FINAL EXAM: VERSION 1
You are allowed 2.5 hrs to complete this exam. You must show all work to get credit. You may use a scientific or graphing calculator, but may not use your cell phone for any reason at any time during this exam. If you are caught cheating, you will receive a score of zero on this exam and may be dropped from the class. Please raise your hand if you have any questions.

1. Let $f(x)=\frac{x^{2}-7 x}{x^{2}-6 x-7}=\frac{x(x-7)}{(x+1)(x-7)}$

2. Find the derivative of $f(x)=\frac{1}{x^{2}}$ in three different ways (state the rule you are using):

3. Find the equation of the tangent line to $f(x)$ at $x=0$.
a. $f(x)=(4 x-3)^{3}\left(x^{2}+1\right)^{2}$.

4. Liquid is being poured into a cylinder with radius 2 cm at a rate $0.7 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is the height of the liquid increasing when the volume is $16 \pi \mathrm{~cm}^{3}$?

5. State the behavior of the exponential and natural logarithmic functions (no need to show work):

6. Let $f(x)=e^{-1 / x}$.

D. Determine intervals of increase and decrease, and local extrema. Put the information in the table below as shown in class. You may not need the entire table.

x	$(-10,0)$	$(0,2)$	
$f /(x)$	>0	70	
$f(x)$	$n C$	$1 \cap C$	

E. Determine intervals of concavity. Put the information in the table below as shown in class. You may not need the entire table.

F. Sketch the graph, based on the above. Plot intercepts, local extrema and inflection points

9. A. Derive (prove) the formula for the derivative of $\cos ^{-1} x$.

B. Let $H(x)=\cos ^{-1}(1-3 x)$. Find the derivative of $H(x)$.

$$
f^{\prime}(x)=\frac{-1}{\sqrt{1-(1-3 x)^{2}}} \cdot-3=
$$

C. Find the domain of $H(x)$ and of its derivative.

D. Find the limit as $x \rightarrow 0$ for $H(x)$ and its derivative.

10. A Norman window has the shape of a rectangle surmounted by a semicircle. (Thus the diameter of the semicircle is equal to the width of the rectangle.) If the perimeter of the window is 30 ft , find the dimensions of the window so that the greatest possible amount of light is admitted.

11. Consider the function $f(x)=(2 x-10)^{2}$ on $[0,8]$.
a. Estimate the area under the curve using M_{4}. Draw picture and show work.

b. Find the exact area by integrating in two different ways.

$=202 \frac{2}{3}$
12. If $g(x)=\int_{9 x^{3}}^{17} \cos t^{5} d t$, then find $g^{\prime}(x)$.
fT

$$
\begin{aligned}
& \text { fR} g(x)=-\int_{1+} \cos t^{5} d r \\
& s 0 g^{\prime}(x) \\
& =-\cos \left[9 x^{3}\right]^{5} \cdot 27 x^{2} \\
& \\
& =-27 x^{2} \cos \left[9 x^{3}\right]^{5}
\end{aligned}
$$

13. Evaluate
a. $\int 17 \cos ^{3} \theta \sin \theta d \theta$) $10 \cos \times \mathbb{x}$
$b+u=\cos x$
$d u=-\sin x d x-d u=s a x d x$
$y=-17 \|^{3} d u-\frac{-7}{4} u^{4}+C$

$k+$
b

$x u=-3 x C \rightarrow d x=-\frac{1}{3} C u$
$\stackrel{4}{4}-\frac{5}{9} \int_{4} d u+\frac{1}{9} \int \frac{4}{3} \infty$

$\sqrt{c} \quad \int_{0}^{2} x^{2} \sqrt{x^{3}+1} d x$
et

$$
\begin{aligned}
u & =x^{3}+1 \\
d u & =3 x^{2} d x \\
\frac{1}{3} d u & =x^{2} d x
\end{aligned}
$$

$$
42^{\frac{1}{3}} \int^{\frac{1}{2}} u^{10} d u=\frac{2}{9} u^{3 / 2}
$$

$$
\begin{aligned}
& u^{1 / 2} d u=\frac{2}{a} u \\
& =\frac{2}{9}\left(x^{3}+\right)^{3 / 2}=2\left(9^{2 / 2}-1^{2 / 2}\right]_{0}^{2}(26)=\frac{52}{4}
\end{aligned}
$$

