel:
var my_nc:NetConnection = new NetConnection();
my_nc.connect(null);
var my_ns:NetStream = new NetStream(my_nc);
my_video.attachVideo(my_ns);
my_ns.setBufferTime(5);
my_ns.play("http://www.helpexamples.com/flash/video/vbanner.flv");

13. Select Insert > Timeline > Layer to create a new layer, and name it button.

14. Select the Rectangle tool in the Tools panel.

15. In the Colors section of the Tools panel, click the pencil icon to select the Stroke
color control.

16. Select No Color, which disables the rectangle’s outline.

17. Drag the pointer diagonally across the Stage to create a rectangle.

The size of the rectangle does not matter because you’ll resize it by using the
Property inspector.

18. Click the Selection tool in the Tools panel then click the rectangle on the Stage to select it.

19. With the rectangle still selected, type 468 in the width text box and 60 in the height text
box in the Property inspector. Then change the X and Y coordinates (X and Y text boxes)
to 0.

20.With the rectangle selected on the Stage, press F8 to change the rectangle into a symbol.

21. In the Convert to Symbol dialog box, type invisible btn in the Name text box, select
Button, and then click OK.

22.Double-click the new button on the Stage to enter symbol-editing mode.

The rectangle is currently on the first Up frame of the button you created. This is the Up
state of the button—what users see when the button is on the Stage. However, you want
the button to not be visible on the Stage, so you need to move the rectangle to the Hit
frame, which is the hit area of the button (the active region that a user can click to activate
the button’s actions).

23.Click the keyframe at the Up frame, and hold down the mouse button while you drag the
keyframe to the Hit frame.

You can now click in the entire banner area, but there is no visual appearance of the
button on your banner.

24.Click Scene 1 to return to the main Timeline.

A teal rectangle appears over the banner area, representing the invisible button’s hit area.
25.Select the button you created, open the Property inspector, and type inv_btn in the

Instance Name text box.

566 Working with Images, Sound, and Video

26.Select Frame 1 on the Timeline, and then type the following code in the Actions panel:
inv_btn.onRelease = function(){

getURL("http://www.adobe.com");
};

27.Make other modifications to the banner, such as adding graphics or text.

28.Select Control > Test Movie to test the banner in Flash Player.

In this example, you created a banner and resized its dimensions to the established,
standardized dimensions that the Interactive Advertising Bureau specifies. For information on
standard advertising dimensions (and many other useful guidelines), see the Interactive
Advertising Bureau’s Standards and Guidelines page at www.iab.net/standards/adunits.asp.

Despite standardized guidelines, ensure that you confirm the advertising guidelines for the
advertising service, client, or website that you’re advertising with first. If you submit your
banner to an advertising company, make sure the file meets a specified file size, dimension,
target Flash Player version, and frame-rate guideline. Also, you might have to consider rules
about the kinds of media you can use, button code you use in the FLA file, and so on.

Preloading FLV files
To track the downloading progress of FLV files, use the NetStream.bytesLoaded and
NetStream.bytesTotal properties. To obtain the total bytes and current number of bytes
loaded for an FLV file, use the NetStream.bytesLoaded and NetStream.bytesTotal
properties.

The following example uses the bytesLoaded and bytesTotal properties that show the
loading progress of video1.flv into the video object instance called my_video. A text field
called loaded_txt is dynamically created to show information about the loading progress.

To preload an FLV file:

1. Create a new FLA file called preloadFLV.fla.

2. In the Library panel (Window > Library), select New Video from the Library
pop-up menu.

3. In the Video Properties dialog box, name the video symbol and select Video (ActionScript
controlled).

4. Click OK to create a video object.

5. Drag the video object from the Library panel to the Stage to create a video object instance.

6. With the video object selected on the Stage, type my_video in the Instance Name text box
in the Property inspector (Window > Properties > Properties).

http://www.iab.net/standards/adunits.asp

About using FLV video 567

7. With the video instance still selected, type 320 in the width text box and 213 in the height
text box in the Property inspector.

8. Select Frame 1 in the Timeline, and open the Actions panel (Window > Actions).

9. Type the following code in the Actions panel:
var connection_nc:NetConnection = new NetConnection();
connection_nc.connect(null);
var stream_ns:NetStream = new NetStream(connection_nc);
my_video.attachVideo(stream_ns);
stream_ns.play("http://www.helpexamples.com/flash/video/

lights_short.flv");

this.createTextField("loaded_txt", this.getNextHighestDepth(), 10, 10,
160, 22);

var loaded_interval:Number = setInterval(checkBytesLoaded, 500,
stream_ns);

function checkBytesLoaded(my_ns:NetStream) {
var pctLoaded:Number = Math.round(my_ns.bytesLoaded / my_ns.bytesTotal
* 100);
loaded_txt.text = Math.round(my_ns.bytesLoaded / 1000) + " of " +
Math.round(my_ns.bytesTotal / 1000) + " KB loaded (" + pctLoaded +
"%)";
progressBar_mc.bar_mc._xscale = pctLoaded;
if (pctLoaded >= 100) {

clearInterval(loaded_interval);
}

}

10. Select Control > Test Movie to test your code.

Another way to preload FLV files is to use the NetStream.setBufferTime() method. This
method takes a single parameter that indicates the number of seconds of the FLV stream to
buffer before playback begins. For more information, see setBufferTime
(NetStream.setBufferTime method), getBytesLoaded (MovieClip.getBytesLoaded
method), getBytesTotal (MovieClip.getBytesTotal method), bytesLoaded
(NetStream.bytesLoaded property), bytesTotal (NetStream.bytesTotal
property), and setInterval function in the ActionScript 2.0 Language Reference.

N
O

T
E

If your progress bar loads instantly, the video has cached on your hard disk (either
from testing this example or loading it in a different procedure). If this occurs, upload
a FLV file to your server and load it instead.

568 Working with Images, Sound, and Video

Working with cue points
You can use several different kinds of cue points with Flash Video. You can use ActionScript
to interact with cue points that you embed in an FLV file (when you create the FLV file), or
that you create by using ActionScript.

Navigation cue points You embed navigation cue points in the FLV stream and FLV
metadata packet when you encode the FLV file. You use navigation cue points to let users seek
to a specified part of a file.

Event cue points You embed event cue points in the FLV stream and FLV metadata packet
when you encode the FLV file. You can write code to handle the events that are triggered at
specified points during FLV playback.

ActionScript cue points External cue points that you create by using ActionScript code.
You can write code to trigger these cue points in relation to the video’s playback. These cue
points are less accurate than embedded cue points (up to a tenth of a second), because the
video player tracks them separately.

Navigation cue points create a keyframe at the specified cue point location, so you can use
code to move a video player’s playhead to that location. You can set particular points in an
FLV file where you might want users to seek. For example, your video might have multiple
chapters or segments, and you can control the video by embedding navigation cue points in
the video file.

If you plan to create an application in which you want users to navigate to a cue point, you
should create and embed cue points when you encode the file instead of using ActionScript
cue points. You should embed the cue points in the FLV file, because they are more accurate
to work with. For more information on encoding FLV files with cue points, see “Working
with cue points” in Using Flash.

You can access cue point parameters by writing ActionScript. Cue point parameters are a part
of the event object received with the cuePoint event (event.info.parameters). For
information on accessing or tracing cue points, see “Working with cue points” in Using Flash.

Tracing cue points from an FLV file
You can trace the cue points that are embedded in an FLV document using
NetStream.onMetaData. You need to recurse the structure of the metadata that returns to see
the cue point information.

The following code traces cue points in an FLV file:
var connection_nc:NetConnection = new NetConnection();
connection_nc.connect(null);
var stream_ns:NetStream = new NetStream(connection_nc);

About using FLV video 569

stream_ns.onMetaData = function(metaProp:Object) {
trace("The metadata:");
traceMeta(metaProp);
// traceObject(metaProp, 0);

};
my_video.attachVideo(stream_ns);
stream_ns.play("http://www.helpexamples.com/flash/video/cuepoints.flv");

function traceMeta(metaProp:Object):Void {
var p:String;
for (p in metaProp) {

switch (p) {
case "cuePoints" :

trace("cuePoints: ");
//cycles through the cue points
var cuePointArr:Array = metaProp[p];
for (var j:Number = 0; j < cuePointArr.length; j++) {

//cycle through the current cue point parameters
trace("\t cuePoints[" + j + "]:");
var currentCuePoint:Object = metaProp[p][j];
var metaPropPJParams:Object = currentCuePoint.parameters;
trace("\t\t name: " + currentCuePoint.name);
trace("\t\t time: " + currentCuePoint.time);
trace("\t\t type: " + currentCuePoint.type);
if (metaPropPJParams != undefined) {

trace("\t\t parameters:");
traceObject(metaPropPJParams, 4);

}
}
break;

default :
trace(p + ": " + metaProp[p]);
break;

}
}

}
function traceObject(obj:Object, indent:Number):Void {

var indentString:String = "";
for (var j:Number = 0; j < indent; j++) {

indentString += "\t";
}
for (var i:String in obj) {

if (typeof(obj[i]) == "object") {
trace(indentString + " " + i + ": [Object]");
traceObject(obj[i], indent + 1);

} else {
trace(indentString + " " + i + ": " + obj[i]);

}
}

}

570 Working with Images, Sound, and Video

The following output appears:
The metadata:
canSeekToEnd: true
cuePoints:

cuePoints[0]:
name: point1
time: 0.418
type: navigation
parameters:

lights: beginning
cuePoints[1]:

name: point2
time: 7.748
type: navigation
parameters:

lights: middle
cuePoints[2]:

name: point3
time: 16.02
type: navigation
parameters:

lights: end
audiocodecid: 2
audiodelay: 0.038
audiodatarate: 96
videocodecid: 4
framerate: 15
videodatarate: 400
height: 213
width: 320
duration: 16.334

For information on using cue points with the FLVPlayback component, see “Using embedded
cue points with the FLVPlayback component”.

Using embedded cue points with the FLVPlayback
component
You can view cue points for an FLV file in the Property inspector when you use the
FLVPlayback component. After you set the contentPath property for the FLVPlayback
instance, you can view any cue points that are embedded in the video file. Using the
Parameters tab, find the cuePoints property, and click the magnifying glass icon to see a list
of the cue points in the file.

N
O

T
E

To see the cue points on the Parameters tab, you must type the name of your FLV file in
the contentPath text box instead of using code to assign the contentPath.

About using FLV video 571

The following example shows how to use cue point information with the FLVPlayback
component.

To use cue points with the FLVPlayback component:

1. Create a new Flash document called cueFlv.fla.

2. Open the Components panel (Window > Components), and drag an instance of the
FLVPlayback and TextArea components to the Stage.

3. Select the TextArea component, and type my_ta in the Instance Name text box in the
Property inspector (Window > Properties > Properties).

4. With the TextArea component still selected, type 200 in the width text box and 100 in the
height text box.

5. Select the FLVPlayback instance on the Stage, and then type my_flvPb in the Instance
Name text box.

6. Select Frame 1 on the Timeline, and type the following code in the Actions panel.
var my_flvPb:mx.video.FLVPlayback;
var my_ta:mx.controls.TextArea;
my_flvPb.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object) {

my_ta.text += "Elapsed time in seconds: " + my_flvPb.playheadTime +
"\n";

};
my_flvPb.addEventListener("cuePoint",listenerObject);

7. Select Control > Test Movie to test the SWF file.

The elapsed time appears in the TextArea instance when the playhead passes each cue
point embedded in the document.

For more information on working with the FLVPlayback component, see ActionScript 2.0
Components Language Reference.

572 Working with Images, Sound, and Video

Creating cue points with ActionScript to use with components
You can create cue points with ActionScript, and then use them with a video object instance,
or one of the video player components (FLVPlayback for Flash Player 8 and later, or
MediaPlayback for Flash Player 7). The following examples show you how easy it is to use
ActionScript code to create cue points, and then use a script to access them.

To create and use cue points with the FLVPlayback component:

1. Create a new Flash document called cueFlvPb.fla.

2. Drag an instance of the FLVPlayback component from the Components panel (Window
> Components) to the Stage.

The component is in the FLVPlayback - Player 8 folder.
3. Select the component and open the Property inspector (Window > Properties >

Properties).

4. Type my_flvPb in the Instance Name text box.

5. Drag an instance of the TextArea component from the Components panel to the Stage.

6. Select the TextArea component and type my_ta in the Instance Name text box.

7. With the TextArea component still selected, type 200 in the width text box and 100 in the
height text box.

8. Select Frame 1 on the Timeline, and type the following code in the Actions panel:
var my_flvPb:mx.video.FLVPlayback;
my_flvPb.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv";

// Create cuePoint object.
var cuePt:Object = new Object();
cuePt.time = 1;
cuePt.name = "elapsed_time";
cuePt.type = "actionscript";
// Add AS cue point.
my_flvPb.addASCuePoint(cuePt);

// Add another AS cue point.
my_flvPb.addASCuePoint(2, "elapsed_time2");

// Display cue point information in text field.
var listenerObject:Object = new Object();

N
O

T
E

Embed navigation cue points in a document if you intend to add navigation functionality
to an application. For more information, see “Working with cue points” on page 568. For
an example of working with embedded cue points, see “Using embedded cue points with
the FLVPlayback component” on page 570.

About using FLV video 573

listenerObject.cuePoint = function(eventObject) {
my_ta.text += "Elapsed time in seconds: " + my_flvPb.playheadTime +
"\n";

};
my_flvPb.addEventListener("cuePoint",listenerObject);

9. Select Control > Test Movie to test your code.

The following cue points trace in the Output panel:
Elapsed time in seconds: 1.034
Elapsed time in seconds: 2.102

For information on working with cue points and the FLVPlayback component, see
ActionScript 2.0 Components Language Reference.

The following example shows how to add cue points at runtime and then trace the cue points
when a FLV file plays in the MediaPlayback component.

To create and use cue points with the MediaPlayback component:

1. Create a new Flash document called cuePointMP.fla

2. Drag an instance of the MediaPlayback component from the Components panel (Window
> Components) to the Stage.

The component is in the Media - Player 6 - 7 folder.
3. Select the component, and open the Property inspector (Window > Properties >

Properties).

4. Type my_mp in the Instance Name text box.

5. Select the Parameters tab, and click Launch Component Inspector.

6. In the Component inspector, type http://www.helpexamples.com/flash/video/clouds.flv
in the URL text box.

7. Open the Actions panel (Window > Actions), and type the following code in the
Script pane:
import mx.controls.MediaPlayback;
var my_mp:MediaPlayback;
my_mp.autoPlay = false;
my_mp.addEventListener("cuePoint", doCuePoint);
my_mp.addCuePoint("one", 1);
my_mp.addCuePoint("two", 2);
my_mp.addCuePoint("three", 3);
my_mp.addCuePoint("four", 4);
function doCuePoint(eventObj:Object):Void {
 trace(eventObj.type + " = {cuePointName:" + eventObj.cuePointName +

" cuePointTime:" + eventObj.cuePointTime + "}");
}

8. Select Control > Test Movie to test your code.

574 Working with Images, Sound, and Video

The following cue points trace in the Output panel:
cuePoint = {cuePointName:one cuePointTime:1}
cuePoint = {cuePointName:two cuePointTime:2}
cuePoint = {cuePointName:three cuePointTime:3}
cuePoint = {cuePointName:four cuePointTime:4}

For more information on working with the MediaPlayback component and the FLVPlayback
component, see ActionScript 2.0 Components Language Reference.

Adding seek functionality with cue points
You can embed Navigation cue points in an FLV file to add seeking functionality to your
applications. The seekToNavCuePoint() method of the FLVPlayback component locates the
cue point in the FLV file with the specified name, at or after the specified time. You can
specify a name as a string (such as "part1" or "theParty").

You can also use the seekToNextNavCuePoint() method, which seeks to the next navigation
cue point, based on the current playheadTime. You can pass the method a parameter, time,
which is the starting time from where to look for the next navigation cue point. The default
value is the current playheadTime.

Alternatively, you can also seek to a specified duration of the FLV file, using the
seek() method.

In the following examples, you add a button that you use to jump between cue points or a
specified duration in a FLV file that plays in the FLVPlayback component, and a button to
jump to a specified cue point.

To seek to a specified duration:

1. Create a new Flash document called seekduration.fla.

2. Drag an instance of the FLVPlayback component from the Components panel (Window
> Components).

The component is in the FLVPlayback - Player 8 folder.
3. Select the component and open the Property inspector (Window > Properties >

Properties).

4. Type my_flvPb in the Instance Name text box.

5. Drag an instance of the Button component from the Components panel to the Stage.

6. Select the Button component and type seek_button in the Instance Name text box.

7. Select Frame 1 on the Timeline and type the following code in the Actions panel:
import mx.controls.Button;
import mx.video.FLVPlayback;
var seek_button:Button;

About using FLV video 575

var my_flvPb:FLVPlayback;
my_flvPb.autoPlay = false;
my_flvPb.contentPath = "http://www.helpexamples.com/flash/video/

sheep.flv";
seek_button.label = "Seek";
seek_button.addEventListener("click", seekFlv);
function seekFlv(eventObj:Object):Void {

// seek to 2 seconds
my_flvPb.seek(2);

}

8. Select Control > Test Movie to test your code.

When you click the button, the video playhead moves to the duration that you specify:
2 seconds into the video.

To add seeking functionality with the FLVPlayback component:

1. Create a new Flash document called seek1.fla.

2. Drag an instance of the FLVPlayback component from the Components panel (Window
> Components).

The component is in the FLVPlayback - Player 8 folder.
3. Select the component and open the Property inspector (Window > Properties >

Properties).

4. Type my_flvPb in the Instance Name text box.

5. Drag an instance of the Button component from the Components panel to the Stage.

6. Select the Button component and type my_button in the Instance Name text box.

7. Select Frame 1 on the Timeline and type the following code in the Actions panel:
import mx.video.FLVPlayback;
var my_flvPb:FLVPlayback;
my_flvPb.autoPlay = false;
my_flvPb.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
my_button.label = "Next cue point";

function clickMe(){
 my_flvPb.seekToNextNavCuePoint();
}
my_button.addEventListener("click", clickMe);

8. Select Control > Test Movie to test your code.

The cuepoints.flv file contains three navigation cue points: one each near the beginning,
middle, and end of the video file. When you click the button, the FLVPlayback instance
seeks to the next cue point until it reaches the last cue point in the video file.

576 Working with Images, Sound, and Video

You can also seek to a specified cue point in an FLV file by using the seekToCuePoint()
method, as shown in the following example.

To seek to a specified cue point:

1. Create a new Flash document called seek2.fla.

2. Drag an instance of the FLVPlayback component from the Components panel (Window
> Components).

The component is in the FLVPlayback - Player 8 folder.
3. Select the component, and open the Property inspector (Window > Properties >

Properties).

4. Type my_flvPb in the Instance Name text box.

5. With the FLVPlayback instance still selected, click the Parameters tab.

6. Type http://www.helpexamples.com/flash/video/cuepoints.flv in the contentPath
text box.

When you type the URL in the contentPath text box, the cue points appear in the
Parameters tab (next to cuePoint parameter). Therefore, you can determine the name of
the cue point that you want to find in your code. If you click the magnifying glass icon,
you can view all of the video file’s cue points and information about each cue point in
a table.

7. Drag an instance of the Button component from the Components panel to the Stage.

8. Select the Button component and type my_button in the Instance Name text box.

9. Select Frame 1 on the Timeline and type the following code in the Actions panel:
import mx.video.FLVPlayback;
var my_flvPb:FLVPlayback;
my_flvPb.autoPlay = false;
my_button.label = "Seek to point2";

function clickMe(){
 my_flvPb.seekToNavCuePoint("point2");
}
my_button.addEventListener("click", clickMe);

10. Select Control > Test Movie to test your code.

The cuepoints.flv file contains three navigation cue points: one each near the beginning,
middle, and end of the video file. When you click the button, the FLVPlayback instance
seeks to the specified cue point (point2).

For more information on cue points and the FLVPlayback component, see ActionScript 2.0
Components Language Reference.

About using FLV video 577

Working with metadata
You can use the onMetaData method to view the metadata information in your FLV file.
Metadata includes information about your FLV file, such as duration, width, height, and
frame rate. The metadata information that is added to your FLV file depends on the software
you use to encode your FLV file or the software you use to add metadata information.

To work with NetStream.onMetaData, you must have Flash Video that contains metadata. If
you encode FLV files using Flash 8 Video Encoder, your FLV file will have metadata
information in it (see the following example for a list of metadata in a FLV file encoded with
Flash 8 Video Encoder).

The following example uses NetStream.onMetaData to trace the metadata information of an
FLV file encoded with Flash 8 Video Encoder.

To use NetStream.onMetaData to view metadata information:

1. Create a new FLA file called flvMetadata.fla.

2. In the Library panel (Window > Library), select New Video from the Library
pop-up menu.

3. In the Video Properties dialog box, name the video symbol and select Video (ActionScript
controlled).

4. Click OK to create a video object.

5. Drag the video object from the Library panel to the Stage to create a video object instance.

6. With the video object selected on the Stage, type my_video in the Instance Name text box
in the Property inspector (Window > Properties > Properties).

7. With the video instance still selected, type 320 in the width text box and 213 in the height
text box.

8. Select Frame 1 in the Timeline, and open the Actions panel (Window > Actions).

N
O

T
E

If your video file does not have metadata information, you can use tools to add metadata
information to the file.

N
O

T
E

Flash Video Exporter 1.2 and later (including Flash 8 Video Exporter), add the metadata
to your FLV files. Sorenson Squeeze 4.1 and later also adds metadata to your video files.

578 Working with Images, Sound, and Video

9. Type the following code in the Actions panel:
// Create a NetConnection object.
var netConn:NetConnection = new NetConnection();
// Create a local streaming connection.
netConn.connect(null);
// Create a NetStream object and define an onStatus() function.
var nStream:NetStream = new NetStream(netConn);
// Attach the NetStream video feed to the Video object.
my_video.attachVideo(nStream);
// Set the buffer time.
nStream.setBufferTime(30);
// Being playing the FLV file.
nStream.play("http://www.helpexamples.com/flash/video/

lights_short.flv");
// Trace the metadata.
nStream.onMetaData = function(myMeta) {
 for (var i in myMeta) {
 trace(i + ":\t" + myMeta[i])
 }
};

10. Select Control > Test Movie to test your code.

You see the following information in the Output panel:
canSeekToEnd:true
audiocodecid:2
audiodelay:0.038
audiodatarate:96
videocodecid:4
framerate:15
videodatarate:400
height:213
width:320
duration:8.04

You can also use the following format to display most metadata information. For example, the
following code shows the duration of an FLV file:

nStream.onMetaData = function(myMeta) {
trace("FLV duration: " + myMeta.duration + " sec.");

};

This format cannot trace cuePoint metadata information. For information on tracing cue
points, see “Tracing cue points from an FLV file” on page 568.

N
O

T
E

If your video does not have audio, the audio-related metadata information (such as
audiodatarate) returns undefined because no audio information is added to the
metadata during encoding.

About using FLV video 579

Configuring your server for FLV files
When you work with FLV files, you might have to configure your server to work with the
FLV file format. Multipurpose Internet Mail Extensions (MIME) is a standardized data
specification that lets you send non-ASCII files over Internet connections. Web browsers and
e-mail clients are configured to interpret numerous MIME types so that they can send and
receive video, audio, graphics, and formatted text. To load FLV files from a web server, you
might need to register the file extension and MIME type with your web server, so you should
check your web server documentation. The MIME type for FLV files is video/x-flv. The
full information for the FLV file type is as follows:

Mime Type: video/x-flv
File extension: .flv
Required parameters: none
Optional parameters: none
Encoding considerations: FLV files are binary files; some applications might require the
application/octet-stream subtype to be set.
Security issues: none
Published specification: www.adobe.com/go/flashfileformat.

Microsoft changed the way streaming media is handled in Microsoft Internet Information
Services (IIS) 6.0 web server from earlier versions. Earlier versions of IIS do not require any
modification to stream Flash Video. In IIS 6.0, the default web server that comes
with Windows 2003, the server requires a MIME type to recognize that FLV files are
streaming media.

When SWF files that stream external FLV files are placed on a Microsoft Windows 2003
server and are viewed in a browser, the SWF file plays correctly, but the FLV video does not
stream. This issue affects all FLV files placed on Windows 2003 server, including files you
make with earlier versions of the Flash authoring tool, the Macromedia Flash Video Kit
for Dreamweaver MX 2004. These files work correctly if you test them on other
operating systems.

For information about configuring Microsoft Windows 2003 and Microsoft IIS Server 6.0 to
stream FLV video, see http://www.adobe.com/cfusion/knowledgebase/
index.cfm?id=tn_19439.

http://www.adobe.com/go/flashfileformat
http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_19439
http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_19439

580 Working with Images, Sound, and Video

About targeting local FLV files on Macintosh
If you attempt to play a local FLV from a non-system drive on a Macintosh computer by
using a path that uses a relative slash (/), the video will not play. Non-system drives include, but
are not limited to, CD-ROMs, partitioned hard disks, removable storage media, and
connected storage devices.

For an FLV file to play from a non-system drive on a Macintosh, refer to it with an absolute
path using a colon-based notation (:) rather than slash-based notation (/). The following list
shows the difference in the two kinds of notation:

Slash-based notation myDrive/myFolder/myFLV.flv

Colon-based notation (Macintosh) myDrive:myFolder:myFLV.flv

You can also create a projector file for a CD-ROM you intend to use for Macintosh playback.
For the latest information on Macintosh CD-ROMs and FLV files, see http://
www.adobe.com/cfusion/knowledgebase/index.cfm?id=3121b301.

About creating progress animations for
media files
ActionScript provides several ways to preload or track the downloading progress of external
media. You can create progress bars or animations to visually show the loading progress or the
amount of content that has loaded.

To preload SWF and JPEG files, use the MovieClipLoader class, which provides an event
listener mechanism for checking downloading progress. For more information, see
“Preloading SWF and JPEG files” on page 427.

To track the downloading progress of MP3 files, use the Sound.getBytesLoaded() and
Sound.getBytesTotal() methods; to track the downloading progress of FLV files, use the
NetStream.bytesLoaded and NetStream.bytesTotal properties. For more information,
see “Preloading MP3 files” on page 420.

N
O

T
E

The reason for this failure is a limitation of the operating system, not a limitation in Flash
or Flash Player.

http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=3121b301
http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=3121b301

About creating progress animations for media files 581

For information on creating progress bars to load media files, see the following topics:

■ “Creating a progress animation for loading SWF and image files” on page 581
■ “Creating a progress bar for loading MP3 files with ActionScript” on page 583
■ “Creating a progress bar for loading FLV files with ActionScript” on page 585

For a sample source file that uses scripted animation to create a progress bar animation,
tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween Progressbar folder
to access this sample.

Creating a progress animation for loading SWF and
image files
When you load large SWF or image files into an application, you might want to create an
animation that shows the loading progress. You might create a progress bar that shows
increases as the animation loads. You might also create an animation that changes as the file
loads. For information on loading SWF and image files, see “Loading external SWF and
image files” on page 551.

The following example shows how to use the MovieClipLoader class and the Drawing API to
show the loading progress of an image file.

To create a progress bar for loading image or SWF files:

1. Create a new Flash document called loadImage.fla.

2. Select Modify > Document, and type 700 into the width text box and 500 into the height
text box to change the document’s dimensions.

3. Select Frame 1 of the Timeline, and then type the following code in the Actions panel:
//create clips to hold your content
this.createEmptyMovieClip("progressBar_mc", 0);
progressBar_mc.createEmptyMovieClip("bar_mc", 1);
progressBar_mc.createEmptyMovieClip("stroke_mc", 2);
//use drawing methods to create a progress bar
with (progressBar_mc.stroke_mc) {
 lineStyle(0, 0x000000);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
}

http://www.adobe.com/go/learn_fl_samples

582 Working with Images, Sound, and Video

with (progressBar_mc.bar_mc) {
 beginFill(0xFF0000, 100);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
 endFill();
 _xscale = 0;
}
progressBar_mc._x = 2;
progressBar_mc._y = 2;
// load progress
var mclListener:Object = new Object();
mclListener.onLoadStart = function(target_mc:MovieClip) {
 progressBar_mc.bar_mc._xscale = 0;
};
mclListener.onLoadProgress = function(target_mc:MovieClip,

bytesLoaded:Number, bytesTotal:Number) {
 progressBar_mc.bar_mc._xscale = Math.round(bytesLoaded/

bytesTotal*100);
};
mclListener.onLoadComplete = function(target_mc:MovieClip) {
 progressBar_mc.removeMovieClip();
};
mclListener.onLoadInit = function(target_mc:MovieClip) {
 target_mc._height = 500;
 target_mc._width = 700;
};
//Create a clip to hold the image.
this.createEmptyMovieClip("image_mc", 100);
var image_mcl:MovieClipLoader = new MovieClipLoader();
image_mcl.addListener(mclListener);
/* Load the image into the clip.
You can change the following URL to a SWF or another image file. */
image_mcl.loadClip("http://www.helpexamples.com/flash/images/gallery1/

images/pic3.jpg", image_mc);

4. Select Control > Test Movie to see the image load and watch the progress bar.

For a sample source file that uses scripted animation to create a progress bar animation,
tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween Progressbar folder
to access this sample.

N
O

T
E

If you test this code a second time, the image will be cached and the progress bar will
complete right away. To test multiple times, use different images and load them from
an external source. A local source might cause problems with testing your
application because the content loads too quickly.

http://www.adobe.com/go/learn_fl_samples

About creating progress animations for media files 583

For samples of photo gallery applications, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/
Galleries folder to access these samples:

■ gallery_tree.fla
■ gallery_tween.fla

These samples provide information on how to use ActionScript to control movie clips
dynamically while loading image files into a SWF file.

Creating a progress bar for loading MP3 files with
ActionScript
The following example loads several songs into a SWF file. A progress bar, created using the
Drawing API, shows the loading progress. When the music starts and completes loading,
information appears in the Output panel. For information on loading MP3 files, see “Loading
an MP3 file” on page 556.

To create a progress bar for loading MP3 files:

1. Create a new Flash document called loadSound.fla.

2. Select Frame 1 on the Timeline and type the following code in the Actions panel.
var pb_height:Number = 10;
var pb_width:Number = 100;
var pb:MovieClip = this.createEmptyMovieClip("progressBar_mc",

this.getNextHighestDepth());
pb.createEmptyMovieClip("bar_mc", pb.getNextHighestDepth());
pb.createEmptyMovieClip("vBar_mc", pb.getNextHighestDepth());
pb.createEmptyMovieClip("stroke_mc", pb.getNextHighestDepth());
pb.createTextField("pos_txt", pb.getNextHighestDepth(), 0, pb_height,

pb_width, 22);

pb._x = 100;
pb._y = 100;

with (pb.bar_mc) {
 beginFill(0x00FF00);
 moveTo(0, 0);
 lineTo(pb_width, 0);
 lineTo(pb_width, pb_height);
 lineTo(0, pb_height);
 lineTo(0, 0);
 endFill();
 _xscale = 0;
}

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

584 Working with Images, Sound, and Video

with (pb.vBar_mc) {
 lineStyle(1, 0x000000);
 moveTo(0, 0);
 lineTo(0, pb_height);
}
with (pb.stroke_mc) {
 lineStyle(3, 0x000000);
 moveTo(0, 0);
 lineTo(pb_width, 0);
 lineTo(pb_width, pb_height);
 lineTo(0, pb_height);
 lineTo(0, 0);
}

var my_interval:Number;
var my_sound:Sound = new Sound();
my_sound.onLoad = function(success:Boolean) {
 if (success) {
 trace("sound loaded");
 }
};
my_sound.onSoundComplete = function() {
 clearInterval(my_interval);
 trace("Cleared interval");
}
my_sound.loadSound("http://www.helpexamples.com/flash/sound/song2.mp3",

true);
my_interval = setInterval(updateProgressBar, 100, my_sound);

function updateProgressBar(the_sound:Sound):Void {
 var pos:Number = Math.round(the_sound.position / the_sound.duration *

100);
 pb.bar_mc._xscale = pos;
 pb.vBar_mc._x = pb.bar_mc._width;
 pb.pos_txt.text = pos + "%";
}

3. Select Control > Test Movie to load the MP3 file and watch the progress bar.

For more information on using sound, see the Sound class entry, Sound, in the ActionScript
2.0 Language Reference.

N
O

T
E

If you test this code a second time, the image will be cached and the progress bar will
complete right away. To test multiple times, use different images and load them from
an external source. A local source might cause problems with testing your
application because the content loads too quickly.

About creating progress animations for media files 585

For a sample source file that uses scripted animation to create a progress bar animation,
tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween Progressbar folder
to access this sample.

For a sample source file that loads MP3 files, jukebox.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ComponentsAS2/Jukebox folder to access this sample. This sample demonstrates how to
create a jukebox by using data types, general coding principles, and several components.

Creating a progress bar for loading FLV files with
ActionScript
You can create a progress bar to display the loading progress of an FLV file. For information
on loading FLV files into a SWF file, see “Preloading FLV files” on page 566. For other
information about FLV files and Flash, see “About using FLV video” on page 560.

The following example uses the Drawing API to create a progress bar. The example also uses
the bytesLoaded and bytesTotal properties to show the loading progress of video1.flv into
the video object instance called my_video. The loaded_txt text field is dynamically created
to show information about the loading progress.

To create a progress bar that shows loading progress:

1. Create a new FLA file called flvProgress.fla.

2. In the Library panel (Window > Library), select New Video from the Library
pop-up menu.

3. In the Video Properties dialog box, name the video symbol and select Video (ActionScript
controlled).

4. Click OK to create a video object.

5. Drag the video object from the Library panel to the Stage to create a video object instance.

6. With the video object selected on the Stage, type my_video in the Instance Name text box
in the Property inspector (Window > Properties > Properties).

7. With the video instance selected, type 320 into the width text box and 213 into the height
text box.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

586 Working with Images, Sound, and Video

8. Select Frame 1 in the Timeline and type the following code in the Actions panel:
var connection_nc:NetConnection = new NetConnection();
connection_nc.connect(null);
var stream_ns:NetStream = new NetStream(connection_nc);
my_video.attachVideo(stream_ns);
stream_ns.play("http://www.helpexamples.com/flash/video/

typing_short.flv");

this.createTextField("loaded_txt", this.getNextHighestDepth(), 10, 10,
160, 22);

this.createEmptyMovieClip("progressBar_mc", this.getNextHighestDepth());
progressBar_mc.createEmptyMovieClip("bar_mc",

progressBar_mc.getNextHighestDepth());
with (progressBar_mc.bar_mc) {
 beginFill(0xFF0000);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
 endFill();
 _xscale = 0;
}
progressBar_mc.createEmptyMovieClip("stroke_mc",

progressBar_mc.getNextHighestDepth());
with (progressBar_mc.stroke_mc) {
 lineStyle(0, 0x000000);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
}

var loaded_interval:Number = setInterval(checkBytesLoaded, 500,
stream_ns);

function checkBytesLoaded(my_ns:NetStream) {
 var pctLoaded:Number = Math.round(my_ns.bytesLoaded /

my_ns.bytesTotal * 100);
 loaded_txt.text = Math.round(my_ns.bytesLoaded / 1000) + " of " +

Math.round(my_ns.bytesTotal / 1000) + " KB loaded (" + pctLoaded +
"%)";

 progressBar_mc.bar_mc._xscale = pctLoaded;
 if (pctLoaded>=100) {
 clearInterval(loaded_interval);
 }
}

About creating progress animations for media files 587

9. Select Control > Test Movie to test your code.

The video loads and an animating bar and changing text values communicate the loading
progress. If these elements overlap your video, move the video object on the Stage. You
can customize the color of the progress bar by modifying beginFill and lineStyle in
previous code snippet.

For a sample source file that uses scripted animation to create a progress bar animation,
tweenProgress.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples.
Download the Samples zip file and navigate to the ActionScript2.0/Tween Progressbar folder
to access this sample.

N
O

T
E

If your progress bar loads instantly, the video is cached on your hard disk (either from
testing this example already, or loading it in a different procedure). If this occurs,
upload a FLV file to your server and load it instead.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

588 Working with Images, Sound, and Video

589

15
CHAPTER 15

Working with External Data

In Flash CS3 Professional, you can use ActionScript to load data from external sources to a
SWF file. You can also send data, which could be provided by the user or the server, from a
SWF file to an application server (such as ColdFusion or JRun) or another type of server-side
script, such as PHP or Perl. Flash Player can send and load data over HTTP or HTTPS or
load from a local text file. You can also create persistent TCP/IP socket connections for
applications that require low latency—for example, chat applications or stock quote services.
With Flash Player 8 and later, you can upload files from the user’s computer to a server and
download files from a server to the user’s computer.

Data that you load into or send from a SWF file can be formatted as XML (Extensible
Markup Language) or as name-value pairs.

Flash Player can also send data to and receive data from its host environment—a web browser,
for example—or another instance of Flash Player on the same computer or web page.

By default, a SWF file can access only data that resides in exactly the same domain (for
example, www.adobe.com). (For more information, see “Restricting networking APIs”
on page 648.)

For more information on working with external data, see the following topics:
Sending and loading variables. 590

Using HTTP to connect to server-side scripts. 594

About file uploading and downloading. 600

About XML. 608

Sending messages to and from Flash Player. 617

About the External API . 621

590 Working with External Data

Sending and loading variables
A SWF file is a window for capturing and displaying information, much like an HTML page.
However, SWF files can stay loaded in the browser and continuously update with new
information without having to reload the entire page. Using ActionScript functions and
methods, you can send information to and receive information from server-side scripts and
receive information from text files and XML files.

In addition, server-side scripts can request specific information from a database and relay it to
a SWF file. Server-side scripts can be written in different languages: some of the most
common are CFML, Perl, ASP (Microsoft Active Server Pages), and PHP. By storing
information in a database and retrieving it, you can create dynamic and personalized content
for your SWF file. For example, you could create a message board, personal profiles for users,
or a shopping cart that keeps track of a user’s purchases.

Several ActionScript functions and methods let you pass information into and out of a SWF
file. Each function or method uses a protocol to transfer information and requires
information to be formatted in a certain way.

■ The functions and MovieClip methods that use the HTTP or HTTPS protocol to send
information in URL-encoded format are getURL(), loadVariables(),
loadVariablesNum(), loadMovie(), and loadMovieNum().

■ The LoadVars methods that use the HTTP or HTTPS protocol to send and load
information in URL-encoded format are load(), send(), and sendAndLoad().

■ The methods that use HTTP or HTTPS protocol to send and load information as XML
are XML.send(), XML.load(), and XML.sendAndLoad().

■ The methods that create and use a TCP/IP socket connection to send and load
information as XML are XMLSocket.connect() and XMLSocket.send().

For more information, see the following topics:

■ “Checking for loaded data” on page 591
■ “Creating a progress bar to display data loading progress” on page 592

Sending and loading variables 591

Checking for loaded data
Each function or method that loads data into a SWF file (except XMLSocket.send()) is
asynchronous: the results of the action are returned at an indeterminate time.

Before you can use loaded data in a SWF file, you must check to see whether it has
been loaded. For example, you can’t load variables and manipulate their values in the same
script because the data to manipulate doesn’t exist in the file until it is loaded. In the following
script, you cannot use the variable lastSiteVisited until you’re sure that the variable has
loaded from the file myData.txt. In the file myData.txt, you would have text similar to the
following example:
lastSiteVisited=www.adobe.com

If you used the following code, you could not trace the data that is loading:
loadVariables("myData.txt", 0);
trace(lastSiteVisited); // undefined

Each function or method has a specific technique you can use to check data it has loaded. If
you use loadVariables function or loadMovie function, you can load information into a movie
clip target and use the onData handler to execute a script. If you use loadVariables function to
load the data, the onData handler executes when the last variable is loaded. If you use
loadMovie function to load the data, the onData handler executes each time a fragment of the
SWF file is streamed into Flash Player.

For example, the following ActionScript loads the variables from the file myData.txt into the
movie clip loadTarget_mc. An onData() handler assigned to the loadTarget_mc instance
uses the variable lastSiteVisited, which is loaded from the file myData.txt. The following
trace actions appear only after all the variables, including lastSiteVisited, are loaded:
this.createEmptyMovieClip("loadTarget_mc", this.getNextHighestDepth());
this.loadTarget_mc.onData = function() {

trace("Data Loaded");
trace(this.lastSiteVisited);

};
loadVariables("myData.txt", this.loadTarget_mc);

If you use the XML.load(), XML.sendAndLoad(), and XMLSocket.connect() methods, you
should define a handler that processes the data when it arrives. This handler is a property of
an XML or XMLSocket object to which you assign a function you defined. The handlers are
called automatically when the information is received. For the XML object, use
XML.onLoad() or XML.onData(). For the XMLSocket object, use XMLSocket.onConnect().

592 Working with External Data

For more information, see “Using the XML class” on page 609 and “Using the
XMLSocket class” on page 616. For more information on using LoadVars to send and load
data that can be processed after the data is received, see “Using the LoadVars class”
on page 596.

Creating a progress bar to display data
loading progress
The following exercise dynamically creates a simple preloader using the Drawing application
programming interface (API) and displays the loading progress for an XML document.

Creating a progress bar using the Drawing API:

1. Create a new Flash document and save it as drawapi.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var barWidth:Number = 200;
var barHeight:Number = 6;

this.createEmptyMovieClip("pBar_mc", 9999);
var bar:MovieClip = pBar_mc.createEmptyMovieClip("bar_mc", 10);
bar.beginFill(0xFF0000, 100);
bar.moveTo(0, 0);
bar.lineTo(barWidth, 0);
bar.lineTo(barWidth, barHeight);
bar.lineTo(0, barHeight);
bar.lineTo(0, 0);
bar.endFill();
bar._xscale = 0;

var stroke:MovieClip = pBar_mc.createEmptyMovieClip("stroke_mc", 20);
stroke.lineStyle(0, 0x000000);
stroke.moveTo(0, 0);
stroke.lineTo(barWidth, 0);
stroke.lineTo(barWidth, barHeight);
stroke.lineTo(0, barHeight);
stroke.lineTo(0, 0);

pBar_mc.createTextField("label_txt", 30, 0, barHeight, 100, 21);
pBar_mc.label_txt.autoSize = "left";
pBar_mc.label_txt.selectable = false;

pBar_mc._x = (Stage.width - pBar_mc._width) / 2;
pBar_mc._y = (Stage.height - pBar_mc._height) / 2;

T
IP If the remote XML file loads too quickly to see the preloading effect, try uploading a

larger XML file to the internet and loading that file.

Sending and loading variables 593

var my_xml:XML = new XML();
my_xml.ignoreWhite = true;
my_xml.onLoad = function(success:Boolean) {

pBar_mc.onEnterFrame = undefined;
if (success) {

trace("XML loaded successfully");
} else {

trace("Unable to load XML");
}

};
my_xml.load("http://www.helpexamples.com/flash/xml/ds.xml");

pBar_mc.onEnterFrame = function() {
var pctLoaded:Number = Math.floor(my_xml.getBytesLoaded() /
my_xml.getBytesTotal() * 100);
if (!isNaN(pctLoaded)) {

pBar_mc.bar_mc._xscale = pctLoaded;
pBar_mc.label_txt.text = pctLoaded + "% loaded";
if (pctLoaded >= 100) {

pBar_mc.onEnterFrame = undefined;
}

}
};

The previous code is broken down into seven sections. The first section defines the width
and height of the progress bar when it is drawn on the Stage. The progress bar will be
centered on the Stage in an upcoming section. The next section of code creates two movie
clips, pBar_mc and bar_mc. The bar_mc movie clip is nested inside pBar_mc, and draws a
red rectangle on the Stage. The bar_mc instance modifies its _xscale property as the
external XML file loads from the remote website.
Next, a second movie clip is nested inside of the pBar_mc movie clip, stroke_mc. The
stroke_mc movie clip draws an outline on the Stage that matches the dimensions
specified by the barHeight and barWidth variables defined in the first section. The
fourth section of code creates within the pBar_mc movie clip a text field that is used to
display what percentage of the XML file has already loaded, similar to the label on the
ProgressBar component. Next, the pBar_mc movie clip (which includes the nested
bar_mc, stroke_mc, and label_txt instances) is centered on the Stage.

594 Working with External Data

The sixth section of code defines a new XML object instance, which is used to load an
external XML file. An onLoad event handler is defined and traces a message to the Output
panel. The onLoad event handler also deletes the onEnterFrame event handler (which is
defined in the next section) for the pBar_mc movie clip. The final section of code defines
an onEnterFrame event handler for the pBar_mc movie clip. This event handler monitors
how much of the external XML file has loaded and modifies the _xscale property for the
bar_mc movie clip. First the onEnterFrame event handler calculates what percentage of
the file has finished downloading. As long as the percentage of the file loaded is a valid
number, the _xscale property for bar_mc is set, and the text field within pBar_mc
displays what percentage of the file has loaded. If the file has completed loading (percent
loaded reaches 100%) the onEnterFrame event handler is deleted so download progress is
no longer monitored.

3. Select Control > Test Movie to test the Flash document.

As the external XML file loads, the nested bar_mc movie clip resizes to display the
download progress of the XML. Once the XML file has completely loaded, the
onEnterFrame event handler gets deleted so it doesn’t continue to calculate the download
progress. Depending on how fast the download completes, you should be able to see the
bar slowly grow until the bar_mc is the same width as the stroke_mc movie clip. If the
download occurs too fast, the progress bar may go from 0% to 100% too quickly, making
the effect harder to see; in this case it may be necessary to try downloading a larger
XML file.

Using HTTP to connect to server-side
scripts
The loadVariables function, loadVariablesNum function, getURL function, loadMovie
function, loadMovieNum function functions and the loadVariables (MovieClip.loadVariables
method), loadMovie (MovieClip.loadMovie method), and getURL (MovieClip.getURL
method) methods can communicate with server-side scripts using HTTP or HTTPS
protocols.These functions and methods send all the variables from the timeline to which the
function is attached. When used as methods of the MovieClip object, loadVariables(),
getURL(), and loadMovie() send all the variables of the specified movie clip; each function
(or method) handles its response as follows:

■ The getURL() function returns any information to a browser window, not to Flash Player.
■ The loadVariables() method loads variables into a specified timeline or level in

Flash Player.

Using HTTP to connect to server-side scripts 595

■ The loadMovie() method loads a SWF file into a specified level or movie clip in
Flash Player.

When you use loadVariables(), getURL(), or loadMovie(), you can specify
several parameters:

■ URL is the file in which the remote variables reside.
■ Location is the level or target in the SWF file that receives the variables. (The getURL()

function does not take this parameter.)
For more information about levels and targets, see Using Flash.

■ Variables sets the HTTP method, either GET (appends the variables to the end of the
URL) or POST (sends the variables in a separate HTTP header), by which the variables
are sent. When this parameter is omitted, Flash Player defaults to GET, but no variables
are sent.

For example, if you want to track the high scores for a game, you could store the scores on a
server and use loadVariables() to load them into the SWF file each time someone played
the game. The function call might look like the following example:
this.createEmptyMovieClip("highscore_mc", 10);
loadVariables("http://www.helpexamples.com/flash/highscore.php",

highscore_mc, "GET");

This example loads variables from the ColdFusion script called high_score.cfm into the movie
clip instance scoreClip using the GET HTTP method.

Any variables loaded with the loadVariables() function must be in the standard MIME
format application/x-www-form-urlencoded (a standard format used by CFM and CGI scripts).
The file you specify in the URL parameter of loadVariables() must write out the variable
and value pairs in this format so that Flash can read them. This file can specify any number of
variables; variable and value pairs must be separated with an ampersand (&), and words within
a value must be separated with a plus (+) sign. For example, the following phrase defines
several variables:
highScore1=54000&playerName1=RGoulet&highScore2=53455&playerName2=

WNewton&highScore3=42885&playerName3=TJones

For more information, see the following topic: “Using the LoadVars class” on page 596. Also,
see loadVariables function, getURL function, loadMovie function, and the LoadVars entry in
the ActionScript 2.0 Language Reference.

N
O

T
E

You might need to URL-encode certain characters, such as the plus (+) sign or
ampersand (&) characters. For more information, see www.adobe.com/go/tn_14143.

http://www.adobe.com/go/tn_14143

596 Working with External Data

Using the LoadVars class
If you are publishing to Flash Player 6 or later and want more flexibility than
loadVariables() offers, you can use the LoadVars class instead to transfer variables between
a SWF file and a server.

The LoadVars class was introduced in Flash Player 6 to provide a cleaner, more object-
oriented interface for the common task of exchanging CGI data with a web server. Advantages
of the LoadVars class include the following:

■ You don’t need to create container movie clips for holding data or clutter existing movie
clips with variables specific to client/server communication.

■ The class interface is similar to that of the XML object, which provides some consistency
in ActionScript. It uses the methods load(), send(), and sendAndLoad() to initiate
communication with a server. The main difference between the LoadVars and XML
classes is that the LoadVars data is a property of the LoadVars object rather than of an
XML Document Object Model (DOM) tree stored in the XML object.

■ The class interface is more straightforward—with methods named load, send,
sendAndLoad—than the older loadVariables interface.

■ You can get additional information about the communication, using the getBytesLoaded
and getBytesTotal methods.

■ You can get progress information about the download of your data (although you can’t
access the data until it is fully downloaded).

■ The callback interface is through ActionScript methods (onLoad) instead of the obsolete,
deprecated onClipEvent (data) approach required for loadVariables.

■ There are error notifications.
■ You can add custom HTTP request headers.

You must create a LoadVars object to call its methods. This object is a container to hold the
loaded data.

The following procedure shows how to use ColdFusion and the LoadVars class to send an e-
mail from a SWF file.

N
O

T
E

You must have ColdFusion installed on your web server for this example.

Using HTTP to connect to server-side scripts 597

To load data with the LoadVars object:

1. Create a CFM file in Macromedia Dreamweaver or in your favorite text editor. Add the
following text to the file:
<cfif StructKeyExists(Form, "emailTo")>
<cfmail to="#Form.emailTo#" from="#Form.emailFrom#"

subject="#Form.emailSubject#">#Form.emailBody#</cfmail>
&result=true
<cfelse>
&result=false
</cfif>

2. Save the file as email.cfm, and upload it to your website.

3. In Flash, create a new document.

4. Create four input text fields on the Stage, and give them the following instance names:
emailFrom_txt, emailTo_txt, emailSubject_txt, and emailBody_txt.

5. Create a dynamic text field on the Stage with the instance name debug_txt.

6. Create a button symbol, drag an instance on to the Stage, and give it an instance name of
submit_btn.

7. Select Frame 1 in the Timeline, and open the Actions panel (Window > Actions) if it isn’t
already open.

8. Enter the following code in the Actions panel:
this.submit_btn.onRelease = function() {

var emailResponse:LoadVars = new LoadVars();
emailResponse.onLoad = function(success:Boolean) {
if (success) {

debug_txt.text = this.result;
} else {

debug_txt.text = "error downloading content";
}
};
var email:LoadVars = new LoadVars();
email.emailFrom = emailFrom_txt.text;
email.emailTo = emailTo_txt.text;
email.emailSubject = emailSubject_txt.text;
email.emailBody = emailBody_txt.text;
email.sendAndLoad("http://www.yoursite.com/email.cfm", emailResponse,
"POST");

};

598 Working with External Data

This ActionScript creates a new LoadVars object instance, copies the values from the text
fields into the instance, and then sends the data to the server. The CFM file sends the e-
mail and returns a variable (true or false) to the SWF file called result, which appears
in the debug_txt text field.

9. Save the document as sendEmail.fla, and then publish it by selecting File > Publish.

10. Upload sendEmail.swf to the same directory that contains email.cfm (the ColdFusion file
you saved and uploaded in step 2).

11. View and test the SWF file in a browser.

For more information, see the LoadVars entry in the ActionScript 2.0 Language Reference.

Flash Player 8 and later supports the onHTTPStatus event handler for the LoadVars class,
XML class, and MovieClipLoader class to allow users to access the status code from an HTTP
request. This allows developers to determine why a particular load operation may have failed
instead of only being able to determine that a load operation already has failed.

The following example shows how you can use the LoadVars class’s onHTTPStatus event
handler to check whether a text file successfully downloaded from the server and what the
status code returned from the HTTP request was.

To check HTTP status with the LoadVars object:

1. Create a new Flash document and save it as loadvars.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
this.createTextField("params_txt", 10, 10, 10, 100, 21);
params_txt.autoSize = "left";

var my_lv:LoadVars = new LoadVars();
my_lv.onHTTPStatus = function(httpStatus:Number) {

trace("HTTP status is: " + httpStatus);
};
my_lv.onLoad = function(success:Boolean) {

if (success) {
trace("text file successfully loaded");
params_txt.text = my_lv.dayNames;

} else {
params_txt.text = "unable to load text file";

}
};

N
O

T
E

Remember to change the URL www.yoursite.com to your own domain.

Using HTTP to connect to server-side scripts 599

my_lv.load("http://www.helpexamples.com/flash/404.txt");
/* output:

Error opening URL "http://www.helpexamples.com/flash/404.txt"
HTTP status is: 404

*/

The previous code creates a new text field on the Stage and enables text field autosizing.
Next, a LoadVars object is created and two event handlers: onHTTPStatus and onLoad.
The onHTTPStatus event handler (supported in Flash Player 8 and later) is invoked when
a LoadVars.load() or LoadVars.sendAndLoad() operation has completed. The value
passed to the onHTTPStatus event handler function (httpStatus in the previous code)
contains the HTTP status code definition for the current load operation. If the SWF file
was able to successfully load the text file, the value of httpStatus is set to 200 (HTTP
status code for “OK”). If the file didn’t exist on the server, the value of httpStatus is set
to 404 (HTTP status code for “Not Found”). The second event handler,
LoadVars.onLoad(), gets called after the file has finished loading. If the file successfully
loaded, the value of the success parameter is set to true, otherwise the success
parameter is set to false. Finally, the external file is loaded using the LoadVars.load()
method.

3. Select Control > Test Movie to test the Flash document.

Flash displays an error message to the Output panel stating that it was unable to load the
image because it doesn’t exist on the server. The onHTTPStatus event handler traces the
status code of 404 since the file could not be found on the server, and the onLoad event
handler sets the params_txt text field’s text property to “unable to load text file.”

C
A

U
T

IO
N

If a web server does not return a status code to the Flash Player, the number 0 is
returned to the onHTTPStatus event handler.

600 Working with External Data

About file uploading and downloading
The FileReference class lets you add the ability to upload and download files between a client
and server. Your users can upload or download files between their computer and a server.
Users are prompted to select a file to upload or a location for download in a dialog box (such
as the Open dialog box on the Windows operating system).

Each FileReference object that you create with ActionScript refers to a single file on the user’s
hard disk. The object has properties that contain information about the file’s size, type, name,
creation date, and modification date. On the Macintosh, there is also a property for the file’s
creator type.

You can create an instance of the FileReference class in two ways. You can use the following
new operator:
import flash.net.FileReference;
var myFileReference:FileReference = new FileReference();

Or, you can call the FileReferenceList.browse() method, which opens a dialog box on
the user’s system to prompt the user to select a file to upload and then creates an array of
FileReference objects if the user selects one or more files successfully. Each FileReference
object represents a file selected by the user from the dialog box. A FileReference object does
not contain any data in the FileReference properties (such as name, size, or
modificationDate) until the FileReference.browse() method or
FileReferenceList.browse() method has been called and the user has selected a file from
the file picker or until the FileReference.download() method has been used to select a file
from the file picker.

After a successful call to the browse() method, you call FileReference.upload() to upload
one file at a time.

N
O

T
E

FileReference.browse() lets the user select a single file. FileReferenceList.browse() lets
the user select multiple files.

About file uploading and downloading 601

You can also add download functionality to your Flash application. The
FileReference.download() method prompts end users for a location on their hard disks to
save a file from a server. This method also initiates downloading from a remote URL. When
using the download() method, only the FileReference.name property is accessible when
the onSelect event is dispatched. The rest of the properties are not accessible until the
onComplete event is dispatched.

For information on the functionality and security of the FileReference API, see “About
FileReference API functionality and security” on page 601. For an example of an application
that uses the FileReference API, see “Adding file upload functionality to an application”
on page 602. For a sample source file for this example, FileUpload.fla, see the Flash Samples
page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to
the ActionScript2.0/FileUpload folder to access this sample.

For information on each method, property, and event of the FileReference API, see
FileReference (flash.net.FileReference) and FileReferenceList
(flash.net.FileReferenceList) in the ActionScript 2.0 Language Reference.

About FileReference API functionality and security
Flash Player and the FileReference API (see “About file uploading and downloading”
on page 600) support file uploads and downloads. Although the player has no restriction on
the size of files you can upload or download, the player officially supports uploads/downloads
of up to 100 MB. The FileReference API does not let the Flash application that initiates the
file transfer do the following:

■ Access the uploaded or downloaded file
■ Access the path of the file on the user’s computer

N
O

T
E

When a dialog box appears on the end-user’s computer, the default location that
appears in the dialog box is the most recently browsed folder (if that location can be
determined) or the desktop (if the recent folder cannot be determined). The
FileReference and FileReferenceList APIs do not let you set the default file location

http://www.adobe.com/go/learn_fl_samples

602 Working with External Data

When a server requires authentication, the only potentially successful operation is to perform
file downloading using the Flash Player browser plug-in. Uploading on all Flash players, or
downloading through the stand-alone or external Flash Player, fails on a server that requires
authentication. Use FileReference event listeners to determine whether operations completed
successfully or to handle errors.

Both file uploading and downloading are restricted to the SWF file’s domain, including any
domains that you specify using a cross-domain policy file. You need to put a policy file on the
server if the SWF file that initiates the uploading or downloading doesn’t come from the same
domain as the server. For more information on cross-domain policy files and security, see
“Restricting networking APIs” on page 648.

When calls to FileReference.browse(), FileReferenceList.browse(), or
FileReference.download() are executing, playback of the SWF file pauses on the following
platforms: Mac OS X Flash Player browser plug-ins, the Macintosh external Flash Player, and
the Macintosh stand-alone player on Mac OS X 10.1 and earlier. The SWF file continues to
run on all Windows players and in the Macintosh stand-alone Flash Player on Mac OS X 10.2
and later.

For an example of an application that uses the FileReference API, see “Adding file upload
functionality to an application” on page 602.

Adding file upload functionality to an application
The following procedure shows you how to build an application that lets you upload image
files to a server. The application lets users select an image on their hard disks to upload and
then send it to a server. The image that they upload then appears in the SWF file that they
used to upload the image.

Following the example that builds the Flash application is an example that details the server-
side code. Remember that image files are restricted in size: you can only upload images that
are 200K or smaller.

To build a FLA application using the FileReference API:

1. Create a new Flash document and save it as fileref.fla.

W
A

R
N

IN
G

When allowing users to upload files to a server, you should always be careful to check
the file type before saving the file to the hard disk. For example, you wouldn’t want to
allow a user to upload a server-side script that could be used to delete folders or files on
the server. If you only want to allow users to upload an image file, make sure the server-
side script that uploads the files checks that the file being uploaded is a valid image.

About file uploading and downloading 603

2. Open the Components panel, and then drag a ScrollPane component onto the Stage and
give it an instance name of imagePane. (The ScrollPane instance is sized and repositioned
using ActionScript in a later step.)

3. Drag a Button component onto the Stage and give it an instance name of uploadBtn.

4. Drag two Label components onto the Stage and give them instance names of imageLbl and
statusLbl.

5. Drag a ComboBox component onto the Stage and give it an instance name of imagesCb.

6. Drag a TextArea component onto the Stage and give it an instance name of statusArea.

7. Create a new movie clip symbol on the Stage, and open the symbol for editing (double-
click the instance to open it in symbol-editing mode).

8. Create a new static text field inside the movie clip, and then add the following text:

The file that you have tried to download is not on the server.

In the final application, this warning might appear for one of the following reasons,
among others:
■ The image was deleted from the queue on the server as other images were uploaded.
■ The server did not copy the image because the file size exceeded 200K.
■ The type of file was not a valid JPEG, GIF, or PNG file.

9. Right-click the symbol in the Library and select Linkage from the context menu.

10. Select the Export for ActionScript and Export in First Frame check boxes, and type
Message into the Identifier text box. Click OK.

11. Add the following ActionScript to Frame 1 of the Timeline:

import flash.net.FileReference;

imagePane.setSize(400, 350);
imagePane.move(75, 25);
uploadBtn.move(75, 390);
uploadBtn.label = "Upload Image";
imageLbl.move(75, 430);
imageLbl.text = "Select Image";
statusLbl.move(210, 390);
statusLbl.text = "Status";

N
O

T
E

The width of the text field should be less than the width of the ScrollPane
instance (400 pixels); otherwise users have to scroll horizontally to view the
error message

N
O

T
E

The code comments include details about the functionality. A code overview follows
this example.

604 Working with External Data

imagesCb.move(75, 450);
statusArea.setSize(250, 100);
statusArea.move(210, 410);

/* The listener object listens for FileReference events. */
var listener:Object = new Object();

/* When the user selects a file, the onSelect() method is called, and
passed a reference to the FileReference object. */

listener.onSelect = function(selectedFile:FileReference):Void {
/* Update the TextArea to notify the user that Flash is attempting to
upload the image. */
statusArea.text += "Attempting to upload " + selectedFile.name + "\n";
/* Upload the file to the PHP script on the server. */
selectedFile.upload("http://www.helpexamples.com/flash/file_io/
uploadFile.php");

};

/* When the file begins to upload, the onOpen() method is called, so
notify the user that the file is starting to upload. */

listener.onOpen = function(selectedFile:FileReference):Void {
statusArea.text += "Opening " + selectedFile.name + "\n";

};

/* When the file has uploaded, the onComplete() method is called. */
listener.onComplete = function(selectedFile:FileReference):Void {

/* Notify the user that Flash is starting to download the image. */
statusArea.text += "Downloading " + selectedFile.name + " to
player\n";
/* Add the image to the ComboBox component. */
imagesCb.addItem(selectedFile.name);
/* Set the selected index of the ComboBox to that of the most recently
added image. */
imagesCb.selectedIndex = imagesCb.length - 1;
/* Call the custom downloadImage() function. */
downloadImage();

};

var imageFile:FileReference = new FileReference();
imageFile.addListener(listener);

imagePane.addEventListener("complete", imageDownloaded);
imagesCb.addEventListener("change", downloadImage);
uploadBtn.addEventListener("click", uploadImage);

/* If the image does not download, the event object's total property will
equal -1. In that case, display a message to the user. */

function imageDownloaded(event:Object):Void {
if (event.total == -1) {

imagePane.contentPath = "Message";
}

About file uploading and downloading 605

}

/* When the user selects an image from the ComboBox, or when the
downloadImage() function is called directly from the
listener.onComplete() method, the downloadImage() function sets the
contentPath of the ScrollPane in order to start downloading the image
to the player. */

function downloadImage(event:Object):Void {
imagePane.contentPath = "http://www.helpexamples.com/flash/file_io/
images/" + imagesCb.value;

}

/* When the user clicks the button, Flash calls the uploadImage()
function, and it opens a file browser dialog box. */

function uploadImage(event:Object):Void {
imageFile.browse([{description: "Image Files", extension:
"*.jpg;*.gif;*.png"}]);

}

This ActionScript code first imports the FileReference class and initializes, positions, and
resizes each of the components on the Stage. Next, a listener object is defined, and three
event handlers are defined: onSelect, onOpen, and onComplete. The listener object is
then added to a new FileReference object named imageFile. Next, event listeners are
added to the imagePane ScrollPane instance, imagesCb ComboBox instance, and
uploadBtn Button instance. Each of the event listener functions is defined in the code
that follows this section of code.
The first function, imageDownloaded(), checks to see if the amount of total bytes for the
downloaded images is -1, and if so, it sets the contentPath for the ScrollPane instance to
the movie clip with the linkage identifier of Message, which you created in a previous step.
The second function, downloadImage(), attempts to download the recently uploaded
image into the ScrollPane instance. When the image has downloaded, the
imageDownloaded() function defined earlier is triggered and checks to see whether the
image successfully downloaded. The final function, uploadImage(), opens a file browser
dialog box, which filters all JPEG, GIF, and PNG images.

12. Save your changes to the document.

13. Select File > Publish settings and then select the Formats tab, and make sure that Flash and
HTML are both selected.

14. (Optional) In the Publish Settings dialog box, select the Flash tab, and then select Access
Network Only from the Local Playback Security pop-up menu.

If you complete this step, you won’t run into security restrictions if you test your
document in a local browser.

15. In the Publish Settings dialog box, click Publish to create the HTML and SWF files.

606 Working with External Data

When you’re finished, go on to the next procedure, in which you create the container for
the SWF file.

For a sample source file for this example, FileUpload.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/FileUpload folder to access this sample.

The following procedure requires that PHP is installed on your web server and that you have
write permissions to subfolders named images and temporary. You need to first complete the
previous procedure, or use the finished SWF file available in the previously noted folders.

To create a server-side script for the image upload application:

1. Create a new PHP document using a text editor such as Dreamweaver or Notepad.

2. Add the following PHP code to the document. (A code overview follows this script.)
<?php

$MAXIMUM_FILESIZE = 1024 * 200; // 200KB
$MAXIMUM_FILE_COUNT = 10; // keep maximum 10 files on server
echo exif_imagetype($_FILES['Filedata']);
if ($_FILES['Filedata']['size'] <= $MAXIMUM_FILESIZE) {
 move_uploaded_file($_FILES['Filedata']['tmp_name'], "./temporary/

".$_FILES['Filedata']['name']);
 $type = exif_imagetype("./temporary/".$_FILES['Filedata']['name']);
 if ($type == 1 || $type == 2 || $type == 3) {
 rename("./temporary/".$_FILES['Filedata']['name'], "./images/

".$_FILES['Filedata']['name']);
 } else {
 unlink("./temporary/".$_FILES['Filedata']['name']);
 }
}
$directory = opendir('./images/');
$files = array();
while ($file = readdir($directory)) {
 array_push($files, array('./images/'.$file, filectime('./images/

'.$file)));
}
usort($files, sorter);
if (count($files) > $MAXIMUM_FILE_COUNT) {
 $files_to_delete = array_splice($files, 0, count($files) -

$MAXIMUM_FILE_COUNT);
 for ($i = 0; $i < count($files_to_delete); $i++) {
 unlink($files_to_delete[$i][0]);
 }
}
print_r($files);
closedir($directory);

function sorter($a, $b) {

http://www.adobe.com/go/learn_fl_samples

About file uploading and downloading 607

 if ($a[1] == $b[1]) {
 return 0;
 } else {
 return ($a[1] < $b[1]) ? -1 : 1;
 }
}
?>

This PHP code first defines two constant variables: $MAXIMUM_FILESIZE and
$MAXIMUM_FILE_COUNT. These variables dictate the maximum size (in kilobytes) of an
image being uploaded to the server (200KB), as well as how many recently uploaded files
can be kept in the images folder (10). If the file size of the image currently being uploaded
is less than or equal to the value of $MAXIMUM_FILESIZE, the image is moved to the
temporary folder.
Next, the file type of the uploaded file is checked to ensure that the image is a JPEG, GIF,
or PNG. If the image is a compatible image type, the image is copied from the temporary
folder to the images folder. If the uploaded file wasn’t one of the allowed image types, it is
deleted from the file system.
Next, a directory listing of the image folder is created and looped over using a while loop.
Each file in the images folder is added to an array and then sorted. If the current number
of files in the images folder is greater than the value of $MAXIMUM_FILE_COUNT, files are
deleted until there are only $MAXIMUM_FILE_COUNT images remaining. This prevents the
images folder from growing to an unmanageable size, as there can be only 10 images in the
folder at one time, and each image can only be 200KB or smaller (or roughly 2 MB of
images at any time).

3. Save your changes to the PHP document.

4. Upload the SWF, HTML, and PHP files to your web server.

5. View the remote HTML document in a web browser, and click the Upload Image button
in the SWF file.

6. Locate an image file on your hard disk and select Open from the dialog box.

The SWF file uploads the image file to the remote PHP document, and displays it in the
ScrollPane (which adds scroll bars if necessary). If you want to view a previously uploaded
image, you can select the filename from the ComboBox instance on the Stage. If the user
tries to upload an image that isn’t an allowed image type (only a JPEG, GIF, or PNG
image is allowed) or the file size is too big (over 200 KB), Flash displays the error message
from the Message movie clip in the Library.

For a sample source file for this example, FileUpload.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/FileUpload folder to access this sample.

http://www.adobe.com/go/learn_fl_samples

608 Working with External Data

For more information on local file security, see “About local file security and Flash Player”
on page 633.

For more information on writing PHP, go to www.php.net/.

About XML
Extensible Markup Language (XML) is becoming the standard for exchanging structured data
in Internet applications. You can integrate data in Flash with servers that use XML technology
to build sophisticated applications, such as chat or brokerage systems.

In XML, as with HTML, you use tags to specify, or mark up, a body of text. In HTML, you
use predefined tags to indicate how text should appear in a web browser (for example, the
tag indicates that text should be bold). In XML, you define tags that identify the type of a
piece of data (for example, <password>VerySecret</password>). XML separates the
structure of the information from the way it appears, so the same XML document can be used
and reused in different environments.

Every XML tag is called a node, or an element. Each node has a type (1, which indicates an
XML element, or 3, which indicates a text node), and elements might also have attributes. A
node nested in a node is called a child node. This hierarchical tree structure of nodes is called
the XML DOM—much like the JavaScript DOM, which is the structure of elements in a
web browser.

In the following example, <portfolio> is the parent node; it has no attributes and contains
the child node <holding>, which has the attributes symbol, qty, price, and value:
<portfolio>

<holding symbol="rich"
qty="75"
price="245.50"
value="18412.50" />

</portfolio>

For more information, see the following topics:

■ “Using the XML class” on page 609
■ “Using the XMLSocket class” on page 616

For more information on XML, see www.w3.org/XML.

For a source sample that demonstrates how to create a web log tracker by loading, parsing,
and manipulating XML data, xml_blogTracker.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/XML_BlogTracker folder to access this sample.

http://www.adobe.com/go/learn_fl_samples
http://www.php.net/
http://www.w3.org/XML

About XML 609

For a source sample that demonstrates how to use XML and nested arrays to select strings of
different languages to populate text fields, xml_languagePicker.fla, see the Flash Samples page
at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/XML_LanguagePicker folder to access this sample.

For a source sample that demonstrates how to create a dynamic menu with XML data,
xmlmenu.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download
the Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access this
sample. The sample calls the ActionScript XmlMenu() constructor and passes it two
parameters: the path to the XML menu file and a reference to the current timeline. The rest of
the functionality resides in a custom class file, XmlMenu.as.

Using the XML class
The methods of the ActionScript XML class (for example, appendChild(), removeNode(),
and insertBefore()) let you structure XML data in Flash to send to a server and manipulate
and interpret downloaded XML data.

The following XML class methods send and load XML data to a server by using the HTTP
POST method:

■ The load() method downloads XML from a URL and places it in an ActionScript
XML object.

■ The send()method encodes the XML object into an XML document and sends it to a
specified URL using the POST method. If specified, a browser window displays
returned data.

■ The sendAndLoad() method sends an XML object to a URL. Any returned information
is placed in an ActionScript XML object.

For example, you could create a brokerage system that stores all its information (user names,
passwords, session IDs, portfolio holdings, and transaction information) in a database.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

610 Working with External Data

The server-side script that passes information between Flash and the database reads and writes
the data in XML format. You can use ActionScript to convert information collected in the
SWF file (for example, a user name and password) to an XML object and then send the data
to the server-side script as an XML document. You can also use ActionScript to load the XML
document that the server returns into an XML object to be used in the SWF file.

The flow and conversion of data between a SWF file, a server-side script, and a database

The password validation for the brokerage system requires two scripts: a function defined on
Frame 1, and a script that creates and then sends the XML objects created in the document.

When a user enters information into text fields in the SWF file with the variables username
and password, the variables must be converted to XML before being passed to the server. The
first section of the script loads the variables into a newly created XML object called loginXML.
When a user clicks a button to log in, the loginXML object is converted to a string of XML
and sent to the server.

About XML 611

The following ActionScript is placed on the timeline and is used to send XML-formatted data
to the server. To understand this script, read the commented lines (indicated by the characters
//):
// ignore XML white space
XML.prototype.ignoreWhite = true;
// Construct an XML object to hold the server's reply
var loginReplyXML:XML = new XML();
// this function triggers when an XML packet is received from the server.
loginReplyXML.onLoad = function(success:Boolean) {

if (success) {
// (optional) Create two text fields for status/debugging
// status_txt.text = this.firstChild.attributes.status;
// debug_txt.text = this.firstChild;
switch (this.firstChild.attributes.STATUS) {
case 'OK' :

_global.session = this.firstChild.attributes.SESSION;
trace(_global.session);
gotoAndStop("welcome");
break;

case 'FAILURE' :
gotoAndStop("loginfailure");
break;

default :
// this should never happen
trace("Unexpected value received for STATUS.");

}
} else {

trace("an error occurred.");
}

};
// this function triggers when the login_btn is clicked
login_btn.onRelease = function() {

var loginXML:XML = new XML();
// create XML formatted data to send to the server
var loginElement:XMLNode = loginXML.createElement("login");
loginElement.attributes.username = username_txt.text;
loginElement.attributes.password = password_txt.text;
loginXML.appendChild(loginElement);
// send the XML formatted data to the server
loginXML.sendAndLoad("http://www.flash-mx.com/mm/main.cfm",
loginReplyXML);

};

612 Working with External Data

You can test this code by using a user name of JeanSmith and the password VerySecret. The
first section of the script generates the following XML when the user clicks the login button:
<login username="JeanSmith" password="VerySecret" />

The server receives the XML, generates an XML response, and sends it back to the SWF file.
If the password is accepted, the server responds with the following:
<LOGINREPLY STATUS="OK" SESSION="4D968511" />

This XML includes a session attribute that contains a unique, randomly generated session
ID, which is used in all communications between the client and server for the rest of the
session. If the password is rejected, the server responds with the following message:
<LOGINREPLY STATUS="FAILURE" />

The loginreply XML node must load into a blank XML object in the SWF file. The
following statement creates the XML object loginreplyXML to receive the XML node:
// Construct an XML object to hold the server's reply
var loginReplyXML:XML = new XML();
loginReplyXML.onLoad = function(success:Boolean) {

The second statement in this ActionScript defines an anonymous (inline) function, which is
called when the onLoad event triggers.

The login button (login_btn instance) is used to send the user name and password as XML
to the server and to load an XML response back into the SWF file. You can use the
sendAndLoad() method to do this, as shown in the following example:
loginXML.sendAndLoad("http://www.flash-mx.com/mm/main.cfm", loginReplyXML);

About XML 613

First, the XML-formatted data is created, using the values that the user inputs in the SWF file,
and that XML object is sent using the sendAndLoad method. Similar to data from a
loadVariables() function, the loginreply XML element arrives asynchronously (that is, it
doesn’t wait for results before being returned) and loads into the loginReplyXML object.
When the data arrives, the onLoad handler of the loginReplyXML object is called. You must
define the loginReplyXML function, which is called when the onLoad handler triggers, so it
can process the loginreply element.

If the login is successful, the SWF file progresses to the welcome frame label. If the login is not
successful, then the playhead moves to the loginfailure frame label. This is processed using
a condition and case statement.

The CFM file contains the following code:
<cfif (Compare(Form.username, "Herbert") EQ 0) AND (Compare(Form.password,

"glasses") EQ 0)>
<cfoutput>&isValidLogin=1&session=#URLEncodedFormat(CreateUUID())#</
cfoutput>
<cfelse>
<cfoutput>&isValidLogin=0</cfoutput>

</cfif>

For more information on case and break statements, see case statement and break statement in
the ActionScript 2.0 Language Reference. For more information on conditions, see if statement
and else statement in the ActionScript 2.0 Language Reference.

For more information, see Integrating XML and Flash in a Web Application at http://
www.adobe.com/support/flash/applications/xml/ and the XML entry in the ActionScript 2.0
Language Reference. For more information on local file security, see “About local file security
and Flash Player” on page 633.

For a sample source file, login.fla, that shows how to add simple login functionality to your
websites using ActionScript 2.0, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/Login
folder to access this sample. The sample uses ActionScript and components to create a small
form in which you enter a user name and password and then click a button to enter a site.

N
O

T
E

This function must always be on the frame that contains the ActionScript for the login
button.

N
O

T
E

This design is only an example, and Adobe makes no claims about the level of security it
provides. If you are implementing a secure password-protected system, make sure you
have a good understanding of network security.

http://www.adobe.com/support/flash/applications/xml/
http://www.adobe.com/support/flash/applications/xml/
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

614 Working with External Data

Flash Player 8 and later supports the onHTTPStatus event handler for the XML class,
LoadVars class, and MovieClipLoader class to allow users to access the status code from an
HTTP request. This allows developers to determine why a particular load operation may have
failed instead of only being able to determine that a load operation already has failed.

The following example shows how you can use the XML class’s onHTTPStatus event handler
to check whether an XML file successfully downloaded from the server and what the status
code returned from the HTTP request was.

Checking HTTP status codes using the XML class:

1. Create a new Flash document and save it as xmlhttp.fla.

2. Add the following ActionScript to Frame 1 of the main Timeline:
var my_xml:XML = new XML();
my_xml.ignoreWhite = true;
my_xml.onHTTPStatus = function(httpStatus:Number) {

trace("HTTP status is: " + httpStatus);
};
my_xml.onLoad = function(success:Boolean) {

if (success) {
trace("XML successfully loaded");
// 0 (No error; parse was completed successfully.)
trace("XML status is: " + my_xml.status);

} else {
trace("unable to load XML");

}
};
my_xml.load("http://www.helpexamples.com/crossdomain.xml");

The previous code defines a new XML object with the variable name my_xml, defines two
event handlers (onHTTPStatus and onLoad), and loads an external XML file. The onLoad
event handler checks to see whether the XML file was successfully loaded and if so sends a
message to the Output panel as well as traces the XML object’s status property. It is
important to remember that the onHTTPStatus event listener returns the status code
returned from the web server, whereas the XML.status property contains a numeric value
that indicates whether the XML object was able to be parsed successfully.

About XML 615

3. Select Control > Test Movie to test the Flash document.

For a source sample file that demonstrates how to create a web log tracker by loading, parsing,
and manipulating XML data, xml_blogTracker.fla, see the Flash Samples page at
www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to the
ActionScript2.0/XML_BlogTracker folder to access this sample.

For a source sample file that demonstrates how to use XML and nested arrays to select strings
of different languages to populate text fields, xml_languagePicker.fla, see the Flash Samples
page at www.adobe.com/go/learn_fl_samples. Download the Samples zip file and navigate to
the ActionScript2.0/XML_LanguagePicker folder to access this sample.

For a source sample file that demonstrates how to create a dynamic menu with XML data,
xmlmenu.fla, see the Flash Samples page at www.adobe.com/go/learn_fl_samples. Download
the Samples zip file and navigate to the ActionScript2.0/XML_Menu folder to access this
sample. The sample calls the ActionScript XmlMenu() constructor and passes it two
parameters: the path to the XML menu file and a reference to the current timeline. The rest of
the functionality resides in a custom class file, XmlMenu.as.

W
A

R
N

IN
G

Don’t confuse the HTTP httpStatus codes with the XML class’s status property. The
onHTTPStatus event handler returns the server’s status code from an HTTP request
and the status property automatically sets and returns a numeric value that indicates
whether an XML document was successfully parsed into an XML object.

C
A

U
T

IO
N

If a web server does not return a status code to the Flash Player, the number 0 is
returned to the onHTTPStatus event handler.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

616 Working with External Data

Using the XMLSocket class
ActionScript provides a built-in XMLSocket class, which lets you open a continuous
connection with a server. A socket connection lets the server publish, or push, information to
the client as soon as that information is available. Without a continuous connection, the
server must wait for an HTTP request. This open connection removes latency issues and is
commonly used for real-time applications such as chats. The data is sent over the socket
connection as one string and should be formatted as XML. You can use the XML class to
structure the data.

To create a socket connection, you must create a server-side application to wait for the socket
connection request and send a response to the SWF file. This type of server-side application
can be written in a programming language such as Java.

You can use the connect() and send() methods of the XMLSocket class to transfer XML to
and from a server over a socket connection. The connect() method establishes a socket
connection with a web server port. The send() method passes an XML object to the server
specified in the socket connection.

When you invoke the connect() method, Flash Player opens a TCP/IP connection to the
server and keeps that connection open until one of the following events happens:

■ The close() method of the XMLSocket class is called.
■ No more references to the XMLSocket object exist.
■ Flash Player exits.
■ The connection is broken (for example, the modem disconnects).

The following example creates an XML socket connection and sends data from the XML
object myXML. To understand the script, read the commented lines (indicated by the characters
//):
// Create XMLSocket object
var theSocket:XMLSocket = new XMLSocket();
// Connect to a site on unused port above 1024 using connect() method.
// Enter localhost or 127.0.0.1 for local testing.
// For live server, enter your domain www.yourdomain.com
theSocket.connect("localhost", 12345);
// displays text regarding connection
theSocket.onConnect = function(myStatus) {

N
O

T
E

The XMLSocket class cannot tunnel through firewalls automatically because, unlike the
Real-Time Messaging Protocol (RTMP), XMLSocket has no HTTP tunneling capability.
If you need to use HTTP tunneling, consider using Flash Remoting or Flash Media
Server (which supports RTMP) instead.

Sending messages to and from Flash Player 617

if (myStatus) {
conn_txt.text = "connection successful";

} else {
conn_txt.text = "no connection made";

}
};
// data to send
function sendData() {

var myXML:XML = new XML();
var mySend = myXML.createElement("thenode");
mySend.attributes.myData = "someData";
myXML.appendChild(mySend);
theSocket.send(myXML);

}
// button sends data
sendButton.onRelease = function() {

sendData();
};
// traces data returned from socket connection
theSocket.onData = function(msg:String):Void {

trace(msg);
};

For more information, see the XMLSocket entry in the ActionScript 2.0 Language Reference.

For more information on local file security, see “About local file security and Flash Player”
on page 633.

Sending messages to and from
Flash Player
To send messages from a SWF file to its host environment (for example, a web browser, a
Macromedia Director movie, or the stand-alone Flash Player), you can use the fscommand()
function.This function lets you extend your SWF file by using the capabilities of the host. For
example, you could pass an fscommand() function to a JavaScript function in an HTML page
that opens a new browser window with specific properties.

To control a SWF file in Flash Player from web browser scripting languages such as JavaScript,
VBScript, and Microsoft JScript, you can use Flash Player methods—functions that send
messages from a host environment to the SWF file. For example, you could have a link in an
HTML page that sends your SWF file to a specific frame.

For more information, see the following topics:

■ “Using the fscommand() function” on page 618
■ “About using JavaScript to control Flash applications” on page 621

618 Working with External Data

■ “About Flash Player methods” on page 621

Using the fscommand() function

You use the fscommand() function to send a message to whichever program is hosting
Flash Player, such as a web browser.

The fscommand() function has two parameters: command and arguments. To send a message
to the stand-alone version of Flash Player, you must use predefined commands and
arguments. For example, the following event handler sets the stand-alone player to scale the
SWF file to the full monitor screen size when the button is released:
my_btn.onRelease = function() {

fscommand("fullscreen", true);
};

The following table shows the values you can specify for the command and arguments
parameters of fscommand() to control the playback and appearance of a SWF file playing in
the stand-alone player, including projectors.

N
O

T
E

The External API is a replacement for fscommand() in Flash 8 and later for interoperating
with a HTML page or a container application. The External API offers more robust
functionality than fscommand() in this situation. For more information, see “About the
External API” on page 621.

N
O

T
E

Using the fscommand() to call JavaScript does not work on the Safari or Internet Explorer
browsers for the Macintosh.

N
O

T
E

A projector is a SWF file saved in a format that can run as a stand-alone application—that
is, embedding Flash Player with your content in an executable file.

Command Arguments Purpose

quit None Closes the projector.

fullscreen true or false Specifying true sets Flash Player to full-screen mode.
Specifying false returns the player to normal menu view.

allowscale true or false Specifying false sets the player so that the SWF file is
always drawn at its original size and never scaled.
Specifying true forces the SWF file to scale to 100% of
the player.

Sending messages to and from Flash Player 619

To use fscommand() to send a message to a scripting language such as JavaScript in a web
browser, you can pass any two parameters in the command and arguments parameters. These
parameters can be strings or expressions and are used in a JavaScript function that “catches,”
or handles, the fscommand() function.

An fscommand() function invokes the JavaScript function moviename_DoFSCommand in the
HTML page that embeds the SWF file, where moviename is the name of Flash Player as
assigned by the name attribute of the embed tag or the id attribute of the object tag. If the
SWF file is assigned the name myMovie, the JavaScript function invoked is
myMovie_DoFSCommand.

To use fscommand() to open a message box from a SWF file in the HTML page
through JavaScript:

1. Create a new FLA file, and save it as myMovie.fla.

2. Drag two instances of the Button component to the Stage and give them the instance
names window_btn and alert_btn, respectively, and the labels Open Window and Alert.

3. Insert a new layer on the Timeline, and rename it Actions.

4. Select Frame 1 of the Actions layer, and add the following ActionScript in the
Actions panel:
window_btn.onRelease = function() {

fscommand("popup", "http://www.adobe.com/");
};
alert_btn.onRelease = function() {

fscommand("alert", "You clicked the button.");
};

5. Select File > Publish Settings, and make sure that Flash with FSCommand is selected in the
Template menu on the HTML tab.

6. Select File > Publish to generate the SWF and HTML files.

showmenu true or false Specifying true enables the full set of context menu items.
Specifying false dims all the context menu items except
Settings and About Flash Player.

exec Path to
application

Executes an application from within the projector.

Command Arguments Purpose

620 Working with External Data

7. In an HTML or text editor, open the HTML file that was generated in step 6 and examine
the code. When you published your SWF file using the Flash with FSCommand template
on the HTML tab of the Publish Settings dialog box, some additional code was inserted in
the HTML file. The SWF file’s NAME and ID attributes are the filename. For example, for
the file myMovie.fla, the attributes would be set to myMovie.

8. In the HTML file, add the following JavaScript code where the document says // Place
your code here.:
if (command == "alert") {

alert(args);
} else if (command == "popup") {

window.open(args, "mmwin", "width=500,height=300");
}

(For more information about publishing, see Using Flash.)
Alternatively, for Microsoft Internet Explorer applications, you can attach an event
handler directly in the <SCRIPT> tag, as shown in this example:
<script Language="JavaScript" event="FSCommand (command, args)"

for="theMovie">
...
</script>

9. Save and close the HTML file.

When you’re editing HTML files outside of Flash in this way, remember that you must
deselect the HTML check box in File > Publish Settings, or your HTML code is
overwritten by Flash when you republish.

10. In a web browser, open the HTML file to view it. Click the Open Window button; a
window is opened to the Macromedia website. Click the Alert button; an alert
window appears.

The fscommand() function can send messages to Macromedia Director that are interpreted
by Lingo as strings, events, or executable Lingo code. If the message is a string or an event,
you must write the Lingo code to receive it from the fscommand() function and carry out an
action in Director. For more information, see the Director Support Center at
www.adobe.com/support/director.

In Visual Basic, Visual C++, and other programs that can host ActiveX
controls, fscommand() sends a VB event with two strings that can be handled in
the environment’s programming language. For more information, use the keywords Flash
method to search the Flash Support Center at www.adobe.com/support/flash.

http://www.adobe.com/support/director
http://www.adobe.com/support/flash

About the External API 621

About using JavaScript to control Flash applications
Flash Player 6 (6.0.40.0) and later versions support certain JavaScript methods that are
specific to Flash applications, as well as FSCommand, in Netscape 6.2 and later. Earlier versions
do not support these JavaScript methods and FSCommand in Netscape 6.2 or later. For more
information, see the Adobe Support Center article, “Scripting With Flash,” at
www.adobe.com/support/flash/publishexport/scriptingwithflash/.

For Netscape 6.2 and later, you do not need to set the swliveconnect attribute to true.
However, setting swLiveConnect to true has no adverse effects on your SWF file. For more
information, see the swLiveConnect attribute in Using Flash.

About Flash Player methods
You can use Flash Player methods to control a SWF file in Flash Player from web-browser
scripting languages such as JavaScript and VBScript. As with other methods, you can use
Flash Player methods to send calls to SWF files from a scripting environment other than
ActionScript. Each method has a name, and most methods take parameters. A parameter
specifies a value upon which the method operates. The calculation performed by some
methods returns a value that can be used by the scripting environment.

Two technologies enable communication between the browser and Flash Player: LiveConnect
(Netscape Navigator 3.0 or later on Windows 95/98/2000/NT/XP or Power Macintosh) and
ActiveX (Internet Explorer 3.0 and later on Windows 95/98/2000/NT/XP). Although the
techniques for scripting are similar for all browsers and languages, there are additional
properties and events available for use with ActiveX controls.

For more information, including a complete list of Flash Player scripting methods, use the
keywords Flash method to search the Flash Support Center at www.adobe.com/support/flash.

About the External API
The ExternalInterface class is also called the External API, which is a new subsystem that lets
you easily communicate from ActionScript and the Flash Player container to an HTML page
with JavaScript or to a desktop application that embeds Flash Player.

N
O

T
E

This functionality replaces the older fscommand() function for interoperating with a HTML
page or a container application. The External API offers more robust functionality than
fscommand() in this situation. For more information, see “About the External API”
on page 621.

http://www.adobe.com/support/flash
http://www.adobe.com/support/flash/publishexport/scriptingwithflash/

622 Working with External Data

The ExternalInterface class is available only under the following circumstances:

■ In all supported versions of Internet Explorer for Windows (5.0 and later).
■ In an embedded custom ActiveX container, such as a desktop application embedding the

Flash Player ActiveX control.
■ In any browser that supports the NPRuntime interface (which currently includes the

following browsers:
■ Firefox 1.0 and later
■ Mozilla 1.7.5 and later
■ Netscape 8.0 and later
■ Safari 1.3 and later.

In all other situations, the ExternalInterface.available property returns false.

From ActionScript, you can call a JavaScript function on the HTML page. The External API
offers the following improved functionality compared with fscommand():

■ You can use any JavaScript function, not only the functions that you can use with
fscommand function.

■ You can pass any number of arguments, with any names; you aren’t limited to passing a
command and arguments.

■ You can pass various data types (such as Boolean, Number, and String); you are no longer
limited to String parameters.

■ You can now receive the value of a call, and that value returns immediately to ActionScript
(as the return value of the call you make).

You can call an ActionScript function from JavaScript on an HTML page. For more
information, see ExternalInterface (flash.external.ExternalInterface). For more
information on local file security, see “About local file security and Flash Player” on page 633.

The following sections contain examples that use the External API:

■ “Creating interaction with the External API” on page 622
■ “Controlling Flash Video with the External API” on page 625

Creating interaction with the External API
You can create interaction between the browser and a SWF file that’s embedded on a web
page. The following procedure sends text to the HTML page that contains the SWF file, and
the HTML sends a message back to the SWF file at runtime.

To create the Flash application:

1. Create a new Flash document and save it as extint.fla.

About the External API 623

2. Drag two TextInput components onto the Stage and give them instance names of in_ti
and out_ti.

3. Drag a Label component onto the Stage, assign it an instance name of out_lbl, position it
above the out_ti TextInput instance, and set the text property in the Parameters tab of the
Property inspector to Sending to JS:.

4. Drag a Button component onto the Stage, position it next to the out_lbl label, and give
it an instance name of send_button.

5. Drag a Label component onto the Stage, assign it an instance name of in_lbl, position it
above the in_ti TextInput instance, and set its text property in the Parameters tab to
Receiving from JS:.

6. Add the following ActionScript to Frame 1 of the main Timeline:
import flash.external.ExternalInterface;

ExternalInterface.addCallback("asFunc", this, asFunc);
function asFunc(str:String):Void {

in_ti.text = "JS > Hello " + str;
}

send_button.addEventListener("click", clickListener);
function clickListener(eventObj:Object):Void {

trace("click > " + out_ti.text);
ExternalInterface.call("jsFunc", out_ti.text);

}

The previous code is split into three sections. The first section imports the
ExternalInterface class so you don’t have to use its fully qualified class name. The second
section of code defines a callback function, asFunc(), which is called from JavaScript in
an HTML document created in an upcoming example. This function sets the text within
a TextInput component on the Stage. The third section of code defines a function and
assigns it as an event listener for when the user clicks the Button component instance on
the Stage. Whenever the button is clicked, the SWF file calls the jsFunc() JavaScript
function in the HTML page and passes the text property of the out_ti text input
instance.

7. Select File > Publish Settings and then select the Formats tab and make sure that Flash and
HTML are both selected.

8. Click Publish to create the HTML and SWF files.

When you’re finished, go on to the next procedure to create the container for the
SWF file.

624 Working with External Data

Before you can test the previous Flash document, you need to modify the generated HTML
code and add some additional HTML and JavaScript. The following procedure modifies the
HTML container for the SWF file so the two files can interact when they run in a browser.

To create the HTML container for the SWF file:

1. Complete the previous procedure.

2. Open the extint.html file that Flash creates when you publish the application.

It’s in the same folder as the Flash document.
3. Add the following JavaScript code between the opening and closing head tags:

<script language="JavaScript">
<!--

function thisMovie(movieName) {
var isIE = navigator.appName.indexOf("Microsoft") != -1;
return (isIE) ? window[movieName] : document[movieName];

}

function makeCall(str) {
thisMovie("extint").asFunc(str);

}

function jsFunc(str) {
document.inForm.inField.value = "AS > Hello " + str;

}
// -->
</script>

This JavaScript code defines three methods. The first method returns a reference to the
embedded SWF file based on whether the user’s browser is Microsoft Internet Explorer
(IE) or a Mozilla browser. The second function, makeCall(), calls the asFunc() method
that you defined within the Flash document in the previous example. The "extint"
parameter in the thisMovie() function call refers to the object ID and embed name of
the embedded SWF file. If you saved your Flash document with a different name, you
need to change this string to match the values in the object and embed tags. The third
function, jsFunc(), sets the value of the inField text field in the HTML document.
This function is called from the Flash document when a user clicks the send_button
Button component.

4. Add the following HTML code before the closing </body> tag:
<form name="outForm" method="POST"

action="javascript:makeCall(document.outForm.outField.value);">
Sending to AS:

<input type="text" name="outField" value="" />

<input type="submit" value="Send" />

</form>

About the External API 625

<form name="inForm" method="POST" action="">
Receiving from AS:

<input type="text" name="inField">

</form>

This HTML code creates two HTML forms similar to the forms created in the Flash
environment in the previous exercise. The first form submits the value of the outField
text field to the makeCall() JavaScript function defined in an earlier step. The second
form is used to display a value that gets sent from the SWF file when the user clicks the
send_button instance.

5. Save the HTML document and upload both the HTML and SWF files to a web server.

6. View the HTML file in a web browser, enter a string in the out_ti TextInput instance,
and click the Send button.

Flash calls the jsFunc() JavaScript function and passes the contents of the out_ti text
field, which displays the contents in the HTML form inForm inField input text field.

7. Type a value into the outField HTML text field and click the Send button.

Flash calls the SWF file’s asFunc() function, which displays the string in the in_ti
TextInput instance.

For a sample source file, ExtInt.fla, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download the Samples zip file and navigate to the ActionScript2.0/
ExternalAPI folder to access this sample.

For a more complex example that uses the External API, see “Controlling Flash Video with
the External API” on page 625. For more information on local file security, see “About local
file security and Flash Player” on page 633.

Controlling Flash Video with the External API
The following procedure shows you how to control Flash Video (FLV) files using controls in
an HTML page and displays information about the video in an HTML text field. This
procedure uses the External API to achieve this functionality.

To build a Flash application using the External API:

1. Create a new Flash document and save it as video.fla.

2. Add a new video symbol to the library by selecting New Video from the pop-up menu in
the Library panel.

N
O

T
E

Avoid using other methods of accessing the plug-in object, such as
document.getElementById("pluginName") or document.all.pluginName, because these
other methods do not work consistently across all browsers.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

626 Working with External Data

3. Drag the video symbol to the Stage and give it an instance name of selected_video.

4. Select the selected_video instance and then the Property inspector to resize the instance
to 320 pixels wide by 240 pixels high.

5. Set both the x and y coordinates for the video’s position to 0.

6. Select the Stage and use the Property inspector to resize its dimensions to 320 pixels by
240 pixels.

Now the Stage matches the dimensions of the video instance.
7. Add the following ActionScript to Frame 1 of the main Timeline:

import flash.external.ExternalInterface;

/* Register playVideo() and pauseResume() so that it is possible
to call them from JavaScript in the container HTML page. */
ExternalInterface.addCallback("playVideo", null, playVideo);
ExternalInterface.addCallback("pauseResume", null, pauseResume);

/* The video requires a NetConnection and NetStream object. */
var server_nc:NetConnection = new NetConnection();
server_nc.connect(null);
var video_ns:NetStream = new NetStream(server_nc);

/* Attach the NetStream object to the Video object on Stage so
that the NetStream data is displayed in the Video object. */
selected_video.attachVideo(video_ns);

/* The onStatus() method is called automatically when the status of
the NetStream object is updated (the video starts playing, for example).
When that occurs, send the value of the code property to the HTML page by
calling the JavaScript updateStatus() function via ExternalInterface. */
video_ns.onStatus = function(obj:Object):Void {

ExternalInterface.call("updateStatus", " " + obj.code);
};

function playVideo(url:String):Void {
video_ns.play(url);

}

function pauseResume():Void {
video_ns.pause();

}

The first part of this ActionScript code defines two ExternalInterface callback functions,
playVideo() and pauseResume(). These functions are called from the JavaScript in the
next procedure. The second part of the code creates a new NetConnection and NetStream
object, which you use with the video instance to dynamically play back FLV files.

About the External API 627

The code in the next procedure defines an onStatus event handler for the video_ns
NetStream object. Whenever the NetStream object changes its status, Flash uses the
ExternalInterface.call() method to trigger the custom JavaScript function,
updateStatus(). The final two functions, playVideo() and pauseResume(), control
the playback of the video instance on the Stage. Both of these functions are called from
JavaScript written in the following procedure.

8. Save the Flash document.

9. Select File > Publish Settings and then select the Formats tab, and make sure that HTML
and Flash are both selected.

10. Click Publish to publish the SWF and HTML files to your hard disk.

When you’re finished, go on to the next procedure to create the container for the
SWF file.

For a sample source file, external.fla, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download and decompress the Samples file and navigate to the
ActionScript2.0/ExternalAPI folder to access the sample.

In the following procedure, you modify the HTML code generated by Flash in the previous
procedure. This procedure creates the JavaScript and HTML required to make the FLV files
play back within the SWF file.

To create the container for the SWF file:

1. Complete the previous procedure.

2. Open the video.html document that you published in the last step of the
previous procedure.

3. Modify the existing code so that it matches the following code:

N
O

T
E

Review the code comments in the following example. A code overview follows this
code example.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

628 Working with External Data

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"

/>
<title>ExternalInterface</title>

<script language="JavaScript">
// Use a variable to reference the embedded SWF file.
var flashVideoPlayer;

/* When the HTML page loads (through the onLoad event of the <body>
tag), it calls the initialize() function. */
function initialize() {

/* Check whether the browser is IE. If so, flashVideoPlayer is
window.videoPlayer. Otherwise, it's document.videoPlayer. The
videoPlayer is the ID assigned to the <object> and <embed> tags. */

var isIE = navigator.appName.indexOf("Microsoft") != -1;
flashVideoPlayer = (isIE) ? window['videoPlayer'] :

document['videoPlayer'];
}

/* When the user clicks the play button in the form, update the
videoStatus text area, and call the playVideo() function within the
SWF file, passing it the URL of the FLV file. */
function callFlashPlayVideo() {

var comboBox = document.forms['videoForm'].videos;
var video = comboBox.options[comboBox.selectedIndex].value;
updateStatus("____" + video + "____");
flashVideoPlayer.playVideo("http://www.helpexamples.com/flash/

video/" + video);
}

// Call the pauseResume() function within the SWF file.
function callFlashPlayPauseVideo() {

flashVideoPlayer.pauseResume();
}

/* The updateStatus() function is called from the SWF file from the
onStatus() method of the NetStream object. */
function updateStatus(message) {

document.forms['videoForm'].videoStatus.value += message + "\n";
}

</script>
</head>
<body bgcolor="#ffffff" onLoad="initialize();">

About the External API 629

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://fpdownload.adobe.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0" width="320" height="240" id="videoPlayer"
align="middle">

<param name="allowScriptAccess" value="sameDomain" />
<param name="movie" value="video.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<embed src="video.swf" quality="high" bgcolor="#ffffff" width="320"

height="240" name="videoPlayer" align="middle"
allowScriptAccess="sameDomain" type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer" />

</object>

<form name="videoForm">
Select a video:

<select name="videos">

<option value="lights_long.flv">lights_long.flv</option>
<option value="clouds.flv">clouds.flv</option>
<option value="typing_long.flv">typing_long.flv</option>
<option value="water.flv">water.flv</option>

</select>
<input type="button" name="selectVideo" value="play"
onClick="callFlashPlayVideo();" />

Playback <input type="button" name="playPause" value="play/pause"
onClick="callFlashPlayPauseVideo();" />

Video status messages

<textarea name="videoStatus" cols="50" rows="10"></textarea>

</form>

</body>
</html>

This HTML code defines four JavaScript functions: initialize(),
callFlashPlayVideo(), callFlashPlayPauseVideo(), and updateStatus(). The
initialize() function is called within the body tag in the onLoad event. Both the
callFlashPlayVideo() and callFlashPlayPauseVideo() functions are called when
the user clicks on either the play button or play/pause button within the HTML
document, and trigger the playVideo() and pauseResume() functions in the SWF file.

630 Working with External Data

The final function, updateStatus(), gets called by the SWF file whenever the video_ns
NetStream object’s onStatus event handler is triggered. This HTML code also defines a
form that has a combo box of videos that the user can choose from. Whenever the user
selects a video and clicks the play button, the callFlashPlayVideo() JavaScript function
is called, which then calls the playVideo() function within the SWF file. This function
passes the URL of the SWF file to load into the video instance. As the video plays back
and the NetStream object’s status changes, the contents of the HTML text area on the
Stage are updated.

4. Save your changes to the HTML document, and then upload both the HTML and SWF
files to a website.

5. Open the remote video.html document from the website, select a video from the combo
box, and click the play button.

Flash plays the selected FLV file and updates the contents of the videoStatus text area
within the HTML document.

For a sample source file, external.fla, see the Flash Samples page at www.adobe.com/go/
learn_fl_samples. Download and decompress the Samples file and navigate to the
ActionScript2.0/ExternalAPI folder to access the sample.

For more information on the External API, see ExternalInterface
(flash.external.ExternalInterface) in the ActionScript 2.0 Language Reference.

For more information on local file security, see “About local file security and Flash Player”
on page 633.

N
O

T
E

Avoid using other methods of accessing the plug-in object, such as
document.getElementById("pluginName") or document.all.pluginName, because these
other methods do not work consistently across all browsers.

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

631

16
CHAPTER 16

Understanding Security

In Flash CS3 Professional, you can use ActionScript to load data from external sources into a
SWF file or send data to a server. When you load data into a SWF file, you need to
understand and accommodate the Flash security model. When you open a SWF file on your
hard disk, you might need to make special configurations so you can test your file locally.

For information on local file security, see “About local file security and Flash Player”
on page 633. For information on the changes between the Flash Player 7 and Flash Player 8
and later security models, see “About compatibility with previous Flash Player security
models” on page 631. For information on how to load and parse data from a server, read
Chapter 15, “Working with External Data,” on page 589. For more information on security,
see www.adobe.com/devnet/security and www.adobe.com/software/flashplayer/security/.

For more information on security in Flash 8 and later, see the following topics:
About compatibility with previous Flash Player security models 631

About local file security and Flash Player .633

Restricting networking APIs .648

Server-side policy files for permitting access to data. .657

HTTP to HTTPS protocol access between SWF files. .662

About compatibility with previous Flash
Player security models
As a result of the security feature changes in Flash Player 7, content that runs as expected in
Flash Player 6 or earlier might not run as expected in later versions of Flash Player. For
example, in Flash Player 6, a SWF file that resides in www.adobe.com could read data on a
server located at data.adobe.com; that is, Flash Player 6 allowed a SWF file from one domain
to load data from a similar domain.

http://www.adobe.com/devnet/security
http://www.adobe.com/software/flashplayer/security/

632 Understanding Security

In Flash Player 7 and later, if a version 6 (or earlier) SWF file attempts to load data from a
server that resides in another domain, and that server doesn’t provide a policy file that allows
reading from that SWF file’s domain, the Flash Player Settings dialog box appears. The dialog
box asks the user to allow or deny the cross-domain data access.

If the user clicks Allow, the SWF file can access the requested data; if the user clicks Deny, the
SWF file cannot access the requested data.

To prevent this dialog box from appearing, you should create a security policy file on the
server providing the data. For more information, see “Allowing cross-domain data loading”
on page 658.

Flash Player 7 and later do not allow cross-domain access without a security policy file.

Flash Player 8 and later changed the way it handles System.security.allowDomain. A Flash
SWF file (Flash 8 and later) that calls System.security.allowDomain with any argument,
or any other SWF file that uses the wildcard (*) value, permits access only to itself. There is
now support for a wildcard (*) value, for example: System.security.allowDomain("*")
and System.security.allowInsecureDomain("*"). If a SWF file of version 7 or earlier
calls System.security.allowDomain or System.security.allowInsecureDomain with an
argument other than wildcard (*), this will affect all SWF files of version 7 or lower in the
calling SWF file’s domain, as it did in Flash Player 7. However, this kind of call does not affect
any Flash Player 8 (or later) SWF files in the calling SWF file’s domain. This helps minimize
legacy content breaking in Flash Player.

For more information, see “Restricting networking APIs” on page 648, allowDomain
(security.allowDomain method), and allowInsecureDomain (security.allowInsecureDomain
method).

Flash Player 8 and later does not allow local SWF files to communicate with the Internet
without a specific configuration on your computer. Suppose you have legacy content that was
published before these restrictions were in effect. If that content tries to communicate with
the network or local file system, or both, Flash Player stops the operation, and you must
explicitly provide permission for the application to work properly. For more information, see
“About local file security and Flash Player” on page 633

About local file security and Flash Player 633

About local file security and Flash Player
In Flash Player’s security model, Flash applications and SWF files on a local computer are not
allowed to communicate with both the Internet and the local file system by default. A local
SWF file is a SWF file that is locally installed on a user’s computer, not served from a website,
and does not include projector (EXE) files.

When you create a FLA file, you can indicate whether a SWF file is allowed to communicate
with a network or with a local file system. In previous versions of Flash Player (7 and earlier),
local SWF files could interact with other SWF files and load data from any remote or local
location. In Flash Player 8 and later, a SWF file cannot make connections to the local file
system and the Internet. This is a safety change, so a SWF file cannot read files on your hard
disk and then send the contents of those files across the Internet.

This security restriction affects all locally deployed content, whether it is legacy content (a
FLA file created in an earlier version of Flash) or created in Flash 8 and later. Suppose you
deploy a Flash application, using Flash MX 2004 or earlier, that runs locally and also accesses
the Internet. In Flash Player 8 and later, this application now prompts the user for permission
to communicate with the Internet.

When you test a file on your hard disk, there are a series of steps to determine whether the file
is a local trusted document or a potentially untrusted document. If you create the file in the
Flash authoring environment (for example, when you select Control > Test Movie), your file
is trusted because it is in a test environment.

In Flash Player 7 and earlier, local SWF files had permissions to read from both a local file
system and the network (such as the Internet). In Flash Player 8 and later, local SWF files can
have the following levels of permission:

Access the local file system only (default) A local SWF file can read from the local file
system and universal naming convention (UNC) network paths but cannot communicate
with the Internet. For more information on local file access SWF files, see “Access local files
only (default)” on page 640.

Access the network only A local SWF file can access the network (such as the Internet)
but not the local file system where it is installed. For more information on network-only SWF
files, see “Access network only” on page 641.

N
O

T
E

The restrictions that are discussed in this section do not affect SWF files that are on the
Internet.

634 Understanding Security

Access to the local file system and the network A local SWF file can read from the local
file system where it is installed, read and write to and from servers, and can cross-script other
SWF files on either the network or the local file system. These files are trusted, and behave
like they did in Flash Player 7. For more information on local and network access SWF files,
see “Access file system and network” on page 641.

For more information on local file security in Flash 8 and later as it pertains to the authoring
tool, see the following sections:

■ “Understanding local security sandboxes” on page 634
■ “About Flash Player security settings” on page 635
■ “About local file security and projector files” on page 637
■ “About troubleshooting legacy SWF files” on page 638
■ “Fixing legacy content deployed on local computers” on page 638
■ “Publishing files for local deployment” on page 639

For information about local file security for users, see “About Flash Player security settings”
on page 635. For more information on security, see www.adobe.com/devnet/security/ and
www.adobe.com/software/flashplayer/security/.

Understanding local security sandboxes
There are several different security sandboxes in the Flash Player. Each one determines how a
SWF file can interact with the local file system, the network, or both the local file system and
network at the same time. Restricting how a file can interact with the local file system, or the
network helps keep your computer and files safe. Understanding security sandboxes helps you
develop and test Flash applications on your computer without encountering unexpected
errors.

Local-with-file-system
For security purposes, Flash Player places all local SWF files, including all legacy local SWF
files, in the local-with-file-system sandbox, by default (unless some other setting is made). For
some legacy SWF files (Flash Player 7 and earlier), operations could be affected by enforcing
restrictions on their access (no outside network access), but this provides the most secure
default for the users’ protection.

From this sandbox, SWF files may read from files on local file systems or UNC network paths
(by using the XML.load() method, for example), but they may not communicate with the
network in any way. This assures the user that local data cannot be leaked out to the network
or otherwise inappropriately shared.

http://www.adobe.com/devnet/security/
http://www.adobe.com/software/flashplayer/security/

About local file security and Flash Player 635

Local-with-networking
When local SWF files are assigned to the local-with-networking sandbox, they forfeit their
local file system access. In return, the SWF files are allowed to access the network. However, a
local-with-networking SWF file still is not allowed to read any network-derived data unless
permissions are present for that action. Therefore, a local-with-networking SWF file has no
local access, yet it has the ability to transmit data over the network and can read network data
from those sites that designate site-specific access permissions.

Local-trusted
SWF files assigned to the local-trusted sandbox can interact with any other SWF files, and
load data from anywhere (remote or local).

About Flash Player security settings
Adobe has designed Flash Player to provide security settings that do not require you to
explicitly allow or deny access in most situations. You might occasionally encounter legacy
Flash content that was created using older security rules for Flash Player 7 or earlier. In these
cases, Flash Player lets you allow the content to work as the developer intended, using the
older security rules; or, you can choose to enforce the newer, stricter rules. The latter choice
ensures that you only view or play content that meets the most recent standards of security,
but it may sometimes prevent older Flash content from working properly.

All users who view SWF files (including non-Flash developers) can set permissions globally
through the Global Security Settings panel in Flash Player Settings Manager (shown in the
following figure).

636 Understanding Security

When older content runs in a newer version of the player, and Flash Player needs you to make
a decision about enforcing newer rules or not, you may see one of the following pop-up dialog
boxes. These dialog boxes ask your permission before allowing the older Flash content to
communicate with other locations on the Internet:

■ A dialog box might appear alerting you that the Flash content you are using is trying to
use older security rules to access information from a site outside its own domain, and that
information might be shared between two sites. Flash Player asks if you want to allow or
deny such access.
In addition to responding to the dialog box, you can use the Global Security Settings
panel to specify whether Flash Player should always ask for your permission, through the
dialog box, before allowing access; always deny access, without asking first; or always allow
access to other sites or domains without asking your permission.

■ (Flash Player 8 and later) A dialog box might appear alerting you that a SWF file is trying
to communicate with the Internet. Flash Player doesn’t let local Flash content
communicate with the Internet, by default.

Click Settings to access the Global Security Settings panel, where you can specify that
certain Flash applications on your computer may communicate with the Internet.

To change your security settings or learn more about your options, you use the Global
Security Settings panel. Use this panel to reset the privacy settings in Adobe Flash Player:

■ If you select Always Deny and then confirm your selection, any website that tries to use
your camera or microphone is denied access. You are not asked again whether a website
can use your camera or microphone. This action applies both to websites you have already
visited and to those you haven’t yet visited.

■ If you select Always Ask and then confirm your selection, any website that tries to use your
camera or microphone must ask your permission. This action applies both to websites you
have already visited and to those you haven’t yet visited.

About local file security and Flash Player 637

If you previously selected Remember in the Privacy Settings panel (see the following figure) to
permanently allow or deny access for one or more websites, selecting Always Ask or Always
Deny has the effect of deselecting Remember for all those websites. In other words, the
selection you make here overrides any previous selections you may have made in the Privacy
Settings panel, shown in the following figure.

After you select either Always Ask or Always Deny (or instead of doing so), you can specify
privacy settings for individual websites that you have already visited. For example, you might
select Always Deny here, then use the Website Privacy Settings panel and select Always Allow
for individual websites that you know and trust.

For locally deployed content and local data, users have another option: They can specify
which SWF files may access the Internet using the Global Security Settings panel. For more
information on specifying settings in the Global Security Settings panel, see “Specifying
trusted files using the Settings Manager” on page 642. For more information on the Global
Security Settings panel, see www.adobe.com/support/documentation/en/flashplayer/help/
settings_manager04a.html.

About local file security and projector files
Projector files and the SWF files contained within them or loaded into the projector at
runtime are not affected by local file security restrictions, because the end user must run the
executable to use the SWF file. There are no changes to security and projector files in Flash
Player 8 and later; it has the same level of access and security as earlier versions of Flash Player.

Remember that users are often cautious about executing projector files. A projector file is an
executable EXE or Macintosh application, and users should be careful about running such
files on their computers. If you distribute an application using projector files, some users
might not install it.

N
O

T
E

The selections users make in the Global Security Settings panel override any decisions
made in the security pop-up dialog box.

http://www.adobe.com/support/documentation/en/flashplayer/help/settings_manager04a.html
http://www.adobe.com/support/documentation/en/flashplayer/help/settings_manager04a.html

638 Understanding Security

In addition, a projector file embeds a specific version of Flash Player inside the projector,
which might be older than the latest version of Flash Player available for download from the
Adobe website. The Flash Player that’s embedded within the projector file might be a legacy
version if the projector was created with an older version of Flash, or an edition of Flash Player
was released after the current version of the Flash authoring tool. For these reasons, you
should distribute applications using SWF files when possible.

About troubleshooting legacy SWF files
Some legacy FLA and SWF files (created with Flash MX 2004 and earlier) might not work
when you test or deploy them locally (on a hard disk) because of security changes in Flash 8
and later. This might happen when a SWF file tries to access websites outside its domain, and,
in this case, you need to implement a cross-domain policy file.

You might have FLA or SWF files created in Flash MX 2004 or earlier that have been
distributed to users who do not use the Flash authoring tool but have upgraded to Flash
Player 8 and later. If your locally tested or deployed legacy content (an old SWF file on a user’s
hard disk) breaks because it tries to communicate with the Internet when playing in Flash
Player 8 and later, you must rely on users to explicitly trust your content in order for it to play
properly (by clicking a button in a dialog box).

To learn how to fix legacy content for playback on a local computer, see “Fixing legacy
content deployed on local computers” on page 638.

Fixing legacy content deployed on local computers
If you published SWF files for Flash Player 7 or earlier that are deployed on local computers
and communicate with the Internet, users must explicitly allow Internet communication.
Users can stop content from breaking by adding the location of the SWF file on their local
computer to the trusted sandbox in the Settings Manager.

To fix SWF files for local playback, use any of the following options:

Redeploy Run the Local Content Updater. The Local Content Updater reconfigures your
SWF file to make it compatible with the security model (for Flash Player 8 and later). You
reconfigure the local SWF file so it can either access only the network or only the local file
system. For more information, and to download the Local Content Updater, see
www.adobe.com/support/flashplayer/downloads.html.

http://www.adobe.com/support/flashplayer/downloads.html

About local file security and Flash Player 639

Republish and redeploy Republish the file with Flash. The authoring tool requires you to
specify in the Publish Settings dialog box whether a local SWF file can access the network or
the local file system—but not both. If you specify that a local SWF file can access the
network, you also must enable permissions for that SWF file (and all local SWF files) in the
SWF, HTML, data, and/or server files that it accesses. For more information, see “Publishing
files for local deployment” on page 639.

Deploy new content Use a configuration (.cfg) file in the #Security/FlashPlayerTrust folder.
You can use this file to set network and local access permissions. For more information, see
“Creating configuration files for Flash development” on page 644.

Publishing files for local deployment
You might send your Flash FLA or SWF files to a user to test or approve and need the
application to access the Internet. If your document plays back on a local system but accesses
files on the Internet (for example, loading XML or sending variables), your user might need a
configuration file for the content to function properly, or you might need to set up the FLA
file so the SWF file that you publish can access the network. Alternatively, you can set up a
configuration file inside the FlashPlayerTrust directory. For more information on setting up
configuration files, see “Creating configuration files for Flash development” on page 644.

Use Flash to create content for local deployment that works with Flash Player local file
security. In Flash 8 and later publish settings, you must specify whether local content can
access the network or access the local file system, but not both.

You can set permission levels for a FLA file in the Publish Settings dialog box. These
permission levels affect the local playback of the FLA file, when it plays locally on a hard disk.

Network SWF files SWF files that download from a network (such as an online server) are
placed in a separate sandbox that corresponds to their unique website origin domains. Local
SWF files that specify they have network access are placed in the local-with-networking
sandbox. By default, these files can read data from only the same site from which they
originated. Exact-domain matching applies to these files. Network SWF files can access data
from other domains if they have the proper permissions. For more information on network
SWF files, see “Access network only” on page 641.

N
O

T
E

Any of these options require that you either republish or redeploy your SWF file.

N
O

T
E

If you specify network access for a local file, you must also enable permissions in the
SWF, HTML, data, and server files that are accessed by the local SWF file.

640 Understanding Security

Local SWF files SWF files that operate with local file systems or UNC network paths are
placed into one of three sandboxes in Flash Player 8 and later. By default, local SWF files are
placed in the local-with-file-system sandbox. Local SWF files that are registered as trusted
(using a configuration file) are placed in the local-trusted sandbox. For information on the
three sandboxes, see “Access local files only (default)” on page 640.

For more information on the security sandbox, see “Understanding local security sandboxes”
on page 634.

The first two permission levels are set in the Flash authoring environment, and the third is set
using the Global Security Settings panel or the FlashAuthor.cfg file. The following example
shows what options are available when you publish a file for testing on your local hard disk.

To publish a document with a specified permission level:

1. Open the FLA file for which you want to specify a permission level.

2. Select File > Publish Settings > Flash.

3. Find the Local Playback Security dialog box, and select one of the following options from
the pop-up menu:

■ Access local files only (See “Access local files only (default)”)
■ Access network only (See “Access network only”)

4. Click OK to continue authoring the FLA file, or click Publish to create the SWF file.

For more information on levels of permission that you can set for your applications, see
“Access local files only (default)” on page 640, “Access network only” on page 641, and
“Access file system and network” on page 641.

Access local files only (default)
To set this permission level, select Publish Settings > Flash, and then select Access Local Files
Only from the Local Playback Security pop-up menu. This permission level lets a local SWF
file access only the local file system where the SWF file is running. The SWF file can read
from known files on the local disk without any restrictions. However, the following
restrictions apply to the application accessing the network:

■ The SWF file cannot access the network in any way. The SWF file cannot cross-script
network SWF files, or be cross-scripted by network SWF files.

■ The SWF file cannot communicate with local SWF files that have permission to access the
network only, and the SWF file cannot communicate with HTML pages. However, in
some cases communication is allowed, such as if the HTML is trusted and
allowScriptAccess is set to always or if allowScriptAccess is not set and the SWF
file is Flash Player 7 or earlier.

About local file security and Flash Player 641

Access network only
To set this permission level, select Publish Settings > Flash, and then select Access Network
Only from the Local Playback Security pop-up menu. Local SWF files with network access
can read from a server if the server contains a cross-domain policy file with <allow-access-
from-domain= “*”>. Local SWF files with network access may cross-script other SWF files if
the other SWF files, which are being accessed, contain
System.security.allowDomain(“*”). A local SWF file with network access can be cross-
scripted by network SWF files if the local SWF file contains allowDomain(“*”). The SWF
file can never read from local files. In some cases, the type of SWF file affects the access. For
information, see allowDomain (security.allowDomain method) in the ActionScript 2.0
Language Reference.

The wildcard (*) value indicates that all domains, including local hosts, are allowed access. Be
certain you want to provide this broad level of access before using the wildcard argument.

Without any of these permissions, local SWF files with network access can communicate only
with other local SWF files that have network access, and they can send data to servers (using
XML.send(), for example). In some cases, access is allowed if the HTML file is trusted.

Access file system and network
This level is the highest level of permission. A local SWF file that has these permissions is a
trusted local SWF file. Trusted local SWF files can read from other local SWF files, interact
with any server, and write ActionScript for other SWF files or HTML files that have not
explicitly forbidden the file permission (for example, with allowScriptAccess="none").
This level of permission can be granted by the user or Flash developer in the following ways:

■ Using the Global Security Settings panel in the Settings Manager.
■ Using a global configuration file.

A configuration file can be installed with the SWF file, created by a Flash developer, or
added by an administrator (for all users or the current user) or any Flash developer (for the
current user).

For more information on configuration files and the Global Security Settings panel, see
“About Flash Player security settings” on page 635 and “Specifying trusted files using the
Settings Manager” on page 642 and “Creating configuration files for Flash development”
on page 644.

642 Understanding Security

Testing content locally with Flash local file
security restrictions
As a Flash developer, you frequently test Flash applications locally, so you might see a dialog
box prompt when a local Flash application tries to communicate with the Internet. You might
see this dialog box when you test a SWF file in Flash Player if the SWF file does not have
network access. For more information on publishing SWF files with specified permission
levels, see “Publishing files for local deployment” on page 639. Publishing a SWF file with
one of these options means you can communicate with the network or the local file system.

At times, you might need to communicate with the local file system and the network when
you are testing a document. Because the new security model might interrupt your workflow
when you are authoring Flash applications, you can use the Global Security Settings panel in
Flash Player’s Settings Manager to specify which Flash applications on your computer can
always communicate with both the Internet and the local file system. Or, you can modify the
configuration file to specify trusted directories on your hard disk.

For more information, see the following sections:

■ “Specifying trusted files using the Settings Manager” on page 642
■ “Creating configuration files for Flash development” on page 644

Specifying trusted files using the Settings Manager
You can specify what Flash content on your computer may always use the older security rules
by adding the location of the content to the Global Security Settings panel in the Flash Player
Settings Manager. After you add a location on your computer to the Security panel, content
in that location is trusted. Flash Player won’t ask you for permission and is always allowed to
use the older security rules, even if Always Deny is selected in the Security panel. The Always
Trust Files in These Locations list overrides the options in the Settings panel. That is, if you
select to always deny local and web content the right to use the older security rules, the local
files in your trusted list are always allowed to use the older rules.

The Always trust files list at the bottom of the panel applies specifically to Flash content that
you have downloaded to your computer, not content that you use while visiting a website.

About local file security and Flash Player 643

The following example shows how to specify that a local SWF file can communicate with the
Internet. When you test a file in a browser locally (File > Publish Preview > HTML), a
security dialog box might appear. If you click Settings, the Settings Manager Global Security
Settings panel appears

To specify that a local SWF file can communicate with the Internet and local
file system:

1. In the Global Security Settings panel, click the pop-up menu and select Add Location.

The Add Location box opens.

If you arrived at the Settings Manager by clicking the Settings button in a dialog box, the
Add Location box contains a path that is similar to C:\directoryname\filename.swf or /
Users/directoryname/filename.swf; this path tells you which file tried to communicate with
the Internet and was stopped by Flash Player security. If the path contains the content that
you want to let communicate with the Internet, copy and paste the path into the Trust
This Location box. Or, click one of the Browse buttons and find the content yourself.

644 Understanding Security

You can add an individual file or an entire directory. If you add an entire directory, all the
files and subdirectories in that directory are trusted. Some Flash content consists of
multiple related files, and you might need to trust the entire directory where all the related
files are located. In general, avoid trusting top-level directories.

2. Click Confirm.

The location is added to the Security Settings panel. Locations listed are always allowed to
use the older security rules, even if the Always Deny or Always Ask options at the top of
the Security panel are selected.
After you add trusted locations, you must restart the local Flash content by either
refreshing the browser or restarting the player.

If you click Always Allow, it only applies that setting to always allow legacy content (Flash
Player 7 and earlier). The setting does not “always allow” Flash Player 8 and later content. It is
recommended that you specify the Flash applications and directories on your computer that
can communicate with both the Internet and the local file system.

Creating configuration files for Flash development
The Flash authoring tool sets a flag on your hard disk to identify you as a developer to direct
you to a specific developer-oriented version of the Global Security Settings panel instead of a
user-oriented Global Security Settings panel. The flag is in the FlashAuthor.cfg file on your
hard disk, which installs automatically when the Flash authoring tool installs.

The FlashAuthor.cfg file is located in the following approximate directories:

Windows boot disk\Documents and Settings\<UserName>\Application Data\Adobe\Flash
Player\#Security

Macintosh /Users/<UserName>/Library/Preferences/Adobe/Flash Player/#Security/

By default, this file is set to LocalSecurityPrompt=Author, which means the warnings you
see on your computer treat you as a Flash developer as opposed to a user without the
authoring tool installed.

You can test your local applications as an end user and see the warning dialog boxes that an
end user would encounter. To do so, open FlashAuthor.cfg in a text editor, and change the
LocalSecurityPrompt in the FlashAuthor.cfg file to match the following:

LocalSecurityPrompt=User

About local file security and Flash Player 645

You might want to provide a FlashAuthor.cfg file, with LocalSecurityPrompt set to Author,
to other developers in your design or development process or to users who test Flash
applications on their local hard disk and do not have the Flash authoring tool installed. This
helps you mimic the end user’s experience with your locally deployed content.

In the #Security directory on your hard disk, you can create a FlashPlayerTrust directory
where you can store unique configuration files. Inside these files, you can specify directories or
applications to trust on your hard disk. This directory does not require administrative access,
so users without administrative permissions can set permissions for SWF files and test
applications.

If you do not specify a directory, your content might not function as intended. Configuration
files inside a FlashPlayerTrust directory contain directory paths. The file can contain a list of
several directories, and you can append new paths to the file. Flash Player expects one path per
line in configuration files. Any line that begins with a # punctuator (with no leading space
before it) is treated as a comment.

To create a configuration file to trust a directory:

1. Locate the #Security folder on your hard disk.

2. Create a folder called FlashPlayerTrust inside the #Security folder.

3. Create a new file in the FlashPlayerTrust directory using a text editor, and save it as
myTrustFiles.cfg.

You can use any unique name for your configuration file.
4. Locate the directory where you test Flash applications.

5. Type or paste each directory path (any directory path on your hard disk) on a new line in
the file. You can paste multiple directory paths on separate lines. When you finish, your
file looks similar to the following example:
C:\Documents and Settings\<yourname>\My Documents\files\
C:\Documents and Settings\<yourname>\My Documents\testapps\

6. Save your changes to myTrustFiles.cfg.

7. Test a document that accesses local and network files from the directory you added to
the file.

Flash applications saved in this directory can now access local files and the network.

There can be numerous directory paths saved in each configuration file, and numerous *.cfg
files saved in the FlashPlayerTrust directory.

N
O

T
E

If the FlashAuthor.cfg file is deleted, the file is recreated when you launch the Flash
authoring tool.

646 Understanding Security

If you create applications that install on an end user’s hard disk, you might need to create a
configuration file in FlashPlayerTrust to specify a trusted directory for your application. You
can create configuration files inside the FlashPlayerTrust directory that specify the location of
the trusted application. See the pervious procedure for information on this directory and
creating configuration files.

You should develop a unique naming scheme to avoid conflicts with other applications that
might install files in this directory. For example, you might want to use your unique company
and software name in the filename to avoid conflicts.

For more information on configuration files, see www.adobe.com/go/flashauthorcfg. You can
also create a unique configuration file to trust one or more directories. For detailed
information on security, see www.adobe.com/devnet/security/and www.adobe.com/software/
flashplayer/security/.

About the sandboxType property
For Flash Player 8 and later, the System.security.sandboxType property returns the type
of security sandbox in which the calling SWF file is operating.

The sandboxType property has one of the four following values:

remote The SWF file is hosted on the Internet and operates under domain-based
sandbox rules.

localTrusted The SWF file is a local file that has been trusted by the user, using either the
Global Security Settings Manager or a FlashPlayerTrust configuration file. The SWF file can
both read from local data sources and communicate with the network (such as the Internet).

localWithFile The SWF file is a local file that has not been trusted by the user, and was not
published with a networking designation. The SWF file can read from local data sources but
cannot communicate with the network (such as the Internet).

N
O

T
E

An installer is run by a user with administrative permission on a computer.

T
IP If you do not want to use configuration files, you could publish your Flash applications to

a separate, testing server instead of providing clients or other developers SWF files to
run on their local hard disks.

http://www.adobe.com/go/flashauthorcfg
http://www.adobe.com/devnet/security/
http://www.adobe.com/software/flashplayer/security/
http://www.adobe.com/software/flashplayer/security/

About local file security and Flash Player 647

localWithNetwork The SWF file is a local file that has not been trusted by the user, and
was published with Access Network Only selected in the Publish Settings dialog box (Flash
tab). The SWF file can communicate with the network but cannot read from local
data sources.

You can check the sandboxType property from any SWF file, although a value is returned
only in files published for Flash Player 8 and later. This means that when you publish for
Flash Player 7 or earlier, you do not know whether the sandboxType property is supported at
runtime. If the property isn't supported at runtime, the value is undefined, which occurs
when the Flash Player version (indicated by the System.capabilities.version property) is
less than 8. If the value is undefined, you can determine the sandbox type according to
whether your SWF file’s URL is a local file or not. If the SWF file is a local file, Flash Player
classifies your SWF as localTrusted (which is how all local content was treated prior to
Flash Player 8); otherwise Flash Player classifies the SWF file as remote.

About local-with-file-system restrictions
A local-with-file-system file has not been registered using the configuration file inside the
FlashPlayerTrust directory, the Global Security Settings panel in the Settings Manager, or has
not been granted network permission in the Publish Settings dialog box in the Flash
authoring environment.

These files include legacy content that plays in Flash Player 8 and later. If you are developing
content in Flash CS3, or you have content that falls into one of the following categories, you
(or your users) should register the file as trusted. For information on registering a file as
trusted, see “Specifying trusted files using the Settings Manager” on page 642. For
information on granting permission for local file playback using configuration files, see
“Creating configuration files for Flash development” on page 644.

Local-with-file-system SWF files have the following restrictions:

■ Cannot access the network, which includes the following:
■ Loading other SWF files from the network (except using non-Internet UNC paths)
■ Sending HTTP requests
■ Making connections using XMLSocket, Flash Remoting, or NetConnection
■ Calling getURL() except if you use getURL("file:...") or getURL("mailto:...")

N
O

T
E

For information on security sandboxes, see “Understanding local security sandboxes”
on page 634.

648 Understanding Security

■ Can interact with other local-with-file-system files, but includes restrictions to
the following:
■ Cross-scripting (such as ActionScript access to objects in other SWF files).
■ Calling System.security.allowDomain
■ Using LocalConnection as sender or listener and regardless of

LocalConnection.allowDomain handlers.

Local-with-file-system SWF files have read access to known files on the local file system.
For example, you can use XML.load() in a local-with-file-system SWF file as long as you
load from the local file system and not the Internet.

■ Local-with-file-system SWF files cannot communicate with HTML pages, which includes
the following:
■ Inbound scripting (such as ExternalInterface API, ActiveX, LiveConnect, and

XPConnect)
■ Outbound scripting (such as custom fscommand calls, and

getURL("javascript:..."))

Restricting networking APIs
You can control a SWF file’s access to network functionality by setting the allowNetworking
parameter in the <object> and <embed> tags in the HTML page that contains the SWF
content.

Possible values of allowNetworking are:

■ "all" (the default)—All networking APIs are permitted in the SWF.
■ "internal"—The SWF file may not call browser navigation or browser interaction APIs,

listed below, but it may call any other networking APIs.
■ "none"—The SWF file may not call any networking APIs, listed below. Also, it cannot

use any SWF-to-SWF communication APIs, also included in the list below.

N
O

T
E

Local-with-file-system SWF files can interact with other local-with-file-system,
non-network SWF files. However, they cannot interact with local-with-network
SWF files.

N
O

T
E

An exception to this is if the HTML page is trusted.

Restricting networking APIs 649

To set the allowNetworking parameter, in the <object> and <embed> tags in the HTML
page that contains the SWF content, add the allowNetworking parameter and set its value,
as shown in the following example:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
 codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=9,0,18,0"
 width="600" height="400" id="test" align="middle">
<param name="allowNetworking" value="none" />
<param name="movie" value="test.swf" />
<param name="bgcolor" value="#333333" />
<embed src="test.swf" allowNetworking="none" bgcolor="#333333" width="600"

height="400"
 name="test" align="middle" type="application/x-shockwave-flash"
 pluginspage="http://www.adobe.com/shockwave/download/

download.cgi?P1_Prod_Version=ShockwaveFlash" />
</object>

The following APIs are prevented when allowNetworking is set to "internal":
■ getURL

■ MovieClip.getURL

■ fscommand()

■ ExternalInterface.call()

In addition to the previous APIs, the following APIs are prevented when allowNetworking is
set to "none":

■ XML.load

■ XML.send

■ XML.sendAndLoad

■ LoadVars.load()

■ LoadVars.send

■ LoadVars.sendAndLoad

■ loadVariables

■ loadVariablesNum

■ MovieClip.loadVariables

■ NetConnection.connect

■ NetStream.play

■ loadMovie

■ loadMovieNum

■ MovieClip.loadMovie

■ MovieClipLoader.loadClip

650 Understanding Security

■ Sound.loadSound

■ LocalConnection.connect

■ LocalConnection.send

■ SharedObject.getLocal

■ SharedObject.getRemote

■ FileReference.upload

■ FileReference.download

■ System.security.loadPolicyFile

■ XMLSocket.connect

Even if the selected allowNetworking setting permits a SWF file to use a networking API,
there may be other restrictions based on security sandbox limitations, as described in this
chapter.

When allowNetworking is set to "none", an tag in the htmlText property of a
TextField does not display network content.When allowNetworking is set to "none", a
symbol from an imported shared library added in the Flash authoring tool (not ActionScript)
is prevented at run time.

About domains, cross-domain security,
and SWF files
By default, Flash Player 7 and later versions prevent a SWF file served from one domain from
reading data, objects, or variables from SWF files that are served from different domains. In
addition, content that is loaded through nonsecure (non-HTTPS) protocols cannot read
content loaded through a secure (HTTPS) protocol, even when both are in exactly the same
domain. For example, a SWF file located at http://www.adobe.com/main.swf cannot load
data from https://www.adobe.com/data.txt without explicit permission; neither can a SWF
file served from one domain load data (using loadVars(), for example) from another
domain.

Identical numeric IP addresses are compatible. However, a domain name is not compatible
with an IP address, even if the domain name resolves to the same IP address.

The following table shows examples of compatible domains:

www.adobe.com www.adobe.com

data.adobe.com data.adobe.com

65.57.83.12 65.57.83.12

About domains, cross-domain security, and SWF files 651

The following table shows examples of incompatible domains:

Flash Player 8 and later does not allow local SWF files to communicate with the Internet
without a proper configuration. For information on setting up a configuration file to test
content locally, see “Creating configuration files for Flash development” on page 644.

For more information on security, see www.adobe.com/devnet/security/ and
www.adobe.com/software/flashplayer/security/.

For more information, see the following topics:

■ “Domain name rules for settings and local data” on page 651
■ “Cross-domain and subdomain access between SWF files” on page 652
■ “Allowing cross-domain data loading” on page 658

Domain name rules for settings and local data
In Flash Player 6, superdomain matching rules are used by default when accessing local
settings (such as camera or microphone access permissions) or locally persistent data (shared
objects). That is, the settings and data for SWF files hosted at one.adobe.com,
two.adobe.com, and adobe.com are shared and are all stored at adobe.com.

In Flash Player 7, exact-domain matching rules are used by default. That is, the settings and
data for a file hosted at one.adobe.com are stored at one.adobe.com, the settings and data for
a file hosted at two.adobe.com are stored at two.adobe.com, and so on.
System.exactSettings lets you specify which rules to use. This property is supported for
files published for Flash Player 6 or later. For files published for Flash Player 6, the default
value is false, which means superdomain matching rules are used. For files published for
Flash Player 7 or later, the default value is true, which means exact-domain matching rules
are used. If you use settings or persistent local data and want to publish a Flash Player 6 SWF
file for Flash Player 7 or later, you might need to set this value to false in the ported file. For
more information, see exactSettings (System.exactSettings property) in the
ActionScript 2.0 Language Reference.

www.adobe.com data.adobe.com

adobe.com www.adobe.com

www.adobe.com adobe.com

65.57.83.12 www.adobe.com (even if this domain resolves to 65.57.83.12)

www.adobe.com 65.57.83.12 (even if www.adobe.com resolves to this IP
address)

http://www.adobe.com/devnet/security/
http://www.adobe.com/software/flashplayer/security/

652 Understanding Security

Cross-domain and subdomain access between SWF
files
When you develop a series of SWF files that communicate with each other online—for
example, when using loadMovie(), MovieClip.loadMovie(),
MovieClipLoader.LoadClip(), or Local Connection objects—you might host the SWF
files in different domains or in different subdomains of a single superdomain.

In files published for Flash Player 5 or earlier, there were no restrictions on cross-domain or
subdomain access.

In files published for Flash Player 6, you could use the LocalConnection.allowDomain
handler or System.security.allowDomain() method to specify permitted cross-domain
access (for example, to let a file at adobe.com be accessed by a file at helpexamples.com), and
no command was needed to permit subdomain access (for example, a file at www.adobe.com
could be accessed by a file at something.adobe.com).

Files published for Flash Player 7 implement access between SWF files differently from earlier
versions in two ways. First, Flash Player 7 implements exact-domain matching rules instead of
superdomain matching rules. Therefore, the file being accessed (even if it is published for a
Flash Player version earlier than Flash Player 7) must explicitly permit cross-domain or
subdomain access; this topic is discussed in this section. Second, a file hosted at a site using a
secure protocol (HTTPS) must explicitly permit access from a file hosted at a site using an
insecure protocol (HTTP or FTP); this topic is discussed in the next section (see “HTTP to
HTTPS protocol access between SWF files” on page 662).

You usually call System.security.allowDomain in your applications. However, when the
LocalConnection receiver is an HTTPS SWF file and the sender is not,
allowInsecureDomain is called instead.

The following issue affects only SWF files published for Flash Player 7. When the receiver is
HTTPS, and the sender is a local SWF file, allowDomain() is called, even though
allowInsecureDomain() should be called. However, in Flash Player 8 and later, when an
HTTPS LocalConnection receiver is Flash Player 8 and later, and the sender is a local file,
allowInsecureDomain() is called.

About domains, cross-domain security, and SWF files 653

Files that run in Flash Player 8 and later are subject to changes from how they run in Flash
Player 7. Calling System.security.allowDomain permits cross-scripting operations only
where the SWF file being accessed is the one that called System.security.allowDomain. In
other words, a SWF file that calls System.security.allowDomain now permits access only
to itself. In previous versions, calling System.security.allowDomain permitted cross-
scripting operations where the SWF file being accessed could be any SWF file in the same
domain as the one that called System.security.allowDomain. Doing so opened up the
entire domain of the calling SWF file.

Support has been added for the wildcard (*) value to System.security.allowDomain("*")
and System.security.allowInsecureDomain("*"). The wildcard (*) value permits cross-
scripting operations where the accessing file is any file and can be loaded from any location
(such as global permission). Wildcard permissions can be useful, but they must adhere to the
new local file security rules in Flash Player 8 and later. Specifically, local files do not come
from a domain, so the wildcard value must be used. However, use caution when using the
wildcard value because any domain has access to your file. For more information, see
allowInsecureDomain (security.allowInsecureDomain method).

You might encounter a situation when you load a child SWF file from a different domain
than the one calling it. You might want to allow that file to script the parent SWF file, but you
don’t know the final domain from which the child SWF file will come. This situation can
happen, for example, when you use load-balancing redirects or third-party servers. In this
situation, you can use the MovieClip._url property as an argument to this method. For
example, if you load a SWF file into my_mc, you can call
System.security.allowDomain(my_mc._url). If you do this, you must wait until the SWF
file in my_mc begins loading because the _url property does not have its final, correct value
yet. To determine when a child SWF file has started to load, use
MovieClipLoader.onLoadStart.

The opposite situation can also occur; that is, you might create a child SWF file that wants to
allow its parent to script it, but doesn’t know what the domain of its parent SWF file will be
(meaning, it’s a SWF file that might be loaded by a variety of domains). In this situation, call
System.security.allowDomain(_parent._url) from the child SWF file. You don’t have
to wait for the parent SWF file to load because it is loaded before the child file loads.

N
O

T
E

If the Internet SWF file being accessed is loaded from an HTTPS URL, the Internet SWF
file must call System.security.allowInsecureDomain("*").

654 Understanding Security

The following table summarizes domain-matching rules in different versions of Flash Player:

The versions that control the behavior of Flash Player are SWF file versions (the specified
Flash Player version of a SWF file), not the version of Flash Player itself. For example, when
Flash Player 8 and later is playing a SWF file published for version 7, Flash Player applies
behavior that is consistent with version 7. This practice ensures that player upgrades do not
change the behavior of System.security.allowDomain() in deployed SWF files.

Because Flash Player 7 and later versions implement exact-domain matching rules instead of
superdomain matching rules, you might have to modify existing scripts if you want to read
them from files that are published for Flash Player 7 and later. (You can still publish the
modified files for Flash Player 6.) If you used any LocalConnection.allowDomain() or
System.security.allowDomain() statements in your files and specified superdomain sites
to permit, you must change your parameters to specify exact domains instead. The following
example shows changes you might have to make if you have Flash Player 6 code:
// Flash Player 6 commands in a SWF file at www.helpexamples.com
// to allow access by SWF files that are hosted at www.adobe.com
// or at store.adobe.com
System.security.allowDomain("adobe.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="adobe.com");
}
// Corresponding commands to allow access by SWF files
// that are published for Flash Player 7 or later
System.security.allowDomain("www.adobe.com", "store.adobe.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="www.adobe.com" ||

Files published for
Flash Player

Cross-domain access
between SWF files
(allowDomain() is needed)

Subdomain access
between SWF files

5 or earlier No restrictions No restrictions

6 Superdomain matching:
allowDomain() is needed if
superdomains do not match.

No restrictions

7 and later Exact domain matching
Explicit permission for HTTPS-
hosted files to access HTTP- or
FTP-hosted files

Exact domain matching
Explicit permission for HTTPS-
hosted files to access HTTP- or
FTP-hosted files

N
O

T
E

You need System.security.allowInsecureDomain in Flash Player 7 and later if you are
performing HTTP-to-HTTPS access, even if you have exact-domain matching.

About domains, cross-domain security, and SWF files 655

sendingDomain=="store.adobe.com");
}

You might also have to add statements such as these to your files if you aren’t currently using
them. For example, if your SWF file is hosted at www.adobe.com and you want to allow
access by a SWF file published for Flash Player 7 or later at store.adobe.com, you must add
statements such as the following example to the file at www.adobe.com (you can still publish
the file at www.adobe.com for Flash Player 6):
System.security.allowDomain("store.adobe.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="store.adobe.com");
}

In addition, consider that if a Flash Player 6 application running in Flash Player 7 tries to
access data outside its exact domain, Flash Player 7 and later domain-matching rules are
enforced and the user is prompted to allow or deny access.

To summarize, you might have to modify your files to add or change allowDomain statements
if you publish files for Flash Player 7 or later that meet the following conditions:

■ You implemented cross-SWF file scripting (see “Allowing data access between cross-
domain SWF files” on page 656).

■ The called SWF file (of any version) is not hosted at a site using a secure protocol
(HTTPS), or the calling and called SWF files are both hosted at HTTPS sites. (If only the
called SWF file is HTTPS, see “HTTP to HTTPS protocol access between SWF files”
on page 662.)

■ The SWF files are not in the same domain (for example, one file is at www.adobe.com and
one is at store.adobe.com).

You must make the following changes:

■ If the called SWF file is published for Flash Player 7 or later, include
System.security.allowDomain or LocalConnection.allowDomain in the called SWF
file, using exact domain-name matching.

■ If the called SWF file is published for Flash Player 6, modify the called file to add or
change a System.security.allowDomain or LocalConnection.allowDomain
statement, using exact domain-name matching, as shown in the code examples earlier in
this section. You can publish the modified file for either Flash Player 6 or 7.

■ If the called SWF file is published for Flash Player 5 or earlier, port the called file to
Flash Player 6 or 7 and add a System.security.allowDomain statement, using exact
domain-name matching, as shown in the code examples earlier in this section.
(LocalConnection objects aren’t supported in Flash Player 5 or earlier.)

656 Understanding Security

For information on local security sandboxes, see “About local file security and Flash Player”
on page 633.

Allowing data access between cross-domain
SWF files
For two SWF files to access each other’s data (variables and objects), the two files must
originate from the same domain. By default, in Flash Player 7 and later, the two domains
must match exactly for the two files to share data. However, a SWF file can grant access to
SWF files served from specific domains by calling LocalConnection.allowDomain or
System.security.allowDomain().

System.security.allowDomain() lets SWF files and HTML files in specified domains
access objects and variables in the SWF file that contains the allowDomain() call.

If two SWF files are served from the same domain—for example, http://adobe.com/
movieA.swf and http://adobe.com/movieB.swf—then movieA.swf can examine and modify
variables, objects, properties, methods, and so on in movieB.swf, and movieB can do the same
for movieA. This is called cross-movie scripting, or cross-scripting.

If two SWF files are served from different domains—for example, http://adobe.com/
movieA.swf and http://helpexamples.com/movieB.swf—then, by default, Flash Player does
not allow movieA.swf to script movieB.swf, nor movieB to script movieA. If you call
System.security.allowDomain("adobe.com"), movieB.swf gives movieA.swf permission
to script movieB.swf. A SWF file gives SWF files from other domains permission to script it
by calling System.security.allowDomain(). This is called cross-domain scripting.

For further information on System.security.allowDomain(), cross-scripting, and cross-
domain scripting, see allowDomain (security.allowDomain method) in the ActionScript 2.0
Language Reference.

For example, suppose main.swf is served from www.adobe.com. That SWF file then loads
another SWF file (data.swf) from data.adobe.com into a movie clip instance that’s created
dynamically using createEmptyMovieClip().
// In adobe.swf
this.createEmptyMovieClip("target_mc", this.getNextHighestDepth());
target_mc.loadMovie("http://data.adobe.com/data.swf");

Server-side policy files for permitting access to data 657

Suppose that data.swf defines a method named getData() on its main Timeline. By default,
main.swf cannot call the getData() method defined in data.swf after that file has loaded
because the two SWF files do not reside in the same domain. For example, the following
method call in main.swf, after data.swf has loaded, fails:
// In adobe.swf, after data.swf has loaded:
target_mc.getData(); // This method call will fail

However, data.swf can grant access to SWF files served from www.adobe.com by using the
LocalConnection.allowDomain handler and the System.security.allowDomain()
method, depending on the type of access required. The following code, added to data.swf,
allows a SWF file served from www.adobe.com to access its variables and methods:
// Within data.swf
this._lockroot = true;
System.security.allowDomain("www.adobe.com");
var my_lc:LocalConnection = new LocalConnection();
my_lc.allowDomain = function(sendingDomain:String):Boolean {

return (sendingDomain == "www.adobe.com");
};
function getData():Void {

var timestamp:Date = new Date();
output_txt.text += "data.swf:" + timestamp.toString() + "\n\n";

}
output_txt.text = "**INIT**:\n\n";

Now the getData function in the loaded SWF file can be called by the adobe.swf file. Notice
that allowDomain permits any SWF file in the allowed domain to script any other SWF file
in the domain permitting the access, unless the SWF file being accessed is hosted on a site
using a secure protocol (HTTPS).

For more information on domain-name matching, see “Cross-domain and subdomain access
between SWF files” on page 652.

Server-side policy files for permitting
access to data
A Flash document can load data from an external source by using one of the following data
loading calls: XML.load(), XML.sendAndLoad(), LoadVars.load(),
LoadVars.sendAndLoad(), loadVariables(), loadVariablesNum(),
MovieClip.loadVariables(), XMLSocket.connect(), and Flash Remoting
(NetServices.createGatewayConnection). Also, a SWF file can import runtime shared
libraries (RSLs), or assets defined in another SWF file, at runtime. By default, the data or RSL
must reside in the same domain as the SWF file that is loading that external data or media.

658 Understanding Security

To make data and assets in runtime shared libraries available to SWF files in different
domains, you should use a cross-domain policy file. A cross-domain policy file is an XML file
that provides a way for the server to indicate that its data and documents are available to SWF
files served from certain domains, or from all domains. Any SWF file that is served from a
domain specified by the server’s policy file is permitted to access data, assets, or RSLs from
that server.

If you are loading external data, you should create policy files even if you don’t plan to port
any files to Flash Player 7. If you are using RSLs, you should create policy files if either the
calling or called file is published for Flash Player 7.

For more information, see the following topics:

■ “Allowing cross-domain data loading” on page 658
■ “About custom policy file locations” on page 660
■ “About XMLSocket policy files” on page 661

Allowing cross-domain data loading
When a Flash document attempts to access data from another domain, Flash Player
automatically attempts to load a policy file from that domain. If the domain of the Flash
document that is attempting to access the data is included in the policy file, the data is
automatically accessible.

Policy files must be named crossdomain.xml, and can reside either at the root directory or in
another directory on the server that is serving the data with some additional ActionScript (see
“About custom policy file locations” on page 660). Policy files function only on servers that
communicate over HTTP, HTTPS, or FTP. The policy file is specific to the port and protocol
of the server where it resides.

For example, a policy file located at https://www.adobe.com:8080/crossdomain.xml applies
only to data loading calls made to www.adobe.com over HTTPS at port 8080.

An exception to this rule is the use of an XMLSocket object to connect to a socket server in
another domain. In that case, an HTTP server running on port 80 in the same domain as the
socket server must provide the policy file for the method call.

Server-side policy files for permitting access to data 659

An XML policy file contains a single <cross-domain-policy> tag, which, in turn, contains
zero or more <allow-access-from> tags. Each <allow-access-from> tag contains an
attribute, domain, which specifies either an exact IP address, an exact domain, or a wildcard
domain (any domain). Wildcard domains are indicated by either a single asterisk (*), which
matches all domains and all IP addresses, or an asterisk followed by a suffix, which matches
only those domains that end with the specified suffix. Suffixes must begin with a dot.
However, wildcard domains with suffixes can match domains that consist of only the suffix
without the leading dot. For example, adobe.com is considered to be part of *.adobe.com.
Wildcards are not allowed in IP domain specifications.

If you specify an IP address, access is granted only to SWF files loaded from that IP address
using IP syntax (for example, http://65.57.83.12/flashmovie.swf), not those loaded using
domain-name syntax. Flash Player does not perform DNS resolution.

The following example shows a policy file that permits access to Flash documents that
originate from adobe.com, www.helpexamples.com, *.adobe.com, and 105.216.0.40, from a
Flash document on adobe.com:
<?xml version="1.0"?>
<!-- http://www.adobe.com/crossdomain.xml -->
<cross-domain-policy>
 <allow-access-from domain="www.helpexamples.com" />
 <allow-access-from domain="*.adobe.com" />
 <allow-access-from domain="105.216.0.40" />
</cross-domain-policy>

You can also permit access to documents originating from any domain, as shown in the
following example:
<?xml version="1.0"?>
<!-- http://www.adobe.com/crossdomain.xml -->
<cross-domain-policy>
 <allow-access-from domain="*" />
</cross-domain-policy>

Each <allow-access-from> tag also has the optional secure attribute. The secure
attribute defaults to true. You can set the attribute to false if your policy file is on an
HTTPS server, and you want to allow SWF files on an HTTP server to load data from the
HTTPS server.

Setting the secure attribute to false could compromise the security offered by HTTPS.

If the SWF file you are downloading comes from an HTTPS server, but the SWF file loading
it is on an HTTP server, you need to add the secure="false" attribute to the <allow-
access-from> tag, as shown in the following code:
<allow-access-from domain="www.adobe.com" secure="false" />

660 Understanding Security

A policy file that contains no <allow-access-from> tags has the same effect as not having a
policy on a server.

About custom policy file locations
Flash Player 7 (7.0.19.0) supports a method called System.security.loadPolicyFile.
This method lets you specify a custom location on a server where a cross-domain policy file
can be found, so it does not need to be in the root directory. Flash Player 7 (7.0.14.0) only
searched for policy files in the root location of a server, but it can be inconvenient for a site
administrator to place this file in the root directory. For more information on the
loadPolicyFile method and XMLSocket connections, see “About XMLSocket policy files”
on page 661 and loadPolicyFile (security.loadPolicyFile method) in the
ActionScript 2.0 Language Reference.

If you use the loadPolicyFile method, a site administrator can place the policy file in any
directory, as long as the SWF files that need to use the policy file call loadPolicyFile to tell
Flash Player where the policy file is located. However, policy files not placed in the root
directory have a limited scope. The policy file allows access only to locations at or below its
own level in the server’s hierarchy.

The loadPolicyFile method is available only in Flash Player 7 (7.0.19.0) or later. Authors
of SWF files using the loadPolicyFile method must do one of the following:

■ Require Flash Player 7 (7.0.19.0) or later.
■ Arrange for the site where the data is coming from to have a policy file in the default

location (the root directory) as well as in the nondefault location. Earlier versions of Flash
Player use the default location.

Otherwise, authors must create SWF files so a failure of a cross-domain loading operation is
implemented.

If you want to use a policy file in a custom location on the server, you must call
System.security.loadPolicyFile before you make any requests that depend on the policy
file, such as the following:
System.security.loadPolicyFile("http://www.adobe.com/folder1/folder2/

crossdomain.xml");
var my_xml:XML = new XML();
my_xml.load("http://www.adobe.com/folder1/folder2/myData.xml");

C
A

U
T

IO
N

If your SWF file relies on loadPolicyFile, visitors with Flash Player 6 or earlier or Flash
Player 7 (7.0.19.0) or later do not have problems. However, visitors with Flash Player 7
(7.0.14.0) do not have support for loadPolicyFile.

Server-side policy files for permitting access to data 661

You can load several policy files with overlapping scopes using loadPolicyFile. For all
requests, Flash Player tries to consult all the files whose scope includes the location of the
request. If one policy file fails to grant cross-domain access, another file is not prevented from
granting access to data. If all access attempts fail, Flash Player looks in the default location of
the crossdomain.xml file (in the root directory). The request fails if no policy file is found in
the default location.

About XMLSocket policy files
For an XMLSocket connection attempt, Flash Player 7 (7.0.14.0) looked for crossdomain.xml
on an HTTP server on port 80 in the subdomain to which the connection attempt was being
made. Flash Player 7 (7.0.14.0) and all earlier versions restricted XMLSocket connections to
ports 1024 and above. However, in Flash Player 7 (7.0.19.0) and later, ActionScript can
inform Flash Player of a nondefault location for a policy file using
System.security.loadPolicyFile. Any custom locations for XMLSocket policy files must
still be on an XML socket server.

In the following example, Flash Player retrieves a policy file from a specified URL:
System.security.loadPolicyFile("http://www.adobe.com/folder/policy.xml");

Any permissions granted by the policy file at that location apply to all content at the same
level or below in the server’s hierarchy. Therefore, if you try to load the following data, you
discover you can only load data from certain locations:
myLoadVars.load("http://www.adobe.com/folder/vars.txt"); // allowed
myLoadVars.load("http://www.adobe.com/folder/dir/vars2.txt"); // allowed
myLoadVars.load("http://www.adobe.com/elsewhere/vars3.txt"); // not allowed

To work around this, you can load more than one policy file into a single SWF file using
loadPolicyFile. Flash Player always waits for the completion of any policy file downloads
before denying a request that requires a policy file. Flash Player consults the default location of
crossdomain.xml if no other policies were authorized in the SWF file.

Special syntax allows policy files to be retrieved directly from an XMLSocket server:
System.security.loadPolicyFile("xmlsocket://adobe.com:414");

In this example, Flash Player tries to retrieve a policy file from the specified host and a port.
Any port can be used if the policy file is not in the default (root) directory; otherwise the port
is limited to 1024 and higher (as with earlier players). When a connection is established to the
specified port, Flash Player sends <policy-file-request />, terminated by a null byte.

The XML socket server might be configured to serve policy files in the following ways:

■ To serve policy files and normal socket connections over the same port. The server should
wait for <policy-file-request /> before transmitting a policy file.

662 Understanding Security

■ To serve policy files over a separate port from normal connections, in which case it might
send a policy file as soon as a connection is established on the dedicated policy file port.

The server must send a null byte to terminate a policy file before it closes the connection. If
the server does not close the connection, Flash Player does so upon receiving the terminating
null byte.

A policy file served by an XML socket server has the same syntax as any other policy file,
except that it must also specify the ports to which access is granted. The allowed ports are
specified in a to-ports attribute in the <allow-access-from> tag. If a policy file is less than
port 1024, it can grant access to any port; when a policy file comes from port 1024 or higher,
it can grant access only to other ports above 1024. Single port numbers, port ranges, and
wildcards are allowed. The following code is an example of an XMLSocket policy file:
<cross-domain-policy>
<allow-access-from domain="*" to-ports="507" />
<allow-access-from domain="*.adobe.com" to-ports="507,516" />
<allow-access-from domain="*.helpexamples.com" to-ports="516-523" />
<allow-access-from domain="www.adobe.com" to-ports="507,516-523" />
<allow-access-from domain="www.helpexamples.com" to-ports="*" />
</cross-domain-policy>

Because the ability to connect to ports lower than 1024 is available in Flash Player 7
(7.0.19.0) and later, a policy file loaded with loadPolicyFile is always required to authorize
this, even when a SWF file is connecting to its own subdomain.

HTTP to HTTPS protocol access
between SWF files
You must use an allowDomain handler or method to permit a SWF file in one domain to be
accessed by a SWF file in another domain. However, if the SWF file being accessed is hosted
at a site that uses a secure protocol (HTTPS), the allowDomain handler or method doesn’t
permit access from a SWF file hosted at a site that uses an insecure protocol. To permit such
access, you must use the LocalConnection.allowInsecure Domain() or
System.security.allowInsecureDomain() statements. See “Allowing HTTP to HTTPS
protocol access between SWF files” on page 663 for more information.

HTTP to HTTPS protocol access between SWF files 663

Allowing HTTP to HTTPS protocol access between
SWF files
In addition to the exact-domain matching rules, you must explicitly permit files hosted at sites
using a secure protocol (HTTPS) to be accessed by files hosted at sites using an insecure
protocol. Depending on whether the called file is published for Flash Player 6 or later, you
must implement either one of the allowDomain statements (see “Cross-domain and
subdomain access between SWF files” on page 652), or use the
LocalConnection.allowInsecure Domain or
System.security.allowInsecureDomain() statements.

For example, if the SWF file at https://www.adobe.com/data.swf must allow access by a SWF
file at http://www.adobe.com, the following code added to data.swf allows this access:
// Within data.swf
System.security.allowInsecureDomain("www.adobe.com");
my_lc.allowInsecureDomain = function(sendingDomain:String):Boolean {

return (sendingDomain == "www.adobe.com");
};

The following code shows an example of the changes you might have to make:
// Commands in a Flash Player 6 SWF file at https://www.adobe.com
// to allow access by Flash Player 7 SWF files that are hosted
// at http://www.adobe.com or at http://www.helpexamples.com
System.security.allowDomain("helpexamples.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="helpexamples.com");
}
// Corresponding commands in a Flash Player 7 SWF file
// to allow access by Flash Player 7 SWF files that are hosted
// at http://www.adobe.com or at http://www.helpexamples.com
System.security.allowInsecureDomain("www.adobe.com",

"www.helpexamples.com");
my_lc.allowInsecureDomain = function(sendingDomain) {

return(sendingDomain=="www.adobe.com" ||
sendingDomain=="www.helpexamples.com");

}

You might also have to add statements such as these to your files if you aren’t currently using
them. A modification might be necessary even if both files are in the same domain (for
example, a file in http://www.adobe.com is calling a file in https://www.adobe.com).

W
A

R
N

IN
G

Implementing an allowInsecureDomain() statement compromises the security offered by
the HTTPS protocol. You should make these changes only if you can’t reorganize your
site so that all SWF files are served from the HTTPS protocol.

664 Understanding Security

To summarize, you might have to modify your files to add or change statements if you publish
files for Flash Player 7 or later that meet the following conditions:

■ You implemented cross-SWF file-scripting (using loadMovie(),
MovieClip.loadMovie(), MovieClipLoader.LoadClip(), or Local Connection
objects).

■ The calling file is not hosted using an HTTPS protocol, and the called file is HTTPS.

You must make the following changes:

■ If the called file is published for Flash Player 7, include
System.security.allowInsecureDomain or
LocalConnection.allowInsecureDomain in the called file, using exact domain-name
matching, as shown in the code examples earlier in this section.

■ If the called file is published for Flash Player 6 or earlier, and both the calling and called
files are in same domain (for example, a file in http://www.adobe.com is calling a file in
https://www.adobe.com), no modification is needed.

■ If the called file is published for Flash Player 6, the files are not in same domain, and you
don’t want to port the called file to Flash Player 7, modify the called file to add or change
a System.security.allowDomain or LocalConnection.allowDomain statement, using
exact domain-name matching, as shown in the code examples earlier in this section.

■ If the called file is published for Flash Player 6 and you want to port the called file to Flash
Player 7, include System.security.allowInsecureDomain or
LocalConnection.allowInsecureDomain in the called file, using exact domain-name
matching, as shown in the code examples earlier in this section.

■ If the called file is published for Flash Player 5 or earlier, and both files are not in the same
domain, you can do one of two things. You can either port the called file to Flash Player 6
and add or change a System.security.allowDomain statement, using exact domain-
name matching, as shown in the code examples earlier in this section, or you can port the
called file to Flash Player 7, and include a System.security.allowInsecureDomain
statement in the called file, using exact domain-name matching, as shown in the code
examples earlier in this section.

665

17
CHAPTER 17

Best Practices and Coding
Conventions for ActionScript 2.0

Adobe Flash designers and developers must write code and structure applications in a way that
is intuitive and beneficial to themselves as well as to the other people who are working on the
same project. This is particularly important in FLA files with lots of assets, or long code files.
When you follow best practices and coding conventions, everyone on the design and
development team can understand the file structure and ActionScript code and can work
more efficiently. This document helps formalize the Flash development and coding process.

Because it is common for more than one designer or developer to work on a single Flash
project, teams benefit when everyone follows a standard set of guidelines for using Flash,
organizing FLA files, and writing ActionScript 2.0 code. The sections in this chapter outline
the best practices for writing ActionScript, and some sections of Using Flash cover best
practices when using the Flash authoring tool.

The following guidelines encourage consistency for people learning how to use Flash and
write ActionScript code. Adopt best practices at all times, whether you are a designer or
developer, or working alone or as part of a team.

■ When you work on Flash or ActionScript documents
Adopting consistent and efficient practices helps you speed up your workflow. It is faster
to develop using established coding conventions, and easier to understand and remember
how you structured your document when you want to edit it further. Additionally, your
code is often more portable within the framework of a larger project, and easier to reuse.

■ When you share FLA or AS files
Other people editing the document can quickly find and understand ActionScript,
consistently modify code, and find and edit assets.

666 Best Practices and Coding Conventions for ActionScript 2.0

■ When you work on applications
Multiple authors can work on an application with fewer conflicts and greater efficiency.
Project or site administrators can manage and structure complex projects or applications
with fewer conflicts or redundancies if you follow best practices and coding conventions.

■ When you are learning or teaching Flash and ActionScript
Learning how to build applications by using best practices and following coding
conventions reduces the need to relearn particular methodologies. If students learning
Flash practice consistent and better ways to structure code, they might learn the language
more quickly and with less frustration.

Consistent techniques and the following guidelines help people learning Flash, or people
working effectively in team environments. Consistent methods help you remember how you
structured your document when you work by yourself, particularly if you have not worked on
the FLA file recently.

These are only a few of the reasons to learn and follow best practices. You are bound to
discover many more when you read these best practices and develop your own good habits.
Consider the following topics as a guideline when you are working with Flash; you might
choose to follow some or all of the recommendations. You can also modify the
recommendations to suit the way you work. Many of the guidelines in this chapter help you
develop a consistent way of working with Flash and writing ActionScript code.

This chapter covers the following subjects on coding conventions and best practices:
Naming conventions .666

Using comments in your code . 677

ActionScript coding conventions .679

ActionScript and Flash Player optimization . 695

Formatting ActionScript syntax .697

Naming conventions
Typically, you spend 80% of your development time debugging, troubleshooting, and
practicing general maintenance, especially on larger projects. Even when you work on small
projects, you’ll spend a significant amount of time analyzing and fixing code. The readability
of your code is important for your benefit and the benefit of your team members. When you
follow naming conventions, you increase readability, which increases workflow and enables
you to find and fix any errors in your code. All programmers follow a standardized way of
writing code; this improves the project in many ways.

Naming conventions 667

Using naming conventions for your variable names can serve the following important
functions:

■ They make your code readable so that you can immediately identify a variable’s data type.
This can help students, those learning code, or developers unfamiliar with your code.

■ They are easy to search for and replace when necessary.
■ They help reduce conflicts with reserved words and language constructs.
■ They can help you distinguish between variables from different scopes (local variables,

class properties, parameters, and so on).

The following sections contain naming guidelines for writing ActionScript code, such as
naming files, variables, constants, components, and so on. “Formatting ActionScript syntax”
on page 697 discusses formatting conventions that are specific to ActionScript, and common
in other programming languages. “ActionScript coding conventions” on page 679 discusses
coding conventions that are specific to writing ActionScript and developing with Flash 8.

This section includes the following topics:

■ “General naming guidelines” on page 668
■ “Avoiding reserved words and language constructs” on page 668
■ “Naming variables” on page 670
■ “Naming constants” on page 672
■ “Naming Boolean variables” on page 672
■ “Naming functions and methods” on page 673
■ “Naming classes and objects” on page 673
■ “Naming packages” on page 675
■ “Naming interfaces” on page 675
■ “Naming custom components” on page 676

N
O

T
E

Flash Player 7 and later loosely follow the ECMAScript (ECMA-262) edition 3 language
specification. It is useful to see this specification for information on how the language
works. (See www.ecma-international.org/publications/standards/Ecma-262.htm.)

http://www.ecma-international.org/publications/standards/Ecma-262.htm

668 Best Practices and Coding Conventions for ActionScript 2.0

General naming guidelines
This section reviews naming guidelines for writing ActionScript code. Naming conventions
are important for writing logical code. The primary purpose is to improve the readability of
your ActionScript 2.0 code. Remember that all variables must have unique names. Names are
case-sensitive in Flash Player 7 and later. Do not use the same name with a different case,
because this can be confusing to programmers reading your code and can cause problems in
earlier versions of Flash that do not force case sensitivity. Keep the following guidelines in
mind when you name items such as variables, files, and classes in Flash:

■ Limit your use of abbreviations.
Use abbreviations consistently. An abbreviation must clearly stand for only one thing. For
example, the abbreviation “sec” might represent “section” and “second.”

■ Concatenate words to create names.
Use mixed-cases (upper and lower case) when you concatenate words to distinguish
between each word for readability. For example, select myPelican rather than
mypelican.

■ Name a file by describing the process or item, such as addUser.
■ Don’t use nondescriptive names for methods or variables.

For example, if you retrieve a piece of data that is the visitor’s user name, you might use
the getUserName() method instead of the less descriptive getData() method. This
example expresses what is happening rather than how you accomplish it.

■ Keep all names as short as possible.
Remember to keep names descriptive.

The following sections offer more detail on naming items such as variables, classes, packages,
and constants in your code.

Avoiding reserved words and language constructs
When naming instances and variables, avoid using reserved words, which can cause errors in
your code. Reserved words include keywords in the ActionScript language.

Also, do not use any word in the ActionScript 2.0 languages (called a language construct) as an
instance or variable name. ActionScript constructs include class names, component class
names, method and property names, and interface names.

W
A

R
N

IN
G

Never use different cases to avoid conflicting with reserved words. For example, naming
an instance of the textfield TextField class (which doesn’t conflict with TextField
because Flash is case-sensitive) is a poor coding practice.

Naming conventions 669

The following table lists reserved keywords in ActionScript 2.0 that cause errors in your
scripts when used as variable names:

The following words are reserved for future use in Flash, from the ECMAScript (ECMA-262)
edition 4 draft language specification. Avoid using these words because they might be used in
future releases of Flash.

add and break case

catch class continue default

delete do dynamic else

eq extends false finally

for function ge get

gt if ifFrameLoaded implements

import in instanceof interface

intrinsic le it ne

new not null on

onClipEvent or private public

return set static super

switch tellTarget this throw

try typeof undefined var

void while with

as abstract Boolean bytes

char const debugger double

enum export final float

goto is long namespace

native package protected short

synchronized throws transient use

volatile

670 Best Practices and Coding Conventions for ActionScript 2.0

Naming variables
Variable names can only contain letters, numbers, and dollar signs ($). Do not begin variable
names with numbers. Variables must be unique and they are case-sensitive in Flash Player 7
and later. For example, avoid the following variable names:
my/warthog = true; // includes a slash
my warthogs = true; // includes a space
my.warthogs = true; // includes a dot
5warthogs = 55; // begins with a number

Use strict data typing with your variables whenever possible because it helps you in the
following ways:

■ Adds code completion functionality, which speeds up coding.
■ Generates errors in the Output panel so you don’t have a silent failure when you compile

your SWF file. These errors help you find and fix problems in your applications.

To add a data type to your variables, you must define the variable using the var keyword. In
the following example, when creating a LoadVars object, you would use strict data typing:
var paramsLv:LoadVars = new LoadVars();

Strict data typing provides you with code completion, and ensures that the value of paramsLv
contains a LoadVars object. It also ensures that the LoadVars object will not be used to store
numeric or string data. Because strict typing relies on the var keyword, you cannot add strict
data typing to global variables or properties within an object or array. For more information
on strict typing variables, see “About assigning data types and strict data typing” on page 45.

Use the following guidelines when you name variables in your code:

■ All variables must have unique names.
■ Don’t use the same variable name with different cases.

Don’t use, for example, firstname and firstName as different variables in your
application. Although names are case-sensitive in Flash Player 7 and later, using the same
variable name with a different case can be confusing to programmers reading your code
and can cause problems in earlier versions of Flash that do not force case sensitivity.

■ Don’t use words that are part of the ActionScript 1.0 or 2.0 language as variable names.
In particular, never use keywords as instance names, because they cause errors in your
code. Don’t rely on case sensitivity to avoid conflicts and get your code to work.

N
O

T
E

Strict data typing does not slow down a SWF file. Type checking occurs at compile time
(when the SWF file is created), not at runtime.

Naming conventions 671

■ Don’t use variables that are parts of common programming constructs.
Don’t use language constructs if you are aware of them in other programming languages,
even if Flash does not include or support these language constructs. For example, do not
use the following keywords as variables:
textfield = "myTextField";
switch = true;
new = "funk";

■ Always add data type annotations to your code.
Also referred to as “using strict data types with your variables,” or “strong typing your
variables,” adding type annotations to your variables is important in order to:
■ Generate errors at compile time so your application doesn’t silently fail.
■ Trigger code completion.
■ Helps users understand your code.
For information on adding type annotations, see “About assigning data types and strict
data typing” on page 45.

■ Don’t overuse the Object type.
Data type annotations should be precise to improve performance. Use an Object type only
when there is no reasonable alternative.

■ Keep variables as short as possible while retaining clarity.
Make sure your variable names are descriptive, but don’t go overboard and use overly
complex and long names.

■ Only use single-character variable names for optimization in loops.
Optionally, you can use single-character variables for temporary variables in loops (such as
i, j, k, m, and n). Use these single-character variable names only for short loop indexes, or
when performance optimization and speed are critical. The following example shows this
usage:
var fontArr:Array = TextField.getFontList();
fontArr.sort();
var i:Number;
for (i = 0; i<fontArr.length; i++) {

trace(fontArr[i]);
}

■ Start variables with a lowercase letter.
Names with capital first letters are reserved for classes, interfaces, and so on.

■ Use mixed case for concatenated words.
For example, use myFont instead of myfont.

672 Best Practices and Coding Conventions for ActionScript 2.0

■ Don’t use acronyms and abbreviations.
The exception to this rule is if acronyms or abbreviations represent the standard way to
use a term (such as HTML or CFM). For commonly used acronyms, use mixed cases for
improved readability, such as newHtmlParser instead of newHTMLParser.

■ Use complementary pairs when you create a related set of variable names.
For example, you might use complementary pairs to indicate a minimum and maximum
game score, as follows:
var minScoreNum:Number = 10; // minimum score
var maxScoreNum:Number = 500; // maximum score

Naming constants
You can use constants for situations in which you need to refer to a property whose value
never changes. This helps you find typographical mistakes in your code that you might not
find if you used literals. It also lets you change the value in a single place.

Variables should be lowercase or mixed-case letters; however, use the following guidelines for
naming static constants (variables that do not change):

■ Constants should be uppercase.
■ Separate words should contain underscores.

You can see these guidelines at work in the following ActionScript code snippet:
var BASE_URL:String = "http://www.adobe.com"; // constant
var MAX_WIDTH:Number = 10; // constant

Do not directly code numerical constants unless the constant is 1, 0, or -1, which you might
use in a for loop as a counter value.

Naming Boolean variables
Start Boolean variables with the word “is” (because a Boolean value either “is” or “is not”
because of its nature). Therefore, you might use the following for whether a baby is a girl or
not (which is a Boolean value):
isGirl

Or for a variable indicating whether a user is logged in (or not), you might use the following:
isLoggedIn

Naming conventions 673

Naming functions and methods
Use the following guidelines when you name functions and methods in your code. For
information on writing functions and methods, see Chapter 5, “Functions and Methods.”

■ Use descriptive names.
■ Use mixed case for concatenated words.

A good example would be singLoud().
■ Start function and method names with a lowercase letter.
■ Describe what value is being returned in the function’s name.

For example, if you are returning the name of a song title, you might name the function
getCurrentSong().

■ Establish a naming standard for relating similar functions.
ActionScript 2.0 does not permit overloading. In the context of object-oriented
programming, overloading refers to the ability to make your functions behave differently
depending on which data types are passed into them.

■ Name methods as verbs.
You might concatenate the name, but it should contain a verb. You use verbs for most
methods because they perform an operation on an object.

Examples of method names include the following:
sing();
boogie();
singLoud();
danceFast();

Naming classes and objects
When you create a new class file, use the following guidelines when you name the class and
ActionScript file. For proper formatting, see the following examples of class names:
class Widget;
class PlasticWidget;
class StreamingVideo;

You might have public and private member variables in a class. The class can contain variables
that you do not want users to set or access directly. Make these variables private and allow
users to access the values only by using getter/setter methods.

674 Best Practices and Coding Conventions for ActionScript 2.0

The following guidelines apply to naming classes:

■ Begin a class name with an uppercase letter.
■ Write class names in mixed case when it’s a compound or concatenated word.

Begin with an uppercase letter for a compound or concatenated word. A good example is
NewMember.

■ Class names are usually nouns or qualified nouns.
A qualifier describes the noun or phrase. For example, instead of “member,” you might
qualify the noun by using NewMember or OldMember.

■ Clear names are more important than short names.
■ Don’t use acronyms and abbreviations.

The exception to this rule is if acronyms or abbreviations represent the standard way to
use a term (such as HTML or CFM). For commonly used acronyms, use mixed cases such
as NewHtmlParser instead of NewHTMLParser for improved readability.

■ Use meaningful and simple names that are descriptive of the class contents.
To avoid being vague or misleading, use generic names.

■ Sometimes a class name is a compound word.
A qualifier might describe the noun or phrase. For example, instead of “member,” you
might qualify the noun using NewMember or OldMember.

■ Do not pluralize the words you use in the class name (such as Witches or BaldPirates).
In most cases, it is better to leave the words as qualified nouns instead. A qualifier
describes the noun or phrase. For example, instead of “cat” or “buckaneer,” you might
qualify the noun by using BlackCat or OldBuckaneer.

■ Don’t use a class name in the properties of that class because it causes redundancy.
For example, it does not make sense to have Cat.catWhiskers. Instead, Cat.whiskers is
much better.

■ Don’t use nouns that also might be interpreted as verbs.
For example, Running, or Gardening. Using these nouns might lead to confusion with
methods, states, or other application activities.

■ Use unique class names for each class in a single application.
■ Do not name classes so that they conflict with the names of built-in classes in Flash.
■ Try to communicate the relationship that a class has within a hierarchy.

This helps display a class’s relationship within an application. For example, you might
have the Widget interface, and the implementation of Widget might be PlasticWidget,
SteelWidget, and SmallWidget.

For information on interfaces, see Chapter 8, “Interfaces.”

Naming conventions 675

Naming packages
It’s common for package names to use “reverse domain” naming convention. Examples of
reverse domain names include com.adobe for adobe.com, and org.yourdomain for
yourdomain.org.

Use the following guidelines when you name packages:

■ Put the prefix for a package name in all lowercase letters.
For example, com, mx, or org.

■ Put related classes (classes with related functionality) in the same package.
■ Begin package names with a consistent prefix.

For example, you might use com.adobe.projectName to maintain consistency. Another
example would be com.adobe.docs.learnAS2.Users for the Learning ActionScript 2.0
Reference.

■ Use a clear and self-explanatory package name.
It’s important to explain the package’s responsibilities. For example, you might have a
package named Pentagons, which is responsible for using the Flash drawing API to draw
various kinds of pentagons in documentation examples; its name would be
com.adobe.docs.as2.Pentagons.

■ Use mixed capitalization for compound or concatenated package names.
packageName is an example of a compound, concatenated package name. Remember to
use all lowercase letters for the prefix (com, org, and so on).

■ Do not use underscores or dollar sign characters.

Naming interfaces
Starting interface names with an uppercase “I” helps you distinguish an interface from a class.
The following interface name, IEmployeeRecords, uses an initial uppercase letter and
concatenated words with mixed case, as follows:
interface IEmployeeRecords{}

The following conventions also apply:

■ Interface names have an uppercase first letter.
This is the same as class names.

■ Interface names are usually adjectives.
Printable is a good example.

For more information on interfaces, see Chapter 8, “Interfaces.”

676 Best Practices and Coding Conventions for ActionScript 2.0

Naming custom components
Component names have an uppercase first letter, and any concatenated words are written in
mixed case. For example, the following default user-interface component set uses
concatenated words and mixed case:

■ CheckBox
■ ComboBox
■ DataGrid
■ DateChooser
■ DateField
■ MenuBar
■ NumericStepper
■ ProgressBar
■ RadioButton
■ ScrollPane
■ TextArea
■ TextInput

Components that do not use concatenated words begin with an uppercase letter.

If you develop custom components, use a naming convention to prevent naming
incompatibilities with Adobe components. The names of your components must be different
from those of the default set that is included with Flash. If you adopt your own consistent
naming convention, it helps you prevent naming conflicts.

Remember that the naming conventions in this section are guidelines. It is most important to
use a naming scheme that works well for you and to use it consistently.

Using comments in your code 677

Using comments in your code
This section describes how to use comments in your code. Comments document the decisions
you make in the code, answering both how and why. For example, you might describe a work-
around in comments. Another developer would be able to find the related code easily for
updating or fixing. And finally, the issue might be addressed in a future version of Flash or
Flash Player, hence the work-around would no longer be necessary.

For more information on writing comments in your ActionScript code, see the following
sections:

■ “Writing good comments” on page 677
■ “Adding comments to classes” on page 678

Writing good comments
Using comments consistently in your ActionScript 2.0 code allows you to describe complex
areas of code or important interactions that are not otherwise clear. Comments must clearly
explain the intent of the code and not just translate the code. If something is not readily
obvious in the code, add comments to it.

If you use the Auto Format tool with your code, you will notice that trailing comments (see
“Trailing comments” on page 98) move to the next line. You can add these comments after
you format your code, or you must modify the comment’s new placement after you use the
Auto Format tool.

For information on using comments in classes, see “Adding comments to classes”
on page 678.

Use the following guidelines when you add comments to your code:

■ Use block comments (/* and */) for multiline comments and single-line comments (//)
for short comments.
You can also use a trailing comment on the same line as the ActionScript code if necessary.

■ Make sure you don’t use comments to translate your ActionScript code.
You don’t need to comment on elements that are obvious in the ActionScript code.

■ Comment on elements that are not readily obvious in the code.
In particular, add comments when the subject is not described in the surrounding
paragraphs.

678 Best Practices and Coding Conventions for ActionScript 2.0

■ Do not use cluttered comments.
A line of cluttered comments often contains equal signs (=) or asterisks (*). Instead, use
white space to separate your comments from ActionScript code.

■ Remove any superfluous comments from the code before you deploy your project.
If you find that you have many comments in your ActionScript code, consider whether
you need to rewrite some of it. If you feel you must include many comments about how
the ActionScript code works, it is usually a sign of poorly written code.

Adding comments to classes
The two kinds of comments in a typical class or interface file are documentation comments and
implementation comments.

You use documentation comments to describe the code’s specifications, but not the
implementation. You use implementation comments to comment out code or to comment on
the implementation of particular sections of code. Documentation comments are delimited
with /** and */, and implementation comments are delimited with /* and */.

Use documentation comments to describe interfaces, classes, methods, and constructors.
Include one documentation comment per class, interface, or member, and place it directly
before the declaration. If you have additional information to document that does not fit into
the documentation comments, use implementation comments (in the format of block
comments or single-line comments).

N
O

T
E

If you use the Auto Format tool to format ActionScript, you remove the white space.
Remember to add it back or use single- line comments (//) to maintain spacing; these
lines are easy to remove after you format your code.

N
O

T
E

Using comments is most important in ActionScript code that is intended to teach an
audience. For example, add comments to your code if you are creating sample
applications for the purpose of teaching Flash, or if you are writing tutorials about
ActionScript code.

N
O

T
E

Documentation and implementation comments are not formally represented in the
ActionScript language. However, they are commonly used by developers when writing
class and interface files.

ActionScript coding conventions 679

Start classes with a standard comment, which uses the following format:
/**

User class
version 1.2
3/21/2004
copyright Adobe Systems Incorporated

 */

After the documentation comments, declare the class. Implementation comments should
directly follow the declaration.

Use block, single-line, and trailing comments within the body of your class to comment on
your ActionScript code. For more information on using comments in class files, see “Adding
comments to classes” on page 678.

ActionScript coding conventions
One of the most important aspects about programming is consistency, whether it relates to
variable naming schemes (covered in “Naming conventions” on page 666), formatting code
(covered in “Formatting ActionScript syntax” on page 697), or coding standards and the
placement of your ActionScript 2.0 code, which is covered in this section. You dramatically
simplify code debugging and maintenance if your code is organized and adheres to standards.

For more information on coding conventions, see the following topics:

■ “Keeping your ActionScript code in one place” on page 679
■ “Attaching code to objects” on page 680
■ “Handling scope” on page 681
■ “Structuring a class file” on page 685
■ “About using functions” on page 693

Keeping your ActionScript code in one place
Whenever possible, put your ActionScript 2.0 code in a single location, such as in one or
more external ActionScript files or on Frame 1 of the Timeline (when placed on the timeline,
the code is called a frame script).

N
O

T
E

Don’t include comments that do not directly relate to the class that’s being read. For
example, don’t include comments that describe the corresponding package.

680 Best Practices and Coding Conventions for ActionScript 2.0

If you put your ActionScript code in a frame script, put the ActionScript code on the first or
second frame on the Timeline, in a layer called Actions, which is the first or second layer on
the Timeline. Sometimes you might create two layers—an acceptable practice—for
ActionScript to separate functions. Some Flash applications do not always put all your code in
a single place (in particular, when you use screens or behaviors).

Despite these rare exceptions, you can usually put all your code in the same location. The
following are the advantages of placing your ActionScript in a single location:

■ Code is easy to find in a potentially complex source file.
■ Code is easy to debug.

One of the most difficult parts of debugging a FLA file is finding all the code. After you find
all the code, you must figure out how it interacts with other pieces of code along with the FLA
file. If you put all your code in a single frame, it is much easier to debug because it is
centralized, and these problems occur less frequently. For information on attaching code to
objects (and decentralizing your code), see “Attaching code to objects” on page 680. For
information on behaviors and decentralized code, see Using Flash.

Attaching code to objects
You must avoid attaching ActionScript code to objects (such as button or movie clip
instances) in a FLA file, even in simple or prototype applications. Attaching code to an object
means that you select a movie clip, component, or button instance, open the ActionScript
editor (the Actions panel or Script window), and add ActionScript code by using the on() or
onClipEvent() handler functions.

This practice is strongly discouraged for the following reasons:

■ ActionScript code that is attached to objects is difficult to locate, and the FLA files are
difficult to edit.

■ ActionScript code that is attached to objects is difficult to debug.
■ ActionScript code that is written on a timeline or in classes is more elegant and easier to

build upon.
■ ActionScript code that is attached to objects encourages poor coding style.
■ ActionScript code that is attached to objects forces students and readers to learn additional

syntax as well as different coding styles that are often poor and limited.
■ Users typically have to relearn how to write functions and so on, on a timeline at a later

date.

ActionScript coding conventions 681

Some Flash users might say it is easier to learn ActionScript by attaching code to an object.
Some also say it might be easier to add simple code, or write about or teach ActionScript this
way. However, the contrast between two styles of coding (code placed on objects, and frame
scripts) can be confusing to developers who are learning ActionScript and should be avoided.
Also, users who learn how to write code attached to objects often have to relearn how to place
the equivalent code as a frame script at a later date. This is why consistency throughout the
learning process, by learning how to write frame scripts, has advantages.

Attaching ActionScript code to a button called myBtn appears as follows. Avoid this method:
on (release) {
 // Do something.
}

However, placing the equivalent ActionScript code on a timeline appears as follows:
// good code
myBtn.onRelease = function() {
 // Do something.
};

For more information on ActionScript syntax, see “Formatting ActionScript syntax”
on page 697.

Handling scope
Scope is the area where the variable is known and can be used in a SWF file, such as on a
timeline, globally across an application, or locally within a function. Typically, you can
reference scope in more than one way when you write code. Using scope correctly means that
you can create portable and reusable ActionScript code, and you don’t risk breaking your
applications as you build new modules.

It is important to understand the difference between the global and root scopes. The root
scope is unique for each loaded SWF file. The global scope applies to all timelines and scopes
within SWF files. You use relative addressing rather than references to root timelines, because
relative addressing makes your code reusable and portable. For more information on handling
scope in your applications, see the following sections:

“About variables and scope” on page 60

“About scope and targeting” on page 87

“Understanding classes and scope” on page 243.

N
O

T
E

Using behaviors and screens sometimes involves attaching code to objects, so different
practices apply when you use these features. For more information, see Using Flash.

682 Best Practices and Coding Conventions for ActionScript 2.0

Avoiding absolute targets (_root)
You can use several methods to target instances that let you avoid using _root; these methods
are discussed later in this section. Avoid using _root in ActionScript 2.0 because SWF files
that load into other SWF files might not work correctly. The _root identifier targets the base
SWF file that is loading, not the SWF file using relative addressing instead of _root. This
issue limits code portability in SWF files that are loaded into another file, and, particularly, in
components and movie clips. You can help resolve problems by using _lockroot, but only
use _lockroot when necessary (such as when you are loading a SWF file but do not have
access to the FLA file). For more information on using _lockroot, see “Using _lockroot”
on page 682.

Use this, this._parent, or _parent keywords rather than _root, depending on where your
ActionScript 2.0 code is located. The following example shows relative addressing:
myClip.onRelease = function() {

trace(this._parent.myButton._x);
};

All variables must be scoped, except for variables that are function parameters, and local
variables. Scope variables relative to their current path whenever possible, using relative
addressing, such as the this property. For more information on using the this property, see
this property in the ActionScript 2.0 Language Reference.

Using _lockroot
You can use _lockroot to target content as a way to solve the scoping issues sometimes
associated with the inappropriate use of _root. Although this solves many problems with
applications, consider _lockroot as a work-around for problems caused by using _root. If
you experience problems loading content into a SWF file or a component instance, try
applying _lockroot to a movie clip that loads the content. For example, if you have a movie
clip called myClip loading content, and it stops working after it is loaded, try using the
following code, which is placed on a timeline:
this._lockroot = true;

ActionScript coding conventions 683

Using the this keyword
Whenever possible, use the this keyword as a prefix instead of omitting the keyword, even if
your code works without it. Use the this keyword to learn when a method or property
belongs to a particular class. For example, for a function on a timeline, you write ActionScript
2.0 code by using the following format:
circleClip.onPress = function() {

this.startDrag();
};
circleClip.onRelease = function() {

this.stopDrag();
};

For a class, use the following format to write code:
class User {

private var username:String;
private var password:String;
function User(username:String, password:String) {

this.username = username;
this.password = password;

}
public function get username():String {

return this.username;
}
public function set username(username:String):Void {

this.username = username;
}

}

If you consistently add the this keyword in these situations, your ActionScript 2.0 code will
be much easier to read and understand.

684 Best Practices and Coding Conventions for ActionScript 2.0

About scope in classes
When you port code to ActionScript 2.0 classes, you might have to change how you use the
this keyword. For example, if you have a class method that uses a callback function (such as
the LoadVars class’s onLoad method), it can be difficult to know if the this keyword refers to
the class or to the LoadVars object. In this situation, you might need to create a pointer to the
current class, as the following example shows:
class Product {

private var m_products_xml:XML;
// Constructor
// targetXmlStr contains the path to an XML file
function Product(targetXmlStr:String) {

/* Create a local reference to the current class.
Even if you are within the XML's onLoad event handler, you
can reference the current class instead of only the XML packet. */

var thisObj:Product = this;
// Create a local variable, which is used to load the XML file.
var prodXml:XML = new XML();
prodXml.ignoreWhite = true;
prodXml.onLoad = function(success:Boolean) {

if (success) {
/* If the XML successfully loads and parses,

set the class's m_products_xml variable to the parsed
XML document and call the init function. */

thisObj.m_products_xml = this;
thisObj.init();

} else {
/* There was an error loading the XML file. */
trace("error loading XML");

}
};
// Begin loading the XML document
prodXml.load(targetXmlStr);

}
public function init():Void {

// Display the XML packet
trace(this.m_products_xml);

}
}

Because you are trying to reference the private member variable within an onLoad handler, the
this keyword actually refers to the prodXml instance and not to the Product class, which you
might expect. For this reason, you must create a pointer to the local class file so that you can
directly reference the class from the onLoad handler.

For more information on classes, see “Understanding classes and scope” on page 243. For
more information on scope, see “Handling scope” on page 681.

ActionScript coding conventions 685

Structuring a class file
You create classes in separate ActionScript 2.0 files that are imported into a SWF file when it
is compiled.

You create classes in separate ActionScript 2.0 files that are imported into a SWF file when
you compile an application. To create a class file, you write code that can have a certain
methodology and ordering. This methodology is discussed in the following sections.

The following conventions for structuring a class file show how you can order parts of a class
to increase the efficiency and improve the readability of your code.

To structure a class file, use the following elements:

1. Add documentation comments that include a general description of the code, in addition
to author information and version information.

2. Add your import statements (if applicable).

3. Write a class declaration, or interface declaration, such as the following:

UserClass{...}

4. Include any necessary class or interface implementation comments.

In this comment, add information that is pertinent for the entire class or interface.
5. Add all your static variables.

Write the public class variables first and follow them with private class variables.
6. Add instance variables.

Write the public member variables first, and follow them with private member variables.
7. Add the constructor statement, such as the one in the following example:

public function UserClass(username:String, password:String) {...}

8. Write your methods.

Group methods by their functionality, not by their accessibility or scope. Organizing
methods this way helps to improve the readability and clarity of your code.

9. Write the getter/setter methods into the class file.

686 Best Practices and Coding Conventions for ActionScript 2.0

Guidelines for creating a class
Remember the following guidelines when you create a class file:

■ Don’t place multiple declarations on a single line.
For example, format your declarations as shown in the following example:
var prodSkuNum:Number; // Product SKU (identifying) number
var prodQuantityNum:Number; // Quantity of product

This example shows better form than putting both declarations on a single line. Place
these declarations at the beginning of a block of code.

■ Initialize local variables when they are declared.
A class’s properties should only be initialized in the declaration if the initializer is a
compile-time constant.

■ Declare variables before you first use them.
This includes loops.

■ Avoid using local declarations that hide higher-level declarations.
For example, don’t declare a variable twice, as the following example shows:
var counterNum:Number = 0;
function myMethod() {

for (var counterNum:Number = 0; counterNum<=4; counterNum++) {
// statements;

}
}

This code declares the same variable inside an inner block, which is a practice to avoid.
■ Don’t assign many variables to a single value in a statement.

Follow this convention because otherwise your code is difficult to read, as the following
ActionScript code shows:
playBtn.onRelease = playBtn.onRollOut = playsound;

or
class User {

private var m_username:String, m_password:String;
}

■ Make a method or property public only if it needs to be public for a reason. Otherwise,
make your methods and properties private.

ActionScript coding conventions 687

■ Don’t overuse getter/setter functions in your class file.
Getter/setter functions are excellent for a variety of purposes (see “About getter and setter
methods” on page 216), however overuse might indicate that you could improve upon
your application’s architecture or organization.

■ Set most member variables to private unless you have a good reason for making them
public.
From a design standpoint, it is much better to make member variables private and allow
access to those variables through a group of getter/setter functions only.

Using the this prefix in class files
Use the this keyword as a prefix within your classes for methods and member variables.
Although it is not necessary, it makes it easy to tell that a property or method belongs to a
class when it has a prefix; without it, you cannot tell if the property or method belongs to the
superclass.

You can also use a class name prefix for static variables and methods, even within a class. This
helps qualify the references you make. Qualifying references makes for readable code.
Depending on what coding environment you are using, your prefixes might also trigger code
completion and hinting. The following code demonstrates prefixing a static property with a
class name:
class Widget {

public static var widgetCount:Number = 0;
public function Widget() {

Widget.widgetCount++;
}

}

N
O

T
E

You don’t have to add these prefixes, and some developers feel it is unnecessary. Adobe
recommends that you add the this keyword as a prefix, because it can improve
readability and it helps you write clean code by providing context.

688 Best Practices and Coding Conventions for ActionScript 2.0

About initialization
For the initial values for variables, assign a default value or allow the value of undefined, as
the following class example shows. When you initialize properties inline, the expression on the
right side of an assignment must be a compile-time constant. That is, the expression cannot
refer to anything that is set or defined at runtime. Compile-time constants include string
literals, numbers, Boolean values, null, and undefined, as well as constructor functions for the
following top-level classes: Array, Boolean, Number, Object, and String. This class sets the
initial values of m_username and m_password to empty strings:
class User {

private var m_username:String = "";
private var m_password:String = "";
function User(username:String, password:String) {

this.m_username = username;
this.m_password = password;

}
}

Delete variables or make variables null when you no longer need them. Setting variables to
null can still enhance performance. This process is commonly called garbage collection.
Deleting variables helps optimize memory use during runtime, because unneeded assets are
removed from the SWF file. It is better to delete variables than to set them to null. For more
information on performance, see “Optimizing your code” on page 696.

For information on naming variables, see “Naming variables” on page 670. For more
information on deleting objects, see delete statement in ActionScript 2.0 Language Reference.

One of the easiest ways to initialize code by using ActionScript 2.0 is to use classes. You can
encapsulate all your initialization for an instance within the class’s constructor function, or
abstract it into a separate method, which you would explicitly call after the variable is created,
as the following code shows:
class Product {

function Product() {
var prodXml:XML = new XML();
prodXml.ignoreWhite = true;
prodXml.onLoad = function(success:Boolean) {

if (success) {
trace("loaded");

} else {
trace("error loading XML");

}
};
prodXml.load("products.xml");

}
}

ActionScript coding conventions 689

The following code could be the first function call in the application, and the only one you
make for initialization. Frame 1 of a FLA file that is loading XML might use code that is
similar to the following ActionScript:
if (init == undefined) {

var prodXml:XML = new XML();
prodXml.ignoreWhite = true;
prodXml.onLoad = function(success:Boolean) {

if (success) {
trace("loaded");

} else {
trace("error loading XML");

}
};
prodXml.load("products.xml");
init = true;

}

Use trace statements
Use trace statements in your documents to help you debug your code while authoring the
FLA file. For example, by using a trace statement and for loop, you can see the values of
variables in the Output panel, such as strings, arrays, and objects, as the following
example shows:
var dayArr:Array = ["sun", "mon", "tue", "wed", "thu", "fri", "sat"];
var numOfDays:Number = dayArr.length;
for (var i = 0; i<numOfDays; i++) {

trace(i+": "+dayArr[i]);
}

This displays the following information in the Output panel:
0: sun
1: mon
2: tue
3: wed
4: thu
5: fri
6: sat

Using a trace statement is an efficient way to debug your ActionScript 2.0.

You can remove your trace statements when you publish a SWF file, which makes minor
improvements to playback performance. Before you publish a SWF file, open Publish Settings
and select Omit Trace Actions on the Flash tab. For more information on using a trace, see
trace function in the ActionScript 2.0 Language Reference.

The Debugger tool is also useful for debugging ActionScript code. For more information, see
Chapter 17, “Debugging Applications”.

690 Best Practices and Coding Conventions for ActionScript 2.0

About the super prefix
If you refer to a method in the parent class, prefix the method with super so that other
developers know from where the method is invoked. The following ActionScript 2.0 snippet
demonstrates the use of proper scoping by using the super prefix:

In the following example, you create two classes. You use the super keyword in the Socks class
to call functions in the parent class (Clothes). Although both the Socks and Clothes classes
have a method called getColor(), using super lets you specifically reference the base class’s
methods and properties. Create a new AS file called Clothes.as, and enter the following code:
class Clothes {
 private var color:String;
 function Clothes(paramColor) {
 this.color = paramColor;
 trace("[Clothes] I am the constructor");
 }
 function getColor():String {
 trace("[Clothes] I am getColor");
 return this.color;
 }
 function setColor(paramColor:String):Void {
 this.color = paramColor;
 trace("[Clothes] I am setColor");
 }
}

Create a new class called Socks that extends the Clothes class, as shown in the
following example:
class Socks extends Clothes {
 private var color:String;
 function Socks(paramColor:String) {
 this.color = paramColor;
 trace("[Socks] I am the constructor");
 }
 function getColor():String {
 trace("[Socks] I am getColor");
 return super.getColor();
 }
 function setColor(paramColor:String):Void {
 this.color = paramColor;
 trace("[Socks] I am setColor");
 }
}

ActionScript coding conventions 691

Then create a new AS or FLA file and enter the following ActionScript in the document:
import Socks;
var mySock:Socks = new Socks("maroon");
trace(" -> "+mySock.getColor());
mySock.setColor("Orange");
trace(" -> "+mySock.getColor());

The following result is displayed in the Output panel:
[Clothes] I am the constructor
[Socks] I am the constructor
[Socks] I am getColor
[Clothes] I am getColor
-> maroon
[Socks] I am setColor
[Socks] I am getColor
[Clothes] I am getColor
-> Orange

If you forgot to put the super keyword in the Socks class's getColor() method, the
getColor() method could call itself repeatedly, which would cause the script to fail because
of infinite recursion problems. The Output panel would display the following error if you
didn't use the super keyword:
[Socks] I am getColor
[Socks] I am getColor
...
[Socks] I am getColor
256 levels of recursion were exceeded in one action list.
This is probably an infinite loop.
Further execution of actions has been disabled in this SWF file.

Avoid the with statement
One of the more confusing concepts to understand for people learning ActionScript 2.0 is
using the with statement. Consider the following code that uses the with statement:
this.attachMovie("circleClip", "circle1Clip", 1);
with (circle1Clip) {

_x = 20;
_y = Math.round(Math.random()*20);
_alpha = 15;
createTextField("labelTxt", 100, 0, 20, 100, 22);
labelTxt.text = "Circle 1";
someVariable = true;

}

692 Best Practices and Coding Conventions for ActionScript 2.0

In this code, you attach a movie clip instance from the library and use the with statement to
modify its properties. When you do not specify a variable’s scope, you do not always know
where you are setting properties, so your code can be confusing. In the previous code, you
might expect someVariable to be set within the circle1Clip movie clip, but it is actually
set in a timeline of the SWF file.

It is easier to follow what is happening in your code if you explicitly specify the variables
scope, instead of relying on the with statement. The following example shows a slightly
longer, but better, ActionScript example that specifies the variables scope:
this.attachMovie("circleClip", "circle1Clip", 1);
circle1Clip._x = 20;
circle1Clip._y = Math.round(Math.random()*20);
circle1Clip._alpha = 15;
circle1Clip.createTextField("labelTxt", 100, 0, 20, 100, 22);
circle1Clip.labelTxt.text = "Circle 1";
circle1Clip.someVariable = true;

An exception to this rule is, when you are working with the drawing API to draw shapes, you
might have several similar calls to the same methods (such as lineTo or curveTo) because of
the drawing API’s functionality. For example, when you draw a simple rectangle, you need
four separate calls to the lineTo method, as the following code shows:
this.createEmptyMovieClip("rectangleClip", 1);
with (rectangleClip) {

lineStyle(2, 0x000000, 100);
beginFill(0xFF0000, 100);
moveTo(0, 0);
lineTo(300, 0);
lineTo(300, 200);
lineTo(0, 200);
lineTo(0, 0);
endFill();

}

If you wrote each lineTo or curveTo method with a fully qualified instance name, the code
would quickly become cluttered and difficult to read and debug.

ActionScript coding conventions 693

About using functions
Reuse blocks of code whenever possible. One way you can reuse code is by calling a function
multiple times, instead of creating different code each time. Functions can be generic pieces of
code; therefore, you can use the same blocks of code for slightly different purposes in a SWF
file. Reusing code lets you create efficient applications and minimize the ActionScript 2.0
code that you must write, which reduces development time. You can create functions on a
timeline, in a class file, or write ActionScript that resides in a code-based component, and
reuse them in a variety of ways.

If you are using ActionScript 2.0, avoid writing functions on a timeline. When you use
ActionScript 2.0, place functions into class files whenever possible, as the following
example shows:
class Circle {
public function area(radius:Number):Number {

return (Math.PI*Math.pow(radius, 2));
}
public function perimeter(radius:Number):Number {

return (2 * Math.PI * radius);
}
public function diameter(radius:Number):Number {

return (radius * 2);
}
}

Use the following syntax when you create functions:
function myCircle(radius:Number):Number {

//...
}

Avoid using the following syntax, which is difficult to read:
myCircle = function(radius:Number):Number {

//...
}

694 Best Practices and Coding Conventions for ActionScript 2.0

The following example puts functions into a class file. This is a best practice when you choose
to use ActionScript 2.0, because it maximizes code reusability. To reuse the functions in other
applications, import the existing class rather than rewrite the code from scratch, or duplicate
the functions in the new application.
class mx.site.Utils {

static function randomRange(min:Number, max:Number):Number {
if (min>max) {

var temp:Number = min;
min = max;
max = temp;

}
return (Math.floor(Math.random()*(max-min+1))+min);

}
static function arrayMin(numArr:Array):Number {

if (numArr.length == 0) {
return Number.NaN;

}
numArr.sort(Array.NUMERIC | Array.DESCENDING);
var min:Number = Number(numArr.pop());
return min;

}
static function arrayMax(numArr:Array):Number {

if (numArr.length == 0) {
return undefined;

}
numArr.sort(Array.NUMERIC);
var max:Number = Number(numArr.pop());
return max;

}
}

You might use these functions by adding the following ActionScript to your FLA file:
import mx.site.Utils;
var randomMonth:Number = Utils.randomRange(0, 11);
var min:Number = Utils.arrayMin([3, 3, 5, 34, 2, 1, 1, -3]);
var max:Number = Utils.arrayMax([3, 3, 5, 34, 2, 1, 1, -3]);
trace("month: "+randomMonth);
trace("min: "+min);
trace("max: "+max);

ActionScript and Flash Player optimization 695

About stopping code repetition
The onEnterFrame event handler is useful because Flash can use it to repeat code at the frame
rate of a SWF file. However, limit the amount of repetition that you use in a Flash file as
much as possible so that you do not affect performance. For example, if you have a piece of
code that repeats whenever the playhead enters a frame, it is processor intensive. This behavior
can cause performance problems on computers that play the SWF file. If you use the
onEnterFrame event handler for any kind of animation or repetition in your SWF files, delete
the onEnterFrame handler when you finish using it. In the following ActionScript 2.0 code,
you stop repetition by deleting the onEnterFrame event handler:
circleClip.onEnterFrame = function() {

circleClip._alpha -= 5;
if (circleClip._alpha<=0) {

circleClip.unloadMovie();
delete this.onEnterFrame;
trace("deleted onEnterFrame");

}
};

Similarly, limit the use of setInterval, and remember to clear the interval when you finish
using it to reduce processor requirements for the SWF file.

ActionScript and Flash Player
optimization
If you compile a SWF file that contains ActionScript 2.0 with publish settings set to Flash
Player 6 and ActionScript 1.0, your code functions as long as it does not use ActionScript 2.0
classes. No case sensitivity is involved with the code, only Flash Player. Therefore, if you
compile your SWF file with Publish Settings set to Flash Player 7 and later and ActionScript
1.0, Flash enforces case sensitivity.

Data type annotations (strict data types) are enforced at compile time for Flash Player 7 and
later when you have publish settings set to ActionScript 2.0.

ActionScript 2.0 compiles to ActionScript 1.0 bytecode when you publish your applications,
so you can target Flash Player 6 and later while working with ActionScript 2.0.

For more information on optimizing your applications, see “Optimizing your code”.

696 Best Practices and Coding Conventions for ActionScript 2.0

Optimizing your code
Remember the following guidelines when you optimize your code:

■ Avoid calling a function multiple times from within a loop.
It is better to include the contents of a small function inside the loop.

■ Use native functions when possible.
Native functions are faster than user-defined functions.

■ Don’t overuse the Object type.
Data-type annotations should be precise, because it improves performance. Use the
Object type only when there is no reasonable alternative.

■ Avoid using the eval() function or array access operator.
Often, setting the local reference once is preferable and more efficient.

■ Assign the Array.length to a variable before a loop.
Assign Array.length to a variable before a loop to use as its condition, rather than using
myArr.length itself. For example,
var fontArr:Array = TextField.getFontList();
var arrayLen:Number = fontArr.length;
for (var i:Number = 0; i < arrayLen; i++) {

trace(fontArr[i]);
}

instead of:
var fontArr:Array = TextField.getFontList();
for (var i:Number = 0; i < fontArr.length; i++) {

trace(fontArr[i]);
}

■ Focus on optimizing loops, and any repeating actions.
Flash Player spends a lot of time processing loops (such as those that use the
setInterval() function).

■ Add the var keyword when declaring a variable.
■ Don’t use class variables or global variables when local variables will suffice.

Formatting ActionScript syntax 697

Formatting ActionScript syntax
Formatting ActionScript 2.0 code in a standardized way is essential to writing maintainable
code, and it’s easier for other developers to understand and modify. For example, it would be
extremely difficult to follow the logic of a FLA file that has no indenting or comments, as well
as inconsistent naming conventions and formatting. By indenting blocks of code (such as
loops and if statements), you make the code easy to read and debug.

For more information on formatting code, see the following topics:

■ “General formatting guidelines” on page 697
■ “Writing conditional statements” on page 700
■ “Writing compound statements” on page 701
■ “Writing a for statement” on page 702
■ “Writing while and do..while statements” on page 703
■ “Writing return statements” on page 703
■ “Writing switch statements” on page 703
■ “Writing try..catch and try..catch..finally statements” on page 704
■ “About using listener syntax” on page 705

General formatting guidelines
When you use spaces, line breaks, and tab indents to add white space to your code, you
increase your code’s readability. White space enhances readability because it helps show the
code hierarchy. Making your ActionScript 2.0 easier to understand by making it more
readable is important for students as well as for experienced users working on complex
projects. Legibility is also important when you are debugging ActionScript code, because it is
much easier to spot errors when code is formatted correctly and is properly spaced.

You can format or write a piece of ActionScript 2.0 code several ways. You’ll find differences
in the way developers choose to format the syntax across multiple lines in the ActionScript
editor (the Actions panel or Script window), such as where you put brackets ({}) or
parentheses [()]).

698 Best Practices and Coding Conventions for ActionScript 2.0

 recommends the following formatting points to help promote readability in your
ActionScript code.

■ Put one blank line between paragraphs (modules) of ActionScript.
Paragraphs of ActionScript code are groups of logically related code. Adding a blank line
between them helps users read the ActionScript code and understand its logic.

■ Use consistent indentation in your code to help show the hierarchy of the
code’s structure.
Use the same indentation style throughout your ActionScript code, and make sure that
you align the braces ({}) properly. Aligned braces improve the readability of your code. If
your ActionScript syntax is correct, Flash automatically indents the code correctly when
you press Enter (Windows) or Return (Macintosh). You can also click the Auto Format
button in the ActionScript editor (the Actions panel or Script window) to indent your
ActionScript code if the syntax is correct.

■ Use line breaks to make complex statements easier to read.
You can format some statements, such as conditional statements, in several ways.
Sometimes formatting statements across several lines rather than across a single line makes
your code easier to read.

■ Include a space after a keyword that is followed by parentheses [()].
The following ActionScript code shows an example of this:
do {

// something
} while (condition);

■ Don’t put a space between a method name and parentheses.
The following ActionScript code shows an example of this:
function checkLogin():Boolean {

// statements;
}
checkLogin();

or
printSize("size is " + foo + "\n");

■ Include a space after commas in a list of arguments.
Using spaces after commas makes it easier to distinguish between method calls and
keywords, as the following example shows:
function addItems(item1:Number, item2:Number):Number {

return (item1 + item2);
}
var sum:Number = addItems(1, 3);

Formatting ActionScript syntax 699

■ Use spaces to separate all operators and their operands.
Using spaces makes it is easier to distinguish between method calls and keywords, as the
following example shows:
//good
var sum:Number = 7 + 3;
//bad
var sum:Number=7+3;

An exception to this guideline is the dot (.) operator.
■ Don’t include a space between unary operators and their operands.

For example, increment (++) and decrement(--), as shown in the following example:
while (d++ = s++)
-2, -1, 0

■ Don’t include spaces after an opening parenthesis and before a closing parenthesis.
The following ActionScript code shows an example of this:
//bad
("size is " + foo + "\n");
//good
("size is " + foo + "\n");

■ Put each statement on a separate line to increase the readability of your ActionScript
code.
The following ActionScript code shows an example of this:
theNum++; // Correct
theOtherNum++; // Correct
aNum++; anOtherNum++; // Incorrect

■ Don’t embed assignments.
Embedded statements are sometimes used to improve performance in a SWF file at
runtime, but the code is much harder to read and debug. The following ActionScript code
shows an example of this (but remember to avoid single-character naming in the
actual code):
var myNum:Number = (a = b + c) + d;

■ Assign variables as separate statements.
The following ActionScript code shows an example of this (but remember to avoid single-
character naming in the actual code):
var a:Number = b + c;
var myNum:Number = a + d;

■ Break a line before an operator.

700 Best Practices and Coding Conventions for ActionScript 2.0

■ Break a line after a comma.
■ Align the second line with the start of the expression on the previous line of code.

Writing conditional statements
Use the following guidelines when you write conditional statements:

■ Place conditions on separate lines in if, else..if, and if..else statements.
■ Use braces ({}) for if statements.
■ Format braces as shown in the following examples:

// if statement
if (condition) {

// statements
}

// if..else statement
if (condition) {

// statements
} else {

// statements
}

// else..if statement
if (condition) {

// statements
} else if (condition) {

// statements
} else {

// statements
}

When you write complex conditions, it is good form to use parentheses [()] to group
conditions. If you don’t use parentheses, you (or others working with your ActionScript 2.0
code) might run into operator precedence errors.

For example, the following code does not use parentheses around the conditions:
if (fruit == apple && veggie == leek) {}

The following code uses good form by adding parentheses around conditions:
if ((fruit == apple) && (veggie == leek)) {}

N
O

T
E

You can control auto-indentation and indentation settings by selecting Edit >
Preferences (Windows) or Flash > Preferences (Macintosh), and then selecting the
ActionScript tab.

Formatting ActionScript syntax 701

You can write a conditional statement that returns a Boolean value in two ways. The second
example is preferable:
if (cartArr.length>0) {

return true;
} else {

return false;
}

Compare this example with the previous one:
// better
return (cartArr.length > 0);

The second snippet is shorter and has fewer expressions to evaluate. It’s easier to read and to
understand.

The following example checks if the variable y is greater than zero (0), and returns the result
of x/y or a value of zero (0).
return ((y > 0) ? x/y : 0);

The following example shows another way to write this code. This example is preferable:
if (y>0) {

return x/y;
} else {

return 0;
}

The shortened if statement syntax from the first example is known as the conditional
operator (?:). It lets you convert simple if..else statements into a single line of code. In this
case, the shortened syntax reduces readability.

If you must use conditional operators, place the leading condition (before the question mark
[?]) inside parentheses to improve the readability of your code. You can see an example of this
in the previous code snippet.

Writing compound statements
Compound statements contain a list of statements within braces ({}). The statements within
these braces are indented from the compound statement. The following ActionScript code
shows an example of this:
if (a == b) {

// This code is indented.
trace("a == b");

}

702 Best Practices and Coding Conventions for ActionScript 2.0

Place braces around each statement when it is part of a control structure (if..else or for),
even if it contains only a single statement. The following example shows code that is
written poorly:
// bad
if (numUsers == 0)

trace("no users found.");

Although this code validates, it is poorly written because it lacks braces around the statements.
In this case, if you add another statement after the trace statement, the code executes
regardless of whether the numUsers variable equals 0:
// bad
var numUsers:Number = 5;
if (numUsers == 0)

trace("no users found.");
trace("I will execute");

Executing the code despite the numUsers variable can lead to unexpected results. For this
reason, add braces, as shown in the following example:
var numUsers:Number = 0;
if (numUsers == 0) {

trace("no users found");
}

When you write a condition, don’t add the redundant ==true in your code, as follows:
if (something == true) {

//statements
}

If you are compare against false, you could use if (something==false) or
if(!something).

Writing a for statement
You can write the for statement using the following format:
for (init; condition; update) {

// statements
}

The following structure demonstrates the for statement:
var i:Number;
for (var i = 0; i<4; i++) {

myClip.duplicateMovieClip("newClip" + i + "Clip", i + 10, {_x:i*100,
_y:0});

}

Remember to include a space following each expression in a for statement.

Formatting ActionScript syntax 703

Writing while and do..while statements
You can write while statements using the following format:
while (condition) {

// statements
}

You can write do-while statements using the following format:
do {

// statements
} while (condition);

Writing return statements
Don’t use parentheses [()] with any return statements that have values. The only time to use
parentheses with return statements is when they make the value more obvious, as shown in
the third line of the following ActionScript code snippet:
return;
return myCar.paintColor;
// parentheses used to make the return value obvious
return ((paintColor)? paintColor: defaultColor);

Writing switch statements
■ All switch statements include a default case.

The default case is the last case in a switch statement. The default case includes a break
statement that prevents a fall-through error if another case is added.

■ If a case does not have a break statement, the case will fall through (see case A in the
following code example).
Your statement should include a comment in the break statement’s place, as you can see
in the following example after case A. In this example, if the condition matches case A,
both cases A and B execute.

704 Best Practices and Coding Conventions for ActionScript 2.0

You can write switch statements using the following format:
switch (condition) {
case A :

// statements
// falls through

case B :
// statements
break;

case Z :
// statements
break;

default :
// statements
break;

}

Writing try..catch and try..catch..finally statements
Write try..catch and try..catch..finally statements using the following formats:
var myErr:Error;
// try..catch
try {

// statements
} catch (myErr) {

// statements
}

// try..catch..finally
try {

// statements
} catch (myErr) {

// statements
} finally {

// statements
}

Formatting ActionScript syntax 705

About using listener syntax
You can write listeners for events in several ways in Flash 8 and later. Some popular techniques
are shown in the following code examples. The first example shows a properly formatted
listener syntax, which uses a Loader component to load content into a SWF file. The
progress event starts when content loads, and the complete event indicates when loading
finishes.
var boxLdr:mx.controls.Loader;
var ldrListener:Object = new Object();
ldrListener.progress = function(evt:Object) {

trace("loader loading:" + Math.round(evt.target.percentLoaded) + "%");
};
ldrListener.complete = function(evt:Object) {

trace("loader complete:" + evt.target._name);
};
boxLdr.addEventListener("progress", ldrListener);
boxLdr.addEventListener("complete", ldrListener);
boxLdr.load("http://www.helpexamples.com/flash/images/image1.jpg");

A slight variation on the first example in this section is to use the handleEvent method, but
this technique is slightly more cumbersome. Adobe does not recommend this technique
because you must use a series of if..else statements or a switch statement to detect which
event is caught.
var boxLdr:mx.controls.Loader;
var ldrListener:Object = new Object();

ldrListener.handleEvent = function(evt:Object) {
switch (evt.type) {
case "progress" :

trace("loader loading:" + Math.round(evt.target.percentLoaded) + "%");
break;

case "complete" :
trace("loader complete:" + evt.target._name);
break;

}
};
boxLdr.addEventListener("progress", ldrListener);
boxLdr.addEventListener("complete", ldrListener);
boxLdr.load("http://www.helpexamples.com/flash/images/image1.jpg");

706 Best Practices and Coding Conventions for ActionScript 2.0

707

A
APPENDIX A

Error Messages

Adobe CS3 Professional provides compile-time error reporting when you publish to
ActionScript 2.0 (the default). The following table contains a list of error messages that the
Flash compiler can generate:

Error
number

Message text

1093 A class name was expected.

1094 A base class name is expected after the ‘extends’ keyword.

1095 A member attribute was used incorrectly.

1096 The same member name may not be repeated more than once.

1097 All member functions need to have names.

1099 This statement is not permitted in a class definition.

1100 A class or interface has already been defined with this name.

1101 Type mismatch.

1102 There is no class with the name ‘<ClassName>’.

1103 There is no property with the name ‘<propertyName>’.

1104 A function call on a non-function was attempted.

1105 Type mismatch in assignment statement: found [lhs-type] where [rhs-type] is
required.

1106 The member is private and cannot be accessed.

1107 Variable declarations are not permitted in interfaces.

1108 Event declarations are not permitted in interfaces.

1109 Getter/setter declarations are not permitted in interfaces.

1110 Private members are not permitted in interfaces.

1111 Function bodies are not permitted in interfaces.

708 Error Messages

1112 A class may not extend itself.

1113 An interface may not extend itself.

1114 There is no interface defined with this name.

1115 A class may not extend an interface.

1116 An interface may not extend a class.

1117 An interface name is expected after the ‘implements’ keyword.

1118 A class may not implement a class, only interfaces.

1119 The class must implement method ‘methodName’ from interface
‘interfaceName’.

1120 The implementation of an interface method must be a method, not a property.

1121 A class may not extend the same interface more than once.

1122 The implementation of the interface method doesn’t match its definition.

1123 This construct is only available in ActionScript 1.0.

1124 This construct is only available in ActionScript 2.0.

1125 Static members are not permitted in interfaces.

1126 The expression returned must match the function’s return type.

1127 A return statement is required in this function.

1128 Attribute used outside class.

1129 A function with return type Void may not return a value.

1130 The ‘extends’ clause must appear before the ‘implements’ clause.

1131 A type identifier is expected after the ‘:’.

1132 Interfaces must use the ‘extends’ keyword, not ‘implements’.

1133 A class may not extend more than one class.

1134 An interface may not extend more than one interface.

1135 There is no method with the name ‘<methodName>’.

1136 This statement is not permitted in an interface definition.

1137 A set function requires exactly one parameter.

1138 A get function requires no parameters.

1139 Classes may only be defined in external ActionScript 2.0 class scripts.

1140 ActionScript 2.0 class scripts may only define class or interface constructs.

Error
number

Message text

709

1141 The name of this class, ‘<A.B.C>’, conflicts with the name of another class that
was loaded, ‘<A.B>’.
(This error occurs when the ActionScript 2.0 compiler cannot compile a class
because of the full name of an existing class is part of the conflicting class'
name. For example, compiling class mx.com.util generates error 1141 if class
mx.com is a compiled class.)

1142 The class or interface ‘<Class or Interface Name>’ could not be loaded.

1143 Interfaces may only be defined in external ActionScript 2.0 class scripts.

1144 Instance variables cannot be accessed in static functions.

1145 Class and interface definitions cannot be nested.

1146 The property being referenced does not have the static attribute.

1147 This call to super does not match the superconstructor.

1148 Only the public attribute is allowed for interface methods.

1149 The import keyword cannot be used as a directive.

1150 You must export your Flash movie as Flash 7 to use this action.

1151 You must export your Flash movie as Flash 7 to use this expression.

1152 This exception clause is placed improperly.

1153 A class must have only one constructor.

1154 A constructor may not return a value.

1155 A constructor may not specify a return type.

1156 A variable may not be of type Void.

1157 A function parameter may not be of type Void.

1158 Static members can only be accessed directly through classes.

1159 Multiple implemented interfaces contain same method with different types.

1160 There is already a class or interface defined with this name.

1161 Classes, interfaces, and built-in types may not be deleted.

1162 There is no class with this name.

1163 The keyword ‘<keyword>’ is reserved for ActionScript 2.0 and cannot be used
here.

1164 Custom attribute definition was not terminated.

1165 Only one class or interface can be defined per ActionScript 2.0 .as file.

Error
number

Message text

710 Error Messages

1166 The class being compiled, ‘<A.b>’, does not match the class that was
imported, ‘<A.B>’.
(This error occurs when a class name is spelled with a different case from an
imported class. For example, compiling class mx.com.util generates error
1166 if the statement import mx.Com appears in the util.as file.)

1167 You must enter a class name.

1168 The class name you have entered contains a syntax error.

1169 The interface name you have entered contains a syntax error.

1170 The base class name you have entered contains a syntax error.

1171 The base interface name you have entered contains a syntax error.

1172 You must enter an interface name.

1173 You must enter a class or interface name.

1174 The class or interface name you have entered contains a syntax error.

1175 ‘variable’ is not accessible from this scope.

1176 Multiple occurrences of the ‘get/set/private/public/static’ attribute
were found.

1177 A class attribute was used incorrectly.

1178 Instance variables and functions may not be used to initialize static variables.

1179 Runtime circularities were discovered between the following classes: <list of
user-defined classes>.
This runtime error indicates that your custom classes are incorrectly
referencing each other.

1180 The currently targeted Flash Player does not support debugging.

1181 The currently targeted Flash Player does not support the
releaseOutside event.

1182 The currently targeted Flash Player does not support the dragOver event.

1183 The currently targeted Flash Player does not support the dragOut event.

1184 The currently targeted Flash Player does not support dragging actions.

1185 The currently targeted Flash Player does not support the loadMovie action.

1186 The currently targeted Flash Player does not support the getURL action.

1187 The currently targeted Flash Player does not support the
FSCommand action.

Error
number

Message text

711

1188 Import statements are not allowed inside class or interface definitions.

1189 The class ‘<A.B>’ cannot be imported because its leaf name is already
resolved to the class that is being defined, ‘<C.B>’.
(For example, compiling class util generates error 1189 if the statement
import mx.util appears in the util.as file.)

1190 The class ‘<A.B>’ cannot be imported because its leaf name is already
resolved to a previously imported class ‘<C.B>’.
(For example, compiling import jv.util generates error 1190 if the statement
import mx.util also appears in the AS file.)

1191 A class’ instance variables may only be initialized to compile-time
constant expressions.

1192 Class member functions cannot have the same name as a superclass’
constructor function.

1193 The name of this class, ‘<ClassName>’, conflicts with the name of another
class that was loaded.

1194 The superconstructor must be called first in the constructor body.

1195 The identifier ‘<className>’ will not resolve to built-in object ‘<ClassName>’
at runtime.

1196 The class ‘<A.B.ClassName>’ needs to be defined in a file whose relative path
is <‘A.B>’.

1197 The wildcard character ‘*’ is misused in the ClassName ‘<ClassName>’.

1198 The member function ‘<classname>’ has a different case from the name of the
class being defined, ‘<ClassName>’, and will not be treated as the class
constructor at runtime.

1199 The only type allowed for a for-in loop iterator is String.

1200 A setter function may not return a value.

1201 The only attributes allowed for constructor functions are public and private.

1202 The file 'toplevel.as', which is required for typechecking ActionScript 2.0,
could not be found. Please make sure the directory '$(LocalData)/Classes' is
listed in the global classpath of the ActionScript Preferences.

1203 Branch between <spanStart> and <spanEnd>> exceeds 32K span.

1204 There is no class or package with the name '<packageName>' found in
package '<PackageName>'.

1205 The currently targeted Flash Player does not support the
FSCommand2 action.

Error
number

Message text

712 Error Messages

1206 Member function '<functionName>' is larger than 32K.

1207 Anonymous function around line <lineNumber> exceeds 32K span.

1208 Code around line <lineNumber> exceeds 32K span.

1210 The package name '<PackageName>' cannot also be used as a method name.

1211 The package name '<PackageName>' cannot also be used as a
property name.

1212 The ASO file for the class '<ClassName>' could not be created. Please make
sure the fully-qualified class name is short enough so that the ASO filename,
'<ClassName.aso>', is less than 255 characters.

1213 This type of quotation mark is not allowed in ActionScript. Please change it to
a standard (straight) double quote.

Error
number

Message text

713

B
APPENDIX B

Deprecated Flash 4
operators

The following table lists Flash 4–only operators, which are deprecated in ActionScript 2.0. Do
not use these operators unless you are publishing to Flash Player 4 and earlier.

Operator Description Associativity

not Logical NOT Right to left

and Logical AND Left to right

or Logical OR (Flash 4) Left to right

add String concatenation (formerly &) Left to right

lt Less than (string version) Left to right

le Less than or equal to (string version) Left to right

gt Greater than (string version) Left to right

ge Greater than or equal to (string version) Left to right

eq Equal (string version) Left to right

ne Not equal (string version) Left to right

714 Deprecated Flash 4 operators

715

C
APPENDIX C

Keyboard Keys and Key
Code Values

The following tables list all the keys on a standard keyboard and the corresponding key code
values and ASCII key code values that are used to identify the keys in ActionScript:

■ “Letters A to Z and standard numbers 0 to 9” on page 715
■ “Keys on the numeric keypad” on page 718
■ “Function keys” on page 718
■ “Other keys” on page 719

You can use key constants to intercept the built-in behavior of keypresses. For more
information on the on() handler, see on handler in the ActionScript 2.0 Language Reference. To
capture key code values and ASCII key code values using a SWF file and key presses, you can
use the following ActionScript code:
var keyListener:Object = new Object();
keyListener.onKeyDown = function() {

trace("DOWN -> Code: " + Key.getCode() + "\tACSII: " + Key.getAscii() +
"\tKey: " + chr(Key.getAscii()));

};
Key.addListener(keyListener);

For more information on the Key class, see Key in ActionScript 2.0 Language Reference. To trap
keys when you test a SWF file in the authoring environment (Control > Test Movie), make
sure that you select Control > Disable Keyboard Shortcuts.

Letters A to Z and standard numbers 0 to 9
The following table lists the keys on a standard keyboard for the letters A to Z and the
numbers 0 to 9, with the corresponding key code values that are used to identify the keys
in ActionScript:

Letter or number key Key code ASCII key code

A 65 65

B 66 66

716 Keyboard Keys and Key Code Values

C 67 67

D 68 68

E 69 69

F 70 70

G 71 71

H 72 72

I 73 73

J 74 74

K 75 75

L 76 76

M 77 77

N 78 78

O 79 79

P 80 80

Q 81 81

R 82 82

S 83 83

T 84 84

U 85 85

V 86 86

W 87 87

X 88 88

Y 89 89

Z 90 90

0 48 48

1 49 49

2 50 50

3 51 51

4 52 52

5 53 53

Letter or number key Key code ASCII key code

717

6 54 54

7 55 55

8 56 56

9 57 57

a 65 97

b 66 98

c 67 99

d 68 100

e 69 101

f 70 102

g 71 103

h 72 104

i 73 105

j 74 106

k 75 107

l 76 108

m 77 109

n 78 110

o 79 111

p 80 112

q 81 113

r 82 114

s 83 115

t 84 116

u 85 117

v 86 118

w 87 119

x 88 120

y 89 121

z 90 122

Letter or number key Key code ASCII key code

718 Keyboard Keys and Key Code Values

Keys on the numeric keypad
The following table lists the keys on a numeric keypad, with the corresponding key code
values that are used to identify the keys in ActionScript:

Function keys
The following table lists the function keys on a standard keyboard, with the corresponding
key code values that are used to identify the keys in ActionScript:

Numeric keypad key Key code ASCII key code

Numpad 0 96 48

Numpad 1 97 49

Numpad 2 98 50

Numpad 3 99 51

Numpad 4 100 52

Numpad 5 101 53

Numpad 6 102 54

Numpad 7 103 55

Numpad 8 104 56

Numpad 9 105 57

Multiply 106 42

Add 107 43

Enter 13 13

Subtract 109 45

Decimal 110 46

Divide 111 47

Function key Key code ASCII key code

F1 112 0

F2 113 0

F3 114 0

F4 115 0

F5 116 0

719

Other keys
The following table lists keys on a standard keyboard other than letters, numbers, numeric
keypad keys, or function keys, with the corresponding key code values that are used to
identify the keys in ActionScript:

F6 117 0

F7 118 0

F8 119 0

F9 120 0

F10 This key is reserved by the
system and cannot be used in
ActionScript.

This key is reserved by the
system and cannot be used in
ActionScript.

F11 122 0

F12 123 0

F13 124 0

F14 125 0

F15 126 0

Key Key code ASCII key code

Backspace 8 8

Tab 9 9

Enter 13 13

Shift 16 0

Control 17 0

Caps Lock 20 0

Esc 27 27

Spacebar 32 32

Page Up 33 0

Page Down 34 0

End 35 0

Home 36 0

Function key Key code ASCII key code

720 Keyboard Keys and Key Code Values

For additional key code and ASCII values, use the ActionScript at the beginning of this
appendix and press the desired key to trace its key code.

Left Arrow 37 0

Up Arrow 38 0

Right Arrow 39 0

Down Arrow 40 0

Insert 45 0

Delete 46 127

Num Lock 144 0

ScrLk 145 0

Pause/Break 19 0

; : 186 59

= + 187 61

- _ 189 45

/ ? 191 47

` ~ 192 96

[{ 219 91

\ | 220 92

] } 221 93

" ' 222 39

, 188 44

. 190 46

/ 191 47

Key Key code ASCII key code

721

D
APPENDIX D

Writing Scripts for Earlier
Versions of Flash Player

ActionScript has changed considerably with each release of the Adobe Flash authoring tools
and Flash Player. When you create content for Adobe Flash Player 8 and later, you can use the
full power of ActionScript. You can still use Flash to create content for earlier versions of Flash
Player, but you can’t use every ActionScript element.

This chapter provides guidelines to help you write scripts that are syntactically correct for the
player version you are targeting.

About targeting earlier versions of Flash
Player
When you write scripts, use the Availability information for each element in the ActionScript
2.0 Language Reference to determine if an element you want to use is supported by the Flash
Player version you are targeting. You can also determine which elements you can use by
showing the Actions toolbox; elements that are not supported for your target version appear
in yellow.

If you create content for Flash Player 6 and later, you should use ActionScript 2.0, which
provides several important features that aren’t available in ActionScript 1.0, such as improved
compiler errors and more robust object-oriented programming capabilities.

To specify the player and ActionScript version you want to use when publishing a document,
select File > Publish Settings and make your selections on the Flash tab. If you need to target
Flash Player 4, see the next section.

N
O

T
E

You can review surveys for Flash Player version penetration on the Adobe website; see
www.adobe.com/software/player_census/flashplayer/.

http://www.adobe.com/software/player_census/flashplayer

722 Writing Scripts for Earlier Versions of Flash Player

Using Flash to create content for
Flash Player 4
To use Flash to create content for Flash Player 4, specify Flash Player 4 on the Flash tab of the
Publish Settings dialog box (File > Publish Settings).

Flash Player 4 ActionScript has only one basic primitive data type, which is used for numeric
and string manipulation. When you write an application for Flash Player 4, you must use the
deprecated string operators located in the Deprecated > Operators category in the
ActionScript toolbox.

You can use the following Flash features when you publish for Flash Player 4:

■ The array and object access operator ([])
■ The dot operator (.)
■ Logical operators, assignment operators, and pre- and post-increment/

decrement operators
■ The modulo operator (%), and all methods and properties of the Math class

The following language elements are not supported natively by Flash Player 4. Flash exports
them as series approximations, which creates results that are less numerically accurate. In
addition, because of the inclusion of series approximations in the SWF file, these language
elements need more space in Flash Player 4 SWF files than they do in Flash Player 5 or later
SWF files.

■ The for, while, do..while, break, and continue actions
■ The print() and printAsBitmap() actions
■ The switch action

For additional information, see “About targeting earlier versions of Flash Player” on page 721.

Using Flash to open Flash 4 files
Flash 4 ActionScript had only one true data type: string. It used different types of operators in
expressions to indicate whether the value should be treated as a string or as a number. In
subsequent releases of Flash, you can use one set of operators on all data types.

Using Flash to create content for Flash Player 4 723

When you use Flash 5 or later to open a file that was created in Flash 4, Flash automatically
converts ActionScript expressions to make them compatible with the new syntax. Flash makes
the following data type and operator conversions:

■ The = operator in Flash 4 was used for numeric equality. In Flash 5 and later, == is the
equality operator and = is the assignment operator. Any = operators in Flash 4 files are
automatically converted to ==.

■ Flash automatically performs type conversions to ensure that operators behave as
expected. Because of the introduction of multiple data types, the following operators have
new meanings:
+, ==, !=, <>, <, >, >=, <=
In Flash 4 ActionScript, these operators were always numeric operators. In Flash 5 and
later, they behave differently, depending on the data types of the operands. To prevent
semantic differences in imported files, the Number() function is inserted around all
operands to these operators. (Constant numbers are already obvious numbers, so they are
not enclosed in Number().) For more information on these operators, see the operator
table in “About operator precedence and associativity” on page 140 and “Deprecated Flash
4 operators” on page 713.

■ In Flash 4, the escape sequence \n generated a carriage return character (ASCII 13). In
Flash 5 and later, to comply with the ECMA-262 standard, \n generates a line-feed
character (ASCII 10). An \n sequence in Flash 4 FLA files is automatically converted
to \r.

■ The & operator in Flash 4 was used for string addition. In Flash 5 and later, & is the bitwise
AND operator. The string addition operator is now called add. Any & operators in Flash 4
files are automatically converted to add operators.

■ Many functions in Flash 4 did not require closing parentheses; for example, Get Timer,
Set Variable, Stop, and Play. To create consistent syntax, the getTimer function and
all actions now require parentheses [()]. These parentheses are automatically added
during the conversion.

724 Writing Scripts for Earlier Versions of Flash Player

■ In Flash 5 and later, when the getProperty function is executed on a movie clip that
doesn’t exist, it returns the value undefined, not 0. The statement undefined == 0 is
false in ActionScript after Flash 4 (in Flash 4, undefined == 1). In Flash 5 and later,
solve this problem when converting Flash 4 files by introducing Number() functions in
equality comparisons. In the following example, Number() forces undefined to be
converted to 0 so the comparison will succeed:
getProperty("clip", _width) == 0
Number(getProperty("clip", _width)) == Number(0)

Using slash syntax
Slash syntax (/) was used in Flash 3 and 4 to indicate the target path of a movie clip or
variable. In slash syntax, slashes are used instead of dots and variables are preceded
with a colon, as shown in the following example:
myMovieClip/childMovieClip:myVariable

To write the same target path in dot syntax, which is supported by Flash Player 5 and later
versions, use the following syntax:
myMovieClip.childMovieClip.myVariable

Slash syntax was most commonly used with the tellTarget action, but its use is also no
longer recommended. The with action is now preferred because it is more compatible with
dot syntax. For more information, see tellTarget function and with statement in the
ActionScript 2.0 Language Reference.

N
O

T
E

If you used any Flash 5 or later keywords as variable names in your Flash 4
ActionScript, the syntax returns an error when you compile it in Flash. To solve this
problem, rename your variables in all locations. For information, see “About reserved
words” on page 103 and “About naming variables” on page 55.

725

E
APPENDIX E

Object-Oriented Programming
with ActionScript 1.0

The information in this appendix comes from the Adobe Flash documentation and provides
information on using the ActionScript 1.0 object model to write scripts. It is included here for
the following reasons:

■ If you want to write object-oriented scripts that support Flash Player 5, you must
use ActionScript 1.0.

■ If you already use ActionScript 1.0 to write object-oriented scripts and aren’t ready to
switch to ActionScript 2.0, you can use this appendix to find or review information you
need while writing your scripts.

If you have never used ActionScript to write object-oriented scripts and don’t need to target
Flash Player 5, you should not use the information in this appendix because writing object-
oriented scripts using ActionScript 1.0 is deprecated. Instead, for information on using
ActionScript 2.0, see Chapter 6, “Classes,” on page 187.

This chapter contains the following sections:
About ActionScript 1.0 .726

Creating a custom object in ActionScript 1.0 .728

Assigning methods to a custom object in ActionScript 1.0.729

Defining event handler methods in ActionScript 1.0 .730

Creating inheritance in ActionScript 1.0 .732

Adding getter/setter properties to objects in ActionScript 1.0734

Using Function object properties in ActionScript 1.0 .735

N
O

T
E

Some examples in this appendix use the Object.registerClass() method. This method is
supported only in Flash Player 6 and later versions; don’t use this method if you are
targeting Flash Player 5.

726 Object-Oriented Programming with ActionScript 1.0

About ActionScript 1.0

ActionScript is an object-oriented programming language. Object-oriented programming
uses objects, or data structures, to group together properties and methods that control the
object’s behavior or appearance. Objects let you organize and reuse code. After you define an
object, you can refer to it by name without having to redefine it each time you use it.

A class is a generic category of objects. A class defines a series of objects that have common
properties and can be controlled in the same ways. Properties are attributes that define an
object, such as its size, position, color, transparency, and so on. Properties are defined for a
class, and values for the properties are set for individual objects in the class. Methods are
functions that can set or retrieve properties of an object. For example, you can define a
method to calculate the size of an object. As with properties, methods are defined for an
object class and then invoked for individual objects in the class.

ActionScript includes several built-in classes, including the MovieClip class, Sound class, and
others. You can also create custom classes to define categories of objects for your applications.

Objects in ActionScript can be pure containers for data, or they can be graphically represented
on the Stage as movie clips, buttons, or text fields. All movie clips are instances of the built-in
MovieClip class, and all buttons are instances of the built-in Button class. Each movie clip
instance contains all the properties (for example, _height, _rotation, _totalframes) and
all the methods (for example, gotoAndPlay(), loadMovie(), startDrag()) of the
MovieClip class.

To define a class, you create a special function called a constructor function. (Built-in classes
have built-in constructor functions.) For example, if you want information about a bicycle
rider in your application, you could create a constructor function, Biker(), with the
properties time and distance and the method getSpeed(), which tells you how fast the
biker is traveling:
function Biker(t, d) {

this.time = t;
this.distance = d;
this.getSpeed = function() {return this.time / this.distance;};

}

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

About ActionScript 1.0 727

In this example, you create a function that needs two pieces of information, or parameters, to
do its job: t and d. When you call the function to create new instances of the object, you pass
it the parameters. The following code creates instances of the object Biker called emma and
hamish, and it traces the speed of the emma instance, using the getSpeed() method from the
previous ActionScript:
emma = new Biker(30, 5);
hamish = new Biker(40, 5);
trace(emma.getSpeed()); // traces 6

In object-oriented scripting, classes can receive properties and methods from each other
according to a specific order, which is called inheritance. You can use inheritance to extend or
redefine the properties and methods of a class. A class that inherits from another class is called
a subclass. A class that passes properties and methods to another class is called a superclass. A
class can be both a subclass and a superclass.

An object is a complex data type containing zero or more properties and methods. Each
property, like a variable, has a name and a value. Properties are attached to the object and
contain values that can be changed and retrieved. These values can be of any data type: String,
Number, Boolean, Object, MovieClip, or undefined. The following properties are of various
data types:
customer.name = "Jane Doe";
customer.age = 30;
customer.member = true;
customer.account.currentRecord = 609;
customer.mcInstanceName._visible = true;

The property of an object can also be an object. In line 4 of the previous example, account is
a property of the object customer, and currentRecord is a property of the object account.
The data type of the currentRecord property is Number.

728 Object-Oriented Programming with ActionScript 1.0

Creating a custom object in
ActionScript 1.0

To create a custom object, you define a constructor function. A constructor function is always
given the same name as the type of object it creates. You can use the keyword this inside the
body of the constructor function to refer to the object that the constructor creates; when you
call a constructor function, Flash passes this to the function as a hidden parameter. For
example, the following code is a constructor function that creates a circle with the property
radius:
function Circle(radius) {

this.radius = radius;
}

After you define the constructor function, you must create an instance of the object. Use the
new operator before the name of the constructor function, and assign a variable name to the
new instance. For example, the following code uses the new operator to create a Circle object
with a radius of 5 and assigns it to the variable myCircle:
myCircle = new Circle(5);

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

N
O

T
E

An object has the same scope as the variable to which it is assigned.

Assigning methods to a custom object in ActionScript 1.0 729

Assigning methods to a custom object in
ActionScript 1.0

You can define the methods of an object inside the object’s constructor function. However,
this technique is not recommended because it defines the method every time you use the
constructor function. The following example creates the methods getArea() and
getDiameter(): and traces the area and diameter of the constructed instance myCircle with
a radius set to 55:
function Circle(radius) {

this.radius = radius;
this.getArea = function(){

return Math.PI * this.radius * this.radius;
};
this.getDiameter = function() {

return 2 * this.radius;
};

}
var myCircle = new Circle(55);
trace(myCircle.getArea());
trace(myCircle.getDiameter());

Each constructor function has a prototype property that is created automatically when you
define the function. The prototype property indicates the default property values for objects
created with that function. Each new instance of an object has a __proto__ property that
refers to the prototype property of the constructor function that created it. Therefore, if you
assign methods to an object’s prototype property, they are available to any newly created
instance of that object. It’s best to assign a method to the prototype property of the
constructor function because it exists in one place and is referenced by new instances of the
object (or class). You can use the prototype and __proto__ properties to extend objects so
that you can reuse code in an object-oriented manner. (For more information, see “Creating
inheritance in ActionScript 1.0” on page 732.)

The following procedure shows how to assign an getArea() method to a custom
Circle object.

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

730 Object-Oriented Programming with ActionScript 1.0

To assign a method to a custom object:

1. Define the constructor function Circle():
function Circle(radius) {

this.radius = radius;
}

2. Define the getArea() method of the Circle object. The getArea() method calculates the
area of the circle. In the following example, you can use a function literal to define the
getArea() method and assign the getArea property to the circle’s prototype object:
Circle.prototype.getArea = function () {

return Math.PI * this.radius * this.radius;
};

3. The following example creates an instance of the Circle object:
var myCircle = new Circle(4);

4. Call the getArea() method of the new myCircle object using the following code:
var myCircleArea = myCircle.getArea();
trace(myCircleArea); // traces 50.265...

ActionScript searches the myCircle object for the getArea() method. Because the object
doesn’t have a getArea() method, its prototype object Circle.prototype is searched for
getArea(). ActionScript finds it, calls it, and traces myCircleArea.

Defining event handler methods in
ActionScript 1.0

You can create an ActionScript class for movie clips and define the event handler methods in
the prototype object of that new class. Defining the methods in the prototype object makes all
the instances of this symbol respond the same way to these events.

You can also add an onClipEvent() or on() event handler methods to an individual instance
to provide unique instructions that run only when that instance’s event occurs. The
onClipEvent() and on() methods don’t override the event handler method; both events
cause their scripts to run. However, if you define the event handler methods in the prototype
object and also define an event handler method for a specific instance, the instance definition
overrides the prototype definition.

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

Defining event handler methods in ActionScript 1.0 731

To define an event handler method in an object’s prototype object:

1. Create a movie clip symbol and set the linkage identifier to theID by selecting the symbol
in the Library panel and selecting Linkage from the Library pop-up menu.

2. In the Actions panel (Window > Actions), use the function statement to define a new
class, as shown in the following example:
// define a class
function myClipClass() {}

This new class is assigned to all instances of the movie clip that are added to the
application by the timeline or that are added to the application with the attachMovie()
or duplicateMovieClip() method. If you want these movie clips to have access to the
methods and properties of the built-in MovieClip object, you need to make the new class
inherit from the MovieClip class.

3. Enter code, such as the following example:
// inherit from MovieClip class
myClipClass.prototype = new MovieClip();

Now, the class myClipClass inherits all the properties and methods of the
MovieClip class.

4. Enter code, such as the following example, to define the event handler methods for the
new class:
// define event handler methods for myClipClass class
myClipClass.prototype.onLoad = function() {trace("movie clip loaded");}
myClipClass.prototype.onEnterFrame = function() {trace("movie clip

entered frame");}

5. Select Window > Library to open the Library panel if it isn’t already open.

6. Select the symbols that you want to associate with your new class, and select Linkage from
the Library panel pop-up menu.

7. In the Linkage Properties dialog box, select Export for ActionScript.

8. Enter a linkage identifier in the Identifier text box.

The linkage identifier must be the same for all symbols that you want to associate with the
new class. In the myClipClass example, the identifier is theID.

9. Enter code, such as the following example, in the Actions panel:
// register class
Object.registerClass("theID", myClipClass);
this.attachMovie("theID","myName",1);

732 Object-Oriented Programming with ActionScript 1.0

This step registers the symbol whose linkage identifier is theID with the class
myClipClass. All instances of myClipClass have event handler methods that behave as
defined in step 4. They also behave the same as all instances of the MovieClip class
because you told the new class to inherit from the class MovieClip in step 3.
The complete code is shown in the following example:
function myClipClass(){}

myClipClass.prototype = new MovieClip();
myClipClass.prototype.onLoad = function(){

trace("movie clip loaded");
}
myClipClass.prototype.onPress = function(){

trace("pressed");
}

myClipClass.prototype.onEnterFrame = function(){
trace("movie clip entered frame");

}

myClipClass.prototype.myfunction = function(){
trace("myfunction called");

}

Object.registerClass("myclipID",myClipClass);
this.attachMovie("myclipID","clipName",3);

Creating inheritance in ActionScript 1.0

Inheritance is a means of organizing, extending, and reusing functionality. Subclasses inherit
properties and methods from superclasses, and add their own specialized properties and
methods. For example, reflecting the real world, Bike would be a superclass and
MountainBike and Tricycle would be subclasses of the superclass. Both subclasses contain, or
inherit, the methods and properties of the superclass (for example, wheels). Each subclass also
has its own properties and methods that extend the superclass (for example, the
MountainBike subclass would have a gears property). You can use the elements prototype
and __proto__ to create inheritance in ActionScript.

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

Creating inheritance in ActionScript 1.0 733

All constructor functions have a prototype property that is created automatically when the
function is defined. The prototype property indicates the default property values for objects
created with that function. You can use the prototype property to assign properties and
methods to a class. (For more information, see “Assigning methods to a custom object in
ActionScript 1.0” on page 729.)

All instances of a class have a __proto__ property that tells you the object from which they
inherit. When you use a constructor function to create an object, the __proto__ property is
set to refer to the prototype property of its constructor function.

Inheritance proceeds according to a definite hierarchy. When you call an object’s property or
method, ActionScript looks at the object to see if such an element exists. If it doesn’t exist,
ActionScript looks at the object’s __proto__ property for the information
(myObject.__proto__). If the property is not a property of the object’s __proto__ object,
ActionScript looks at myObject.__proto__.__proto__, and so on.

The following example defines the constructor function Bike():
function Bike(length, color) {

this.length = length;
this.color = color;
this.pos = 0;

}

The following code adds the roll() method to the Bike class:
Bike.prototype.roll = function() {return this.pos += 20;};

Then, you can trace the position of the bike with the following code:
var myBike = new Bike(55, "blue");
trace(myBike.roll()); // traces 20.
trace(myBike.roll()); // traces 40.

Instead of adding roll() to the MountainBike class and the Tricycle class, you can create the
MountainBike class with Bike as its superclass, as shown in the following example:
MountainBike.prototype = new Bike();

Now you can call the roll() method of MountainBike, as shown in the following example:
var myKona = new MountainBike(20, "teal");
trace(myKona.roll()); // traces 20

Movie clips do not inherit from each other. To create inheritance with movie clips, you can
use Object.registerClass() to assign a class other than the MovieClip class to movie clips.

734 Object-Oriented Programming with ActionScript 1.0

Adding getter/setter properties to objects
in ActionScript 1.0

You can create getter/setter properties for an object using the Object.addProperty()
method.

A getter function is a function with no parameters. Its return value can be of any type. Its
type can change between invocations. The return value is treated as the current value of
the property.

A setter function is a function that takes one parameter, which is the new value of the property.
For instance, if property x is assigned by the statement x = 1, the setter function is passed the
parameter 1 of type Number. The return value of the setter function is ignored.

When Flash reads a getter/setter property, it invokes the getter function, and the function’s
return value becomes a value of prop. When Flash writes a getter/setter property, it invokes
the setter function and passes it the new value as a parameter. If a property with the given
name already exists, the new property overwrites it.

You can add getter/setter properties to prototype objects. If you add a getter/setter property to
a prototype object, all object instances that inherit the prototype object inherit the getter/
setter property. You can add a getter/setter property in one location, the prototype object, and
have it propagate to all instances of a class (similar to adding methods to prototype objects). If
a getter/setter function is invoked for a getter/setter property in an inherited prototype object,
the reference passed to the getter/setter function is the originally referenced object, not the
prototype object.

The Debug > List Variables command in test mode supports getter/setter properties that you
add to objects using Object.addProperty(). Properties that you add to an object in this way
appear with other properties of the object in the Output panel. Getter/setter properties are
identified in the Output panel with the prefix [getter/setter]. For more information on
the List Variables command, see Using Flash.

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

Using Function object properties in ActionScript 1.0 735

Using Function object properties in
ActionScript 1.0

You can specify the object to which a function is applied and the parameter values that are
passed to the function, using the call() and apply() methods of the Function object. Every
function in ActionScript is represented by a Function object, so all functions support call()
and apply(). When you create a custom class using a constructor function, or when you
define methods for a custom class using a function, you can invoke call() and apply() for
the function.

Invoking a function using the Function.call() method
in ActionScript 1.0

The Function.call() method invokes the function represented by a Function object.

In almost all cases, the function call operator (()) can be used instead of the call() method.
The function call operator creates code that is concise and readable. The call() method is
primarily useful when the this parameter of the function invocation needs to be explicitly
controlled. Normally, if a function is invoked as a method of an object, within the body of the
function, this is set to myObject, as shown in the following example:
myObject.myMethod(1, 2, 3);

In some situations, you might want this to point somewhere else; for instance, if a function
must be invoked as a method of an object but is not actually stored as a method of that object,
as shown in the following example:
myObject.myMethod.call(myOtherObject, 1, 2, 3);

You can pass the value null for the thisObject parameter to invoke a function as a regular
function and not as a method of an object. For example, the following function invocations
are equivalent:
Math.sin(Math.PI / 4)
Math.sin.call(null, Math.PI / 4)

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

736 Object-Oriented Programming with ActionScript 1.0

To invoke a function using the Function.call() method:

■ Use the following syntax:
myFunction.call(thisObject, parameter1, ..., parameterN)

The method takes the following parameters:
■ The parameter thisObject specifies the value of this within the function body.
■ The parameters parameter1..., parameterN specify parameters to be passed to

myFunction. You can specify zero or more parameters.

Specifying the object to which a function is applied
using Function.apply() in ActionScript 1.0

The Function.apply() method specifies the value of this to be used within any function
that ActionScript calls. This method also specifies the parameters to be passed to any
called function.

The parameters are specified as an Array object. This is often useful when the number of
parameters to be passed is not known until the script actually executes.

For more information, see apply (Function.apply method) in the ActionScript 2.0
Language Reference.

To specify the object to which a function is applied using Function.apply():

■ Use the following syntax:
myFunction.apply(thisObject, argumentsObject)

The method takes the following parameters:
■ The parameter thisObject specifies the object to which myFunction is applied.
■ The parameter argumentsObject defines an array whose elements are passed to

myFunction as parameters.

N
O

T
E

Many Flash users can greatly benefit from using ActionScript 2.0, especially with
complex applications. For information on using ActionScript 2.0, see Chapter 6,
“Classes,” on page 187.

737

Index

Symbols
\" 420
\’ 420
\b 420
\f 420
\n 420
\r 420
\t 420
\unnnn 420
\xnn 420
_lockroot, using 682
_root scope 87

Numerics
9-slice scaling

about 514
enabling 515
scale9Grid property 515
understanding 514
using 516

A
actions, coding standards 679
ActionScript

about 31, 32
comparing versions 33
creating cue points with 572
Flash Player 695

ActionScript 2.0
assigning ActionScript 2.0 class to movie clips 339
compiler error messages 707

ActiveX controls 621
adaptively sampled distance field (ADF) 370
adaptively sampled distance fields 373

ADFs 370, 373
alpha channel masking 338
animation

brightness 484
creating a progress bar 580
filters 491
frame rate 431, 451
with glow filter 457

animation, symbols and 40
animations

continuing 452
that run continuously 453

anonymous function
using 172
writing 170

anti-alias
for animation and readability 369

anti-alias text
about 367
advanced value 370
creating table 373
Flash Player support 367
limitations 368
modifying sharpness and thickness 376
normal value 370
setting antiAliasType property 370
sharpness property 376
support 368
thickness 376
using 370

anti-aliasing
about 367
Flash Player support 368

antiAliasType property 370, 373, 376
ARGB (RGB with Alpha) 483
arguments

in named functions 169

738 Index

array literal 130
arrays

about 125
about multidimensional 131
adding and removing elements 129
analogy 125
and Object class 137
and sortOn() method 184
assigning values to 53
associative 134
associative array 134
associative array using Object 135
associative array using the Array constructor 137
creating 53
elements of 125
examples of 125, 126
indexed 130
iterating through a multidimensional array 132
modifying 125, 127
multidimensional array 131
multidimensional using a for loop 132
pass by reference 59
referencing and finding length 128
shorthand syntax 125
to create object 73
using 126
using shorthand syntax to create 54

ASCII values
function keys 718
keyboard keys 715
numeric keypad keys 718
other keys 719

ASCII, defined 412
ASO files 242

deleting 243
using 242

associative array, about 134
associativity, of operators 140
asynchronous actions 591
attaching sounds 531

B
backslash character, in strings 420
balance (sound), controlling 533
behaviors

Zoom transition 442
best practices

ActionScript 1 and ActionScript 2.0 33

coding conventions 666
comments 677
comments in classes 678
functions 693
naming Booleans 672
naming classes and objects 673
naming constants 672
naming functions and methods 673
naming interfaces 675
naming packages 675
naming variables 670
scope 681

bevel filter
about 475
using 476

binding components with ActionScript 545
bindings

creating a one-way binding 538
creating a two-way binding 540
creating with ActionScript 538

bitmap
text 369

bitmap caching
about 330, 440
and alpha channel masking 338
and filters 460
defined 331
enabling 330
opaqueBackground property 331
scrollRect 331
surfaces 330
when to avoid 333
when to use 332

BitmapData class
about 493
applying filters to 462
noise effect 494
using 494, 559
with displacement map filter 495

blend modes.See blending modes
blending modes

about 496
applying 497

blur filter
about 465
animated with Tween class 491
using and animating 466

Boolean
data type 38

Bounce easing class 447

Index 739

broadcaster object 296
built-in functions 167

C
cacheAsBitmap property 331
callback functions

writing 170
calling methods 40
caps styles

about 506
setting 506

caps styles, setting 506
cascading style sheets

and TextField.StyleSheet class 385
applying style classes 389
applying to text fields 387
assigning styles to built-in HTML tags 390
combining styles 389
defining styles in ActionScript 387
example with HTML tags 391
example with XML tags 394
formatting text with 382
loading 385
properties supported 384
using to define new tags 393

case sensitivity
about 80
and Flash Player version 81

casting objects 74
character embedding dialog box

using 363
character encoding 412
character sequences. See strings
character sets

creating custom set 364
characters

adding and removing embedded 359
checking

for loaded data 591
child

movie clips, defined 313
node 608

class file
guidelines for organizing 686
structuring 685

class members 194, 258
about 194

classes

about built-in 188
accessing built-in properties 257
and ASO files 242
and constructor functions 228
and inheritance 263
and instance variables 232
and polymorphism 271
and scope 222, 243
as blueprints 191
as data types 188
assigning to an instance in Flash 239
assigning to movie clips 339
benefit of using 189
best practices for writing 224
built-in and top-level 246
calling built-in object methods 258
class members 211
classpaths 202
compared to interfaces 276
compared with packages 191
compiler resolving references 205
compiling and exporting 240
controlling member access 233
create an instance 215
creating a class file 205
creating a new instance of built-in class 257
creating an instance of 238
creating and packaging 226
creating dynamic 219
defined 256
documenting 234
encapsulation 221
excluding built-in classes 259
flash.display classes 252
flash.external classes 253
flash.filters classes 253
flash.geom classes 254
flash.net classes 255
flash.text classes 255
getter/setter methods 216
importing 201
importing and packaging 236
inheritance example 266
initializing properties at runtime 340
instantiation 188
methods and properties 206
mx.lang classes 255
naming class files 225
organizing in packages 189
overriding methods and properties 268

740 Index

preloading 260
private methods and properties 209
properties of 208
public, private, and static methods and properties

208
resolving class references 205
scoping 684
static members of built-in classes 258
static methods and properties 210
superclass 265
System and TextField classes 256
top-level 249
using class members 214
using custom classes in Flash 236
using getter/setter methods 216
working with built-in 256
working with custom 199
writing a subclass 265
writing custom 196
writing custom example 223
writing methods and properties 230

classpath
about 34
defined 202
delete directory from 203
document level 204
global 203
search order of 205

clone() method
about 492
using 492

code
examples, copying and pasting 13

coding conventions
ActionScript 679
components 676

collisions, detecting 534
between movie clip and Stage point 535
between movie clips 535

colons, about 89
color matrix filter

about 483
using 435, 484

colors
values, setting 530

comments
about 95
and syntax coloring 96
best practices 677
cluttered or clustered 96

in class files 234
inside classes 98
multiline 97
single line 96
trailing 98
writing in class files 678

communicating with the Flash Player 617
comparison operators 151
compile time, defined 13
complex data type (data value) 37
component-based architecture, defined 313
components, coding conventions 676
compound literals 94
compound statements 104

writing 701
concatenating strings 43
conditional expressions 114
conditional operator 114
conditional statements

writing 700
conditions

writing 105
conditions, about 105
constants

about 99
best practices 672
using 100

constructor functions
sample 726
writing 173

continuous stroke modulation 370
conventions, naming 666
converting data types 36
convolution filter

about 486
about applying 486
using 486

counters, repeating action with 116, 117
creating objects 257
creating strings 419
CSM

about 370
about parameters 370

CSS. See cascading style sheets
cue points

creating 572
navigation, event, and ActionScript 568
tracing 568
using 568
viewing 570

Index 741

working with 570
curly braces, about 90
cursors, creating custom 524
custom anti-alias

defined 369
custom character sets, creating 363, 364
custom formatters

about 542
using 542

custom functions 163
CustomFormatter class

about 543
using 543

D
data

about 35
and variables 35
defined 35
loading and progress bar 592
organizing into objects 72

data types
and values 193
annotations 50
assigning 46
automatically assigning 45
basic 36
Boolean 38
complex 37
converting 36
defined 36
determining type 49
MovieClip 40
null 41
Number 42
Object 42
primitive 37
String 43
undefined 44
void 44

data, external 589, 631
access between cross-domain SWFs 656, 660
and LoadVars object 596
and messages 617
and server-side scripts 594
and XML 608
and XMLSocket object 616
checking if loaded 591

security features 650
sending and loading 590

debugging
compiler error messages 707

Delegate class
about 310
using 310

deprecated Flash 4 operators 713
depth

defined 327
determining for movie clips 329
determining instance at 328
determining next available 328
managing 327

design patterns
encapsulation 221
Singleton 213

detecting collisions 534
device fonts

defined 369
masking 338

displacement map filter
about 487
applying to an image 495
using 487
with BitmapData class 495

do..while loops 123
documentation, additional resources 17
DOM (Document Object Model), XML 608
domain names and security 650
dot syntax (dot notation) 83
double-quote character, in strings 420
dragging movie clips 320
drawing

with code 499
Drawing API

about 499
and line styles 506
complex gradient fills 505
drawing circles 503
drawing curves 500
drawing lines, curves, and shapes 500
drawing rectangles 501
drawing rounded rectangles 502
drawing specific shapes 499, 501
drawing triangles 501, 504
lines and fills 536
progress bar 592
using 592

drawing methods

742 Index

 See also drawing API
drawingAPI

with Tween and TransitionManager classes 512
drop shadow filter

about 467
and clone() method 492
animating 470
applying to transparent image 471
using 467

duplicating, movie clips 323
dynamic classes 219
dynamic text 344

E
easing

about 447
defining 441
with code 449

ECMA-262 specification 79
effects

blending modes 497
brightness 484
brightness and color 434
brightness tween 436
fading 432
grayscale 435
noise 494
panning an image 438

effects. See filters
elements, of an array 125
embedded characters

adding and removing 359
using with text fields 360

embedded fonts
embedding a font symbol 361
using with TextField class 365

encapsulation
about 195
using 221

endpoints 541
equality operators 151
error handling and filters 462
error messages 707
escape character 420
escape sequences 43
event handler methods

and on() and onClipEvent() 300
assigning functions to 295

attaching to buttons or movie clips 300
attaching to objects 304
defined 291
defined by ActionScript classes 293, 294
in ActionScript 2.0 309
scope 306

event handler mthods
checking for XML data 591

event listeners 296
classes that can broadcast 296
scope 306

event model
for event handler methods 294
for event listeners 296
for on() and onClipEvent() handlers 300

events
and movie clips 339
broadcasting 305
defined 291

expressions
manipulating values in 137

extends keyword 264
about 264
syntax 265

Extensible Markup Language. See XML
External API

about 621
using 622

external class files
using classpaths to locate 202

external media 549
about loading 550
and the root timeline 555
creating progress bar animations 580
loading images and SWF files 551
loading MP3 files 583
loading SWF and image files 581
loading SWF files and JPEG files 551
MP3 files 555
playing FLV files 561
preloading 566, 580
ProgressBar component 553
reasons for using 549

external sources, connecting Flash with 589, 631
ExternalInterface class

about 621
using 622

Index 743

F
fading objects 432
FileReference class

about 600
and download() method 601
and security 601
building an application 602

files, uploading 600
filters

adjusting properties 489
and ActionScript 463
and error handling 462
and memory usage 463
and out-of-memory error 462
and performance 462
and transparency 464
animating 491
applying to instances 462
array 490
changing brightness level 484
defining 456
getting and setting 460
glow filter 457
manipulating with code 489
modifying properties 460
noise 494
rotating and skewing 461
rotating, skewing, and scaling 461
understanding packages 458

Flash 4 files, opening with Flash 8 722
Flash 8, new and changed ActionScript features 20
Flash Play 9.x, new and changed ActionScript 2.0

features 19
Flash Player

and ActionScript 695
classes, about 247
coding standards 695
communicating with 617
displaying full screen 618
displaying or dimming the context menu 619
methods 621
normal menu view 618
publish settings 34
scaling SWF files to 618

Flash Player 4
creating content for 722

Flash Player 7
new security model 652, 657, 663
porting existing scripts 631

Flash Player 8
deprecated language elements 27
new and changed ActionScript editor features 27
new and changed language elements 22

Flash Video
See video

FlashVars
about 353
using to display text 354

FlashVars property
about 353
using 67

FLV files
and Macintosh 580
configuring the server for FLV 579
creating a FLV banner 564
creating a progress bar 585
cue points 568
external video 561
loading external files at runtime 563
metadata 577
navigating with code 574
preloading 566
preloading external video 566
See also video
working with cue points 570

FLV Video. See video
FLVPlayback component

and cue points 571
and seek() method 574
creating cue points to work with 572
seek to a specified duration 574
seek to cue point 575, 576
using cue points with 572

font outlines 373
font rendering

about 367
methods 368
options 369

font symbols, embedding 361
font tables

creating 373
cutoff values 373
setting 373

fonts
about 359
adding and removing 359
cutoff values 373
defined 359
sharing 367

744 Index

for loops 119
example 132

for statements, writing 702
for..in loops 120
form feed character 420
formatting text

using 376
frame rate

about 431
and onEnterFrame 431
choosing 431
with Tween class 451

frame scripts
about 293

fscommand() function
commands and arguments 618
communicating with Director 620
using 618

fully qualified name
defining 458
using 458

function
function block 169

function keys, ASCII key code values 718
function literal

about 172
redefining 172

functions
about 163
as black box 164
asynchronous 591
best practices 693
built-in and top-level 167
callback 170
calling top-level functions 168
compared with methods 185
comparing named and anonymous 177
constructor 173, 726
conversion 36
creating and calling 176
custom 163
defining 173
defining global and timeline 173
for controlling movie clips 315
function block 169
function literal 172
in a class file 178
named function syntax 164
naming 176
nested 183

passing parameters to 180
returning values from 182
reusing 176
standard format for named functions 168
targeting and calling user-defined functions 174
top-level 166
types of 165
using a named function 169
using in Flash 176
using variables in 179
writing anonymous functions 170
writing named functions 168

G
garbage collection 688
getter methods

about 216
using 216

getting information from remote files 590
getting mouse pointer position 525
getURL() method 522
global variables 60
glow filter

about 472
animate 457
using 472

glyphRange node, about 363
gradient bevel filter

about 477
and blurX and blurY properties 478
and fill 477
and highlight 480
and knockout and type properties 478
and movie clip fill 480
and strength property 478
applying 482
applying to a movie clip 482
color distribution 478
colors array 478
ratio array 478
ratio value and angle 480
using 479

gradient glow filter
about 473
using 474

grayscale image 435
grid fit types, using 378

Index 745

H
handlers. See event handlers
hitTest() method 534
HTML

example of using with styles 391
styling built-in tags 390
supported tags 398
tags enclosed in quotation marks 398
text field 347
using tag to flow text 397, 400, 406
using cascading style sheets to define tags 393
using in text fields 397

HTTP protocol
communicating with server-side scripts 594
with ActionScript methods 590

HTTPS protocol 590

I
ID3 tags 558
if..else if statements, writing 108
if..else statements, writing 107
IIS 6.0 web server 579
images

applying blending modes 497
embedding in text fields 406
loading into movie clips 319
See also external media

IME (input method editor)
about 416
using 416

import
about the statement 458
multiple classes within package 459
using wildcard 459

importing
class files 201

In 649
indexed array 126, 130
information, passing between SWF files 590
inheritance

about 263
and OOP 194
and subclasses 264
example 266

initialization, writing ActionScript 688
initializing movie clip properties 340
input method editor

about 416

using 416
input text 345
instance names

and target paths 83
compared with variable names 348
defined 313

instances 432
and OOP 194
applying filters to 462
defined 256
targeting 83
targeting dynamic 85
targeting nested 84

instantiation
defined 188
of objects 257

interactivity, in SWF files
creating 519
techniques for 524

interface keyword 277
interfaces

about 275
and OOP 195
complex interface example 285
creating 278
creating as data type 280
defining and implementing 278
example 283
naming 277
understanding inheritance and 282

IP addresses
policy files 659
security 650

J
JavaScript

and ActionScript 79
and Netscape 621
international standard 79
sending messages to 619

JPEG files
embedding in text fields 406
loading into movie clips 319, 551

jumping to a URL 522

746 Index

K
key codes, ASCII

function keys 718
letter and number keys 715
numeric keypad 718
other keys 719

keyboard
ASCII key code values 715

keyboard controls
to activate movie clips 528

keywords
_root 87
about 99
extends 264
interface 277
this 87
using 102

L
levels

loading 317
levels, identifying depth 86
line styles

about 506
alpha 509
and drawing API 506
capsStyle and jointStyle 509
color 508
miterLimit 512
parameters 507
pixelHinting 509
scaling 509
stroke and cap styles 506
thickness 507

lines 506
linkage

coding conventions 676
identifier 323, 339

Linkage Properties dialog box 323, 324, 339
linking, movie clips 324
listener objects 296

unregistering 297
listener syntax 705
literals

about 94
compound 94

LiveDocs, about 15
loaded data, checking for 591

loaded SWF files
identifying 86
removing 317

loading
displaying XML files 358
external media 550

loading data
from server 68
variables 69

loadMovie() function 591
loadVariables() function 591
LoadVars class

checking HTTP status 598
loading variables from text file 357
using 596
using to display text 355

LoadVars object, creating 596
local variable, about 62
Locale class

about 414
using 414

looping statements 116, 117
loops

creating and ending 118
do..while 123
for 119
for..in 120
nested 124
using 115
while 122

M
Macromedia Director, communicating with 620
manipulating numbers 42
masks 337

and alpha channel masking 338
and device fonts 338
scripting to create 512
strokes ignored 337, 499

MediaPlayback component
using cue points with 573

members (methods and properties)
public, private, and static 208

message box, displaying 619
metadata

about 577
using 577

methods

Index 747

about 163, 184
and arrays 184
asynchronous 591
compared with functions 185
defined 184
for controlling movie clips 315
naming 185
of objects, calling 258
private 209
pubic 209
static 210
types of 165

MIME format, standard 595
MIME type 579
mouse pointer. See cursors
mouse position, getting 525
movie clips

activating with keyboard 528
adding parameters 325
adjusting color 530
_root property 317
and with statement 316
apply glow filter 457
assigning a custom class to 239
assigning button states to 305
attaching on() and onClipEvent() handlers 301
attaching to symbol on Stage 323
background 336
calling multiple methods 316
changing color and brightness 434
changing properties while playing 319
child, defined 313
controlling 314
creating an empty instance 322
creating at runtime 321
creating subclasses 339
data type 40
deleting 323
detecting collisions 534
determining depth of 329
determining next available depth 328
dragging 320
duplicating 323
embedding in text fields 406
fading with code 432
filters property 480
functions 315
initializing properties at runtime 340
instance name, defined 313
invoking methods 314

loading MP3 files into 555
loading SWF files and JPEG files into 551
looping through children 117
managing depth 327
methods and functions compared 314
methods, listed 315
methods, using to draw shapes 499
nested, defined 313
parent, defined 313
properties 319
properties, initializing at runtime 340
removing 323
sharing 324
starting and stopping 521
targeting dynamically created 85
using as masks 337
See also SWF files

MovieClip class
adjusting the filters property 489
and scale9Grid property 515
blendMode property 496
drawing methods 499
filters property 460

MovieClip data type, defined 40
moviename_DoFSCommand function 619
MP3 files

creating a progress bar 583
ID3 tags 558
loading 555, 556
loading into movie clips 555
preloading 557, 566
reading ID3 tags 558

multidimensional arrays, about 131

N
named functions 169
naming classes and objects, best practices 673
naming conventions 666

Booleans 672
classes and objects 673
functions and methods 673
interfaces 675
packages 190, 675
variables 670

naming interfaces, best practices 675
naming packages, best practices 675
navigation

controlling 519

748 Index

jumping to frame or scene 520
nested movie clips, defined 313
Netscape, JavaScript methods supported 621
NetStream class

and onMetaData handler 577
using onMetaData handler 577

networking
restricting networking APIs 648

newline character 420
nodes 608
noise effect 494
null data type 41
numbers, manipulating with methods 42
numeric keypad, ASCII key code values 718

O
object literal 136
object properties

assigning values to 257
object-oriented programming 193
Object-oriented programming. SeeOOP
objects

accessing properties 257
calling methods 258
coding standards 680
creating 54, 72, 257
creating in Flash 72
data type 42
fading out 432
looping through children of 117
organizing data in arrays 73

old players, targeting 721
on() and onClipEvent() handlers 300

attaching to movie clips 301
scope 306

onEnterFrame, and frame rate 431
online resources 16
OOP

about 188, 193
and encapsulation 195
and inheritance 194
and interfaces 195
and objects 193
and polymorphism 196
design 221
instances and class members 194
writing custom classes 196

opaqueBackground property

defined 331
using 336

operands 138
operation order 498
operator precedence and associativity 140
operators

about 137
additive 148
assignment 140, 154
associativity 140
bitwise logical 158
bitwise shift 157
combining with values 137
comparison 144
conditional 114, 151, 160
deprecated 713
dot and array access 145
equality 150, 151
logical 155, 156
manipulating values 139
mathematical expressions 137
multiplicative 148
numeric 149
operands 138
postfix 147
precedence and associativity 140
relational 150
relational and equality 151
unary 147
using assignment 155
using in Flash 160

order of execution (operator)
operator associativity 140
operator precedence 140

organizing scripts
ActionScript 1.0 and ActionScript 2.0 33
attaching to objects 680
coding conventions 679

out-of-memory error 462

P
packages

about 189
compared with classes 191
importing 192
naming 190
working with 191, 458

parameters 169

Index 749

parent movie clips 313
parentheses, about 93
PDF documentation, where to find 15
performance

and filters 462
and frame rate 431
bitmap caching 440

playing movie clips 521
pointer. See cursors
policy files

defined 658
must be named crossdomain.xml 658
See also security

polymorphism
about 196
using 271

post colon syntax, defined 46
prefixes, super 690
primitive data type (data value) 37
progress bar

and drawing API 592
creating with code 580
for data loading 592

projectors, executing applications from 619
properties

initializing at runtime 340
of movie clips 319
of objects, accessing 257
private 209
public 209
static 210

publish settings
choosing Flash Player version 34

punctuators
about 88
curly braces 90
parentheses 93
semicolons and colons 89

Q
quotation marks, in strings 43

R
registration point, and loaded images 319
relational operators 151
relative paths 87
remote

files, communicating with 590
sites, continuous connection 616

removing
loaded SWF files 317
movie clips 323

repeating actions, using loops 115
reserved words

about 103
other recommendations 103

resources, additional 14
Restricting networking APIs 648
return statement 703
_root property and loaded movie clips 317
runtime data binding

about 537
creating a two-way binding 540
with CheckBox 541

runtime, defined 13

S
sample files, about 14
scale-9

about 514
scale-9. See 9-slice scaling
scope

about 87
best practices 681
in classes 684
this keyword 310

scripted animation
about 430
and blur filter 491
and filters 491
and Tween class 491
brightness tween 436
creating a progress bar 580
drawing API 512
moving images 438
moving objects 437
panning images 438
Tween and TransitionManager classes 441

scripts
about events 292
clip events 293
frame scripts 293
keyboard events 292
porting to Flash Player 7 631

scrolling

750 Index

and bitmap caching 440
text 410

scrollRect property 331
security

and policy files 658
and porting scripts to Flash Player 7 652, 657, 663
cross-domain 650
data access across domains 656
Flash Player compatibility 631
loadPolicyFile 660, 661
restricting networking APIs 648

semicolons, about 89
sending information

in XML format 590
to remote files 590
URL-encoded format 590
via TCP/IP 590

server-side scripts
creating 606
languages 590
XML format 610

servers, opening continuous connection 616
setInterval

and frame rate 431
using 433

setRGB method 530
setter methods

about 216
using 216

sharing fonts
about 367

single-quote character, in strings 420
Singleton design pattern 213
slash syntax

about 88
not supported in ActionScript 2.0 88
using 724

socket connections
about 616
sample script 616

sounds
attaching to Timeline 531
balance control 533
See also external media

special characters 43
Stage, attaching symbols to the 323
statements

about 103
compound 104, 701
conditional 106, 700

defined 78
for 702
guidelines for writing 103
if 106
if..else 107
if..else if 108
importing 192
switch 109
try..catch..finally 111, 704
while and do while 703
with 691

static members 258
static members. See class members
static text 344
stopping movie clips 521
strict data typing 50
String class

about 411, 418
and substr() and substring() methods 427
charAt() method 422
concat() method 425
length property 421, 424
split() method 426
toLowerCase() and toUpperCase() methods 424
toString() method 424

strings 43
about 411
analyzing 421
comparing 421
comparing to other data types 423
converting and concatenating 424
converting case 424
creating 419
creating an array of substrings 426
defined 412
determining length 421
examining characters 422
finding character position 428
finding substring 427
forcing type comparisons 423
looping over 422
returning substrings 427
using 419

Strings panel 413
stroke styles 506
strokes

setting parameters 507
setting styles 506

strong typing 45, 50
style sheets. See cascading style sheets

Index 751

styles
line 506
stroke and caps 506

styles, stroke and caps 506
subclasses

creating for movie clips 339
example 266
writing 265

subclasses, about 264
super prefix 690
superclass 265
surfaces

defined 330
SWF files

controlling in Flash Player 621
embedding in text fields 406
jumping to frame or scene 520
loading and unloading 317
loading into movie clips 551
maintaining original size 618
passing information between 590
placing on Web page 522
scaling to Flash Player 618
See also movie clips

switch statements
conventions 703
using 109

syntax
case sensitivity 81
slash 88

system
event, defined 291
requirements, for ActionScript 2.0 10

T
tab character 420
target path

and dot syntax 82
and nested instances 84
and targeting an instance 83
inserting 88
using 175
using button 88

targeting
and scope 87
loaded content 85

TCP/IP connection
sending information 590

with XMLSocket object 616
text

assigning to text field at runtime 346
loading and displaying 354, 355, 358
scrolling 410
terminology 343
using tag to flow around images 400
See also text fields

text components 345
text fields

about 344
and HTML text 390
applying cascading style sheets 387
avoiding variable name conflicts 349
changing dimensions 351
changing position 351
controlling embedded media 408
creating dynamically at runtime 347, 349
default properties 382
dynamic 344
embedding clickable images in 410
embedding movie clips in 407
embedding SWF or image files 406
flowing text around embedded images 397, 400
formatting 380
formatting with cascading style sheets 382
HTML formatting 347
instance and variable names compared 348
instance names 348
loading variables into 353
manipulating 350
populating with external text 356
setting thickness 365
specifying image dimensions 408
See also TextField class, TextFormat class, and

TextField.StyleSheet class
text formatting

about 375
text layout 375
text rendering options 369
TextField class

creating scrolling text 410
using 346

TextField methods, using 365
TextField.StyleSheet class 383

and cascading style sheets 385
and TextField.styleSheet property 383, 387
creating text styles 387

TextFormat class
about 375

752 Index

using 380
this keyword 87, 547

and scope 87
as prefix 687
in classes 222
scope 222
using 683

timeline variable, about 61
trace statements, writing ActionScript 689
transferring variables between movie and server 596
Transition class

animating brightness level 484
TransitionManager class

about 441
and easing 441
using 444
with drawing API 512
with Tween class 455

transitions
adding with ActionScript 444
adding with behaviors 442
defining 443

transparency, and masking 338
try..catch..finally statement, writing 111, 704
Tween class

_alpha property 455
about 441, 448
and easing 441
animating blur filters 491
animating brightness level 484
continueTo() method 452, 455
fading objects with 450
importing 449
onMotionFinished event handler 453
setting duration of frames 451
to trigger animation completed 452
using 444, 449
with Drawing API 512
with TransitionManager class 455
yoyo() method 453, 455

tweens
adding with ActionScript 444
adding with behaviors 442

type checking
defined 48
dynamic 49
example 48

typographical conventions 13

U
UCS (Universal Character Set), defined 412
undefined data type 44
Unicode

character code 412
defined 412

Universal Character Set (UCS) 412
URL variables, about 64
URL-encoded format, sending information 590
user event 291
user-defined functions

writing 174
UTF-16 encoding standard 412
UTF-8 (Unicode) 412

V
values

and data types 193
manipulating in expressions 137

variables
and operators 54
and scope 60
assigning values 52
avoiding name conflicts 349
changing value 53
comparing undefined and defined 56
converting to XML 610
declaring 51
default values 52
defined 50
instance 232
loading 64, 68
loading from external text file 357
loading into text fields 353
local 62
naming rules and guidelines 55
passing by reference 58
passing from HTML 354
passing values from URL string 64
sending to URL 522
setting using a path 86
timeline 61
transferring between movie clip and server 596
URL encoded 64
using 57
using FlashVars to pass 67
using in a project 69
using in an application 56

Index 753

variables, global 60
video

about 560
about external FLV files 561
adding seek functionality 574
and Macintosh 580
configuring the server for FLV 579
creating a banner 564
creating a progress bar to load FLV 585
creating a video object 562
creating FLV files 561
cue points 568
metadata 577
navigating a FLV file 574
playing FLV files at runtime 563
preloading 566
seek to a specified duration 574
seek to cue point 575, 576
tracing cue points 568
using the onMetaData handler 577
working with cue points 570

video, alternative to importing 561
void data type 44
volume, creating sliding control 532

W
web applications, continuous connection 616
while loops 122
with statement 691
writing ActionScript

super prefix 690
trace 689
with statement 691

writing syntax and statements
listener 705
return 703
switch 703

X
XLIFF files 414
XML 608

DOM 608
example of using with styles 394
hierarchy 608
in server-side scripts 610
loading and displaying text 358
sample variable conversion 609

sending information via TCP/IP socket 590
sending information with XML methods 590

XML class, methods 609
XML files, updating for Flash 8 installation 10
XML Localization Interchange File Format 414
XMLSocket object

checking for data 591
loadPolicyFile 661
methods 616
using 616

Z
Zoom transition behavior 442

754 Index

	Contents
	Introduction
	Intended audience
	System requirements
	Updating Flash XML files
	About the documentation
	Learning ActionScript 2.0 book overview
	Typographical conventions
	Terms used in this document
	Copy and paste code

	Additional resources
	About the sample files
	Where to find PDF files or printed documentation
	About LiveDocs
	Additional online resources
	Where to find documentation on other subjects

	What’s New in Flash ActionScript
	New in ActionScript 2.0 and Flash Player 9.x
	New in ActionScript 2.0 and Flash Player 8
	Additions to the ActionScript language in Flash Player 8
	About deprecated language elements
	ActionScript editing changes

	Changes to security model for locally installed SWF files

	About ActionScript
	What is ActionScript
	About choosing between ActionScript 1.0 and ActionScript 2.0
	Understanding ActionScript and Flash Player

	Data and Data Types
	About data
	About data types
	About primitive and complex data types
	Boolean data type
	MovieClip data type
	null data type
	Number data type
	Object data type
	String data type
	undefined data type
	Void data type

	About assigning data types and strict data typing
	Assigning a data type

	About type checking
	About determining data type

	About variables
	About declaring variables
	About default values
	About assigning values
	About operators and variables
	About naming variables
	Using variables in an application
	Passing a variable by reference

	About variables and scope
	Global variables
	Timeline variables
	Local variables

	About loading variables
	Using variables from the URL
	Using FlashVars in an application
	Loading variables from a server

	Using variables in a project

	Organizing data in objects
	About casting
	About casting objects

	Syntax and Language Fundamentals
	About syntax, statements, and expressions
	Differences between ActionScript and JavaScript
	About case sensitivity

	About dot syntax and target paths
	About using dot syntax to target an instance
	Targeting an instance
	Targeting a nested instance
	Targeting dynamic instances and loaded content
	Setting variables using a path

	About scope and targeting
	Using the Target Path button
	About slash syntax

	About language punctuators
	Semicolons and colons
	Curly braces
	Parentheses
	About literals
	About comments
	Single-line comments
	Multiline comments
	Trailing comments
	Comments inside classes

	About constants and keywords
	Using constants
	About keywords
	About reserved words

	About statements
	About compound statements
	About conditions
	About writing conditions
	Using the if statement
	Using the if..else statement
	Using the if..else if statement
	Using a switch statement
	Using try..catch and try..catch..finally statements
	About the conditional operator and alternative syntax

	Repeating actions using loops
	About creating and ending loops
	Using for loops
	Using for..in loops
	Using while loops
	About do..while loops
	Using nested loops in your ActionScript

	About arrays
	Using arrays
	About modifying arrays
	About referencing and finding length
	About adding and removing elements

	Creating indexed arrays
	Creating multidimensional arrays
	Creating associative arrays

	About operators
	Using operators to manipulate values
	About operator precedence and associativity
	About using operators with strings
	Using dot and array access operators
	About postfix operators
	About unary operators
	About multiplicative operators
	About additive operators
	Using numeric operators
	About relational operators
	About equality operators
	Using relational and equality operators
	About assignment operators
	Using assignment operators
	About logical operators
	Using logical operators
	About bitwise shift operators
	About bitwise logical operators
	Using bitwise operators
	About the conditional operator
	Using operators in a document

	Functions and Methods
	About functions and methods
	About types of methods and functions
	About built-in and top-level functions
	Writing named functions
	Writing anonymous and callback functions
	About function literals
	About constructor functions

	Defining global and timeline functions
	Targeting and calling user-defined functions
	Naming functions
	Using functions in Flash
	Using variables in functions
	Passing parameters to a function
	Returning values from functions
	About nested functions

	Understanding methods
	Naming methods

	Classes
	About object-oriented programming and Flash
	The benefits of using classes
	About packages
	A comparison of classes and packages
	Working with packages

	About values and data types
	Object-oriented programming fundamentals
	Objects
	Instances and class members
	Inheritance
	Interfaces
	Encapsulation
	Polymorphism

	Writing custom class files
	About working with custom classes in an application
	About importing class files
	About setting and modifying the classpath

	How the compiler resolves class references
	Using a class file in Flash
	Using methods and properties from a class file
	About public, private, and static methods and properties (members)

	About class members
	Using the Singleton design pattern
	Using class members

	About getter and setter methods
	Using getter and setter methods

	About dynamic classes
	Creating dynamic classes

	About using encapsulation
	About using the this keyword in classes

	Example: Writing custom classes
	About general guidelines for creating a class
	About naming class files

	Creating and packaging your class files
	Writing the constructor function
	Adding methods and properties
	Controlling member access in your classes
	Documenting the classes

	Example: Using custom class files in Flash
	Importing classes and packages
	Creating instances of classes in an example

	Assigning a class to symbols in Flash
	Compiling and exporting classes
	Using ASO files

	Understanding classes and scope
	About top-level and built-in classes
	Other language elements
	Top-level classes
	The flash.display package
	The flash.external package
	The flash.filters package
	The flash.geom package
	The flash.net package
	The flash.text package
	The mx.lang package
	The System and TextField packages

	About working with built-in classes
	About creating a new instance of a built-in class
	Accessing built-in object properties
	About calling built-in object methods
	About class (static) members
	Excluding classes
	Preloading class files

	Inheritance
	About inheritance
	About writing subclasses in Flash
	About writing a subclass
	Example: Extending the Widget class

	Overriding methods and properties

	Using polymorphism in an application

	Interfaces
	About interfaces
	About the interface keyword
	About naming interfaces
	Defining and implementing interfaces

	Creating interfaces as data types
	Understanding inheritance and interfaces
	Example: Using interfaces
	Example: Creating a complex interface

	Handling Events
	About ActionScript and events
	Mouse and keyboard events
	Clip events
	Frame events

	Using event handler methods
	Using event listeners
	Event listener model
	Event listener example

	Using event listeners with components
	Using button and movie clip event handlers
	Using on and onClipEvent with event handler methods
	Specifying events for on or onClipEvent methods
	Attaching or assigning multiple handlers to one object

	Broadcasting events from component instances
	Creating movie clips with button states
	Event handler scope
	Scope of the this keyword
	Using the Delegate class

	Working with Movie Clips
	About controlling movie clips with ActionScript
	Calling multiple methods on a single movie clip
	Loading and unloading SWF files
	Specifying a root timeline for loaded SWF files
	Loading image files into movie clips

	Changing movie clip position and appearance
	Dragging movie clips
	Creating movie clips at runtime
	Creating an empty movie clip
	Duplicating or removing a movie clip
	Attaching a movie clip symbol to the Stage

	Adding parameters to dynamically created movie clips
	Managing movie clip depths
	Determining the next highest available depth
	Determining the instance at a particular depth
	Determining the depth of an instance
	Swapping movie clip depths

	About caching and scrolling movie clips with ActionScript
	When to enable caching
	When to use bitmap caching
	When to avoid using bitmap caching

	Caching a movie clip
	Setting the background of a movie clip

	Using movie clips as masks
	About masking device fonts
	About alpha channel masking

	Handling movie clip events
	Assigning a class to a movie clip symbol
	Initializing class properties

	Working with Text and Strings
	About text fields
	Using the TextField class
	Assigning text to a text field at runtime
	About text field instance and variable names
	Creating text fields at runtime
	About manipulating text fields
	Changing a text field’s position
	Changing a text field’s dimensions at runtime

	About loading text and variables into text fields
	Using FlashVars to load and display text
	Using LoadVars to load and display text
	Loading variables by using LoadVars
	Loading and displaying text from an XML document

	Using fonts
	Embedding characters
	Embedding fonts
	Creating custom character sets
	Using TextField methods with embedded fonts
	About sharing fonts

	About font rendering and anti-alias text
	Font rendering options in Flash
	About continuous stroke modulation
	Setting anti-alias with ActionScript
	Setting tables for fonts

	About text layout and formatting
	About formatting anti-alias text
	Using a grid fit type
	Using the TextFormat class
	Default properties of new text fields

	Formatting text with Cascading Style Sheet styles
	Supported CSS properties
	Creating a style sheet object
	Loading external CSS files
	Creating new styles with ActionScript
	Applying styles to a TextField object
	Applying a style sheet to a TextArea component
	Combining styles
	Using style classes
	Styling built-in HTML tags
	An example of using styles with HTML
	Using styles to define new tags
	An example of using styles with XML

	Using HTML-formatted text
	Required properties and syntax for using HTML- formatted text
	About supported HTML tags
	Anchor tag
	Bold tag
	Break tag
	Font tag
	Image tag
	Italic tag
	List item tag
	Paragraph tag
	Span tag
	Text format tag
	Underline tag

	About supported HTML entities
	About embedding images, SWF files, and movie clips in text fields
	Embedding SWF and image files
	Embedding movie clip symbols
	About specifying height and width values
	Controlling embedded media with ActionScript
	About making hypertext links out of embedded media

	Example: Creating scrolling text
	About strings and the String class
	panel
	Using the Locale class
	Using an input method editor
	About the String class
	Creating strings
	About the escape character
	Analyzing and comparing characters in strings
	Converting and concatenating strings
	Returning substrings

	Animation, Filters, and Drawings
	Scripting animation with ActionScript 2.0
	About animation and frame rate
	Fading objects with code
	Adding color and brightness effects with code
	Moving objects with code
	Panning an image with code

	About bitmap caching, scrolling, and performance
	About the Tween and TransitionManager classes
	Adding tweens and transitions to a file in Flash
	Animating with the TransitionManager and Tween classes
	About easing classes and methods
	About the Tween class
	Using the Tween class
	About continuing animations using the continueTo() method
	Creating animations that run continuously

	Combining the TransitionManager and Tween classes

	Using filter effects
	Working with filter packages
	Working with filters, caching, and the MovieClip class
	About hit detection, rotating, skewing, and scaling filters
	Applying filters to object instances and BitmapData instances
	About error handling, performance, and filters

	Working with filters using ActionScript
	Using the blur filter
	Using the drop shadow filter
	Using the glow filter
	Creating gradient glows
	Using the bevel filter
	About the gradient bevel filter
	Applying a gradient bevel filter

	Using the color matrix filter
	Using the convolution filter
	Using the displacement map filter

	Manipulating filter effects with code
	Adjusting filter properties
	Animating a filter by using ActionScript
	Using the clone() method

	Creating bitmaps with the BitmapData class
	About blending modes
	Applying blending modes

	About operation order
	Drawing with ActionScript
	Using drawing methods to draw lines, curves, and shapes
	Drawing specific shapes
	Using complex gradient fills
	Using line styles
	Setting stroke and caps styles
	Setting parameters of line styles

	Using Drawing API methods and scripting animation

	Understanding scaling and slice guides
	Understanding how 9-slice scaling works
	Working with 9-slice scaling in ActionScript

	Creating Interaction with ActionScript
	About events and interaction
	Controlling SWF file playback
	Jumping to a frame or scene
	Playing and stopping movie clips
	Jumping to a different URL

	Creating interactivity and visual effects
	Creating a custom mouse pointer
	Getting the pointer position
	Capturing keypresses
	Setting color values
	Creating sound controls
	Detecting collisions
	Creating a simple line drawing tool

	Creating runtime data bindings using ActionScript
	Creating bindings between UI components using ActionScript
	Using components, bindings, and custom formatters
	Formatting data using the CustomFormatter class

	Adding and binding components on the Stage

	Deconstructing a sample script

	Working with Images, Sound, and Video
	About loading and working with external media
	Loading external SWF and image files
	About loading SWF files and the root timeline

	About loading and using external MP3 files
	Loading an MP3 file
	Preloading MP3 files
	Reading ID3 tags in MP3 files

	Assigning linkage to assets in the library
	About using FLV video
	Creating a video object
	Playing back external FLV files dynamically
	Creating a video banner
	Preloading FLV files
	Working with cue points
	Tracing cue points from an FLV file
	Using embedded cue points with the FLVPlayback component
	Creating cue points with ActionScript to use with components
	Adding seek functionality with cue points

	Working with metadata
	Configuring your server for FLV files
	About targeting local FLV files on Macintosh

	About creating progress animations for media files
	Creating a progress animation for loading SWF and image files
	Creating a progress bar for loading MP3 files with ActionScript
	Creating a progress bar for loading FLV files with ActionScript

	Working with External Data
	Sending and loading variables
	Checking for loaded data
	Creating a progress bar to display data loading progress

	Using HTTP to connect to server-side scripts
	Using the LoadVars class

	About file uploading and downloading
	About FileReference API functionality and security
	Adding file upload functionality to an application

	About XML
	Using the XML class
	Using the XMLSocket class

	Sending messages to and from Flash Player
	Using the fscommand() function
	About using JavaScript to control Flash applications
	About Flash Player methods

	About the External API
	Creating interaction with the External API
	Controlling Flash Video with the External API

	Understanding Security
	About compatibility with previous Flash Player security models
	About local file security and Flash Player
	Understanding local security sandboxes
	Local-with-file-system
	Local-with-networking
	Local-trusted

	About Flash Player security settings
	About local file security and projector files
	About troubleshooting legacy SWF files
	Fixing legacy content deployed on local computers
	Publishing files for local deployment
	Access local files only (default)
	Access network only
	Access file system and network

	Testing content locally with Flash local file security restrictions
	Specifying trusted files using the Settings Manager
	Creating configuration files for Flash development

	About the sandboxType property
	About local-with-file-system restrictions

	Restricting networking APIs
	About domains, cross-domain security, and SWF files
	Domain name rules for settings and local data
	Cross-domain and subdomain access between SWF files
	Allowing data access between cross-domain SWF files

	Server-side policy files for permitting access to data
	Allowing cross-domain data loading
	About custom policy file locations
	About XMLSocket policy files

	HTTP to HTTPS protocol access between SWF files
	Allowing HTTP to HTTPS protocol access between SWF files

	Best Practices and Coding Conventions for ActionScript 2.0
	Naming conventions
	General naming guidelines
	Avoiding reserved words and language constructs
	Naming variables
	Naming constants
	Naming Boolean variables
	Naming functions and methods
	Naming classes and objects
	Naming packages
	Naming interfaces
	Naming custom components

	Using comments in your code
	Writing good comments
	Adding comments to classes

	ActionScript coding conventions
	Keeping your ActionScript code in one place
	Attaching code to objects
	Handling scope
	Avoiding absolute targets (_root)
	Using _lockroot
	Using the this keyword
	About scope in classes

	Structuring a class file
	Guidelines for creating a class
	Using the this prefix in class files
	About initialization
	Use trace statements
	About the super prefix
	Avoid the with statement

	About using functions
	About stopping code repetition

	ActionScript and Flash Player optimization
	Optimizing your code

	Formatting ActionScript syntax
	General formatting guidelines
	Writing conditional statements
	Writing compound statements
	Writing a for statement
	Writing while and do..while statements
	Writing return statements
	Writing switch statements
	Writing try..catch and try..catch..finally statements
	About using listener syntax

	Error Messages
	Deprecated Flash 4 operators
	Keyboard Keys and Key Code Values
	Letters A to Z and standard numbers 0 to 9
	Keys on the numeric keypad
	Function keys
	Other keys

	Writing Scripts for Earlier Versions of Flash Player
	About targeting earlier versions of Flash Player
	Using Flash to create content for Flash Player 4
	Using Flash to open Flash 4 files
	Using slash syntax

	Object-Oriented Programming with ActionScript 1.0
	About ActionScript 1.0
	Creating a custom object in ActionScript 1.0
	Assigning methods to a custom object in ActionScript 1.0
	Defining event handler methods in ActionScript 1.0
	Creating inheritance in ActionScript 1.0
	Adding getter/setter properties to objects in ActionScript 1.0
	Using Function object properties in ActionScript 1.0
	Invoking a function using the Function.call() method in ActionScript 1.0
	Specifying the object to which a function is applied using Function.apply() in ActionScript 1.0

